You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtl-sdr/src/librtlsdr.c

1888 lines
44 KiB

/*
* rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
* Copyright (C) 2012-2014 by Steve Markgraf <steve@steve-m.de>
* Copyright (C) 2012 by Dimitri Stolnikov <horiz0n@gmx.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif
#include <libusb.h>
/*
* All libusb callback functions should be marked with the LIBUSB_CALL macro
* to ensure that they are compiled with the same calling convention as libusb.
*
* If the macro isn't available in older libusb versions, we simply define it.
*/
#ifndef LIBUSB_CALL
#define LIBUSB_CALL
#endif
/* libusb < 1.0.9 doesn't have libusb_handle_events_timeout_completed */
#ifndef HAVE_LIBUSB_HANDLE_EVENTS_TIMEOUT_COMPLETED
#define libusb_handle_events_timeout_completed(ctx, tv, c) \
libusb_handle_events_timeout(ctx, tv)
#endif
/* two raised to the power of n */
#define TWO_POW(n) ((double)(1ULL<<(n)))
#include "rtl-sdr.h"
#include "tuner_e4k.h"
#include "tuner_fc0012.h"
#include "tuner_fc0013.h"
#include "tuner_fc2580.h"
#include "tuner_r82xx.h"
typedef struct rtlsdr_tuner_iface {
/* tuner interface */
int (*init)(void *);
int (*exit)(void *);
int (*set_freq)(void *, uint32_t freq /* Hz */);
int (*set_bw)(void *, int bw /* Hz */);
int (*set_gain)(void *, int gain /* tenth dB */);
int (*set_if_gain)(void *, int stage, int gain /* tenth dB */);
int (*set_gain_mode)(void *, int manual);
} rtlsdr_tuner_iface_t;
enum rtlsdr_async_status {
RTLSDR_INACTIVE = 0,
RTLSDR_CANCELING,
RTLSDR_RUNNING
};
#define FIR_LEN 16
/*
* FIR coefficients.
*
* The filter is running at XTal frequency. It is symmetric filter with 32
* coefficients. Only first 16 coefficients are specified, the other 16
* use the same values but in reversed order. The first coefficient in
* the array is the outer one, the last, the last is the inner one.
* First 8 coefficients are 8 bit signed integers, the next 8 coefficients
* are 12 bit signed integers. All coefficients have the same weight.
*
* Default FIR coefficients used for DAB/FM by the Windows driver,
* the DVB driver uses different ones
*/
static const int fir_default[FIR_LEN] = {
-54, -36, -41, -40, -32, -14, 14, 53, /* 8 bit signed */
101, 156, 215, 273, 327, 372, 404, 421 /* 12 bit signed */
};
struct rtlsdr_dev {
libusb_context *ctx;
struct libusb_device_handle *devh;
uint32_t xfer_buf_num;
uint32_t xfer_buf_len;
struct libusb_transfer **xfer;
unsigned char **xfer_buf;
rtlsdr_read_async_cb_t cb;
void *cb_ctx;
enum rtlsdr_async_status async_status;
int async_cancel;
/* rtl demod context */
uint32_t rate; /* Hz */
uint32_t rtl_xtal; /* Hz */
int fir[FIR_LEN];
int direct_sampling;
/* tuner context */
enum rtlsdr_tuner tuner_type;
rtlsdr_tuner_iface_t *tuner;
uint32_t tun_xtal; /* Hz */
uint32_t freq; /* Hz */
uint32_t offs_freq; /* Hz */
int corr; /* ppm */
int gain; /* tenth dB */
struct e4k_state e4k_s;
struct r82xx_config r82xx_c;
struct r82xx_priv r82xx_p;
/* status */
int dev_lost;
int driver_active;
unsigned int xfer_errors;
};
void rtlsdr_set_gpio_bit(rtlsdr_dev_t *dev, uint8_t gpio, int val);
/* generic tuner interface functions, shall be moved to the tuner implementations */
int e4000_init(void *dev) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
devt->e4k_s.i2c_addr = E4K_I2C_ADDR;
rtlsdr_get_xtal_freq(devt, NULL, &devt->e4k_s.vco.fosc);
devt->e4k_s.rtl_dev = dev;
return e4k_init(&devt->e4k_s);
}
int e4000_exit(void *dev) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return e4k_standby(&devt->e4k_s, 1);
}
int e4000_set_freq(void *dev, uint32_t freq) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return e4k_tune_freq(&devt->e4k_s, freq);
}
int e4000_set_bw(void *dev, int bw) {
int r = 0;
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_MIX, bw);
r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_RC, bw);
r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_CHAN, bw);
return r;
}
int e4000_set_gain(void *dev, int gain) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
int mixgain = (gain > 340) ? 12 : 4;
#if 0
int enhgain = (gain - 420);
#endif
if(e4k_set_lna_gain(&devt->e4k_s, min(300, gain - mixgain * 10)) == -EINVAL)
return -1;
if(e4k_mixer_gain_set(&devt->e4k_s, mixgain) == -EINVAL)
return -1;
#if 0 /* enhanced mixer gain seems to have no effect */
if(enhgain >= 0)
if(e4k_set_enh_gain(&devt->e4k_s, enhgain) == -EINVAL)
return -1;
#endif
return 0;
}
int e4000_set_if_gain(void *dev, int stage, int gain) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return e4k_if_gain_set(&devt->e4k_s, (uint8_t)stage, (int8_t)(gain / 10));
}
int e4000_set_gain_mode(void *dev, int manual) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return e4k_enable_manual_gain(&devt->e4k_s, manual);
}
int _fc0012_init(void *dev) { return fc0012_init(dev); }
int fc0012_exit(void *dev) { return 0; }
int fc0012_set_freq(void *dev, uint32_t freq) {
/* select V-band/U-band filter */
rtlsdr_set_gpio_bit(dev, 6, (freq > 300000000) ? 1 : 0);
return fc0012_set_params(dev, freq, 6000000);
}
int fc0012_set_bw(void *dev, int bw) { return 0; }
int _fc0012_set_gain(void *dev, int gain) { return fc0012_set_gain(dev, gain); }
int fc0012_set_gain_mode(void *dev, int manual) { return 0; }
int _fc0013_init(void *dev) { return fc0013_init(dev); }
int fc0013_exit(void *dev) { return 0; }
int fc0013_set_freq(void *dev, uint32_t freq) {
return fc0013_set_params(dev, freq, 6000000);
}
int fc0013_set_bw(void *dev, int bw) { return 0; }
int _fc0013_set_gain(void *dev, int gain) { return fc0013_set_lna_gain(dev, gain); }
int fc2580_init(void *dev) { return fc2580_Initialize(dev); }
int fc2580_exit(void *dev) { return 0; }
int _fc2580_set_freq(void *dev, uint32_t freq) {
return fc2580_SetRfFreqHz(dev, freq);
}
int fc2580_set_bw(void *dev, int bw) { return fc2580_SetBandwidthMode(dev, 1); }
int fc2580_set_gain(void *dev, int gain) { return 0; }
int fc2580_set_gain_mode(void *dev, int manual) { return 0; }
int r820t_init(void *dev) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
devt->r82xx_p.rtl_dev = dev;
if (devt->tuner_type == RTLSDR_TUNER_R828D) {
devt->r82xx_c.i2c_addr = R828D_I2C_ADDR;
devt->r82xx_c.rafael_chip = CHIP_R828D;
} else {
devt->r82xx_c.i2c_addr = R820T_I2C_ADDR;
devt->r82xx_c.rafael_chip = CHIP_R820T;
}
rtlsdr_get_xtal_freq(devt, NULL, &devt->r82xx_c.xtal);
devt->r82xx_c.max_i2c_msg_len = 8;
devt->r82xx_c.use_predetect = 0;
devt->r82xx_p.cfg = &devt->r82xx_c;
return r82xx_init(&devt->r82xx_p);
}
int r820t_exit(void *dev) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return r82xx_standby(&devt->r82xx_p);
}
int r820t_set_freq(void *dev, uint32_t freq) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return r82xx_set_freq(&devt->r82xx_p, freq);
}
int r820t_set_bw(void *dev, int bw) { return 0; }
int r820t_set_gain(void *dev, int gain) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return r82xx_set_gain(&devt->r82xx_p, 1, gain);
}
int r820t_set_gain_mode(void *dev, int manual) {
rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
return r82xx_set_gain(&devt->r82xx_p, manual, 0);
}
/* definition order must match enum rtlsdr_tuner */
static rtlsdr_tuner_iface_t tuners[] = {
{
NULL, NULL, NULL, NULL, NULL, NULL, NULL /* dummy for unknown tuners */
},
{
e4000_init, e4000_exit,
e4000_set_freq, e4000_set_bw, e4000_set_gain, e4000_set_if_gain,
e4000_set_gain_mode
},
{
_fc0012_init, fc0012_exit,
fc0012_set_freq, fc0012_set_bw, _fc0012_set_gain, NULL,
fc0012_set_gain_mode
},
{
_fc0013_init, fc0013_exit,
fc0013_set_freq, fc0013_set_bw, _fc0013_set_gain, NULL,
fc0013_set_gain_mode
},
{
fc2580_init, fc2580_exit,
_fc2580_set_freq, fc2580_set_bw, fc2580_set_gain, NULL,
fc2580_set_gain_mode
},
{
r820t_init, r820t_exit,
r820t_set_freq, r820t_set_bw, r820t_set_gain, NULL,
r820t_set_gain_mode
},
{
r820t_init, r820t_exit,
r820t_set_freq, r820t_set_bw, r820t_set_gain, NULL,
r820t_set_gain_mode
},
};
typedef struct rtlsdr_dongle {
uint16_t vid;
uint16_t pid;
const char *name;
} rtlsdr_dongle_t;
/*
* Please add your device here and send a patch to osmocom-sdr@lists.osmocom.org
*/
static rtlsdr_dongle_t known_devices[] = {
{ 0x0bda, 0x2832, "Generic RTL2832U" },
{ 0x0bda, 0x2838, "Generic RTL2832U OEM" },
{ 0x0413, 0x6680, "DigitalNow Quad DVB-T PCI-E card" },
{ 0x0413, 0x6f0f, "Leadtek WinFast DTV Dongle mini D" },
{ 0x0458, 0x707f, "Genius TVGo DVB-T03 USB dongle (Ver. B)" },
{ 0x0ccd, 0x00a9, "Terratec Cinergy T Stick Black (rev 1)" },
{ 0x0ccd, 0x00b3, "Terratec NOXON DAB/DAB+ USB dongle (rev 1)" },
{ 0x0ccd, 0x00b4, "Terratec Deutschlandradio DAB Stick" },
{ 0x0ccd, 0x00b5, "Terratec NOXON DAB Stick - Radio Energy" },
{ 0x0ccd, 0x00b7, "Terratec Media Broadcast DAB Stick" },
{ 0x0ccd, 0x00b8, "Terratec BR DAB Stick" },
{ 0x0ccd, 0x00b9, "Terratec WDR DAB Stick" },
{ 0x0ccd, 0x00c0, "Terratec MuellerVerlag DAB Stick" },
{ 0x0ccd, 0x00c6, "Terratec Fraunhofer DAB Stick" },
{ 0x0ccd, 0x00d3, "Terratec Cinergy T Stick RC (Rev.3)" },
{ 0x0ccd, 0x00d7, "Terratec T Stick PLUS" },
{ 0x0ccd, 0x00e0, "Terratec NOXON DAB/DAB+ USB dongle (rev 2)" },
{ 0x1554, 0x5020, "PixelView PV-DT235U(RN)" },
{ 0x15f4, 0x0131, "Astrometa DVB-T/DVB-T2" },
{ 0x185b, 0x0620, "Compro Videomate U620F"},
{ 0x185b, 0x0650, "Compro Videomate U650F"},
{ 0x185b, 0x0680, "Compro Videomate U680F"},
{ 0x1b80, 0xd393, "GIGABYTE GT-U7300" },
{ 0x1b80, 0xd394, "DIKOM USB-DVBT HD" },
{ 0x1b80, 0xd395, "Peak 102569AGPK" },
{ 0x1b80, 0xd397, "KWorld KW-UB450-T USB DVB-T Pico TV" },
{ 0x1b80, 0xd398, "Zaapa ZT-MINDVBZP" },
{ 0x1b80, 0xd39d, "SVEON STV20 DVB-T USB & FM" },
{ 0x1b80, 0xd3a4, "Twintech UT-40" },
{ 0x1b80, 0xd3a8, "ASUS U3100MINI_PLUS_V2" },
{ 0x1b80, 0xd3af, "SVEON STV27 DVB-T USB & FM" },
{ 0x1b80, 0xd3b0, "SVEON STV21 DVB-T USB & FM" },
{ 0x1d19, 0x1101, "Dexatek DK DVB-T Dongle (Logilink VG0002A)" },
{ 0x1d19, 0x1102, "Dexatek DK DVB-T Dongle (MSI DigiVox mini II V3.0)" },
{ 0x1d19, 0x1103, "Dexatek Technology Ltd. DK 5217 DVB-T Dongle" },
{ 0x1d19, 0x1104, "MSI DigiVox Micro HD" },
{ 0x1f4d, 0xa803, "Sweex DVB-T USB" },
{ 0x1f4d, 0xb803, "GTek T803" },
{ 0x1f4d, 0xc803, "Lifeview LV5TDeluxe" },
{ 0x1f4d, 0xd286, "MyGica TD312" },
{ 0x1f4d, 0xd803, "PROlectrix DV107669" },
};
#define DEFAULT_BUF_NUMBER 15
#define DEFAULT_BUF_LENGTH (16 * 32 * 512)
#define DEF_RTL_XTAL_FREQ 28800000
#define MIN_RTL_XTAL_FREQ (DEF_RTL_XTAL_FREQ - 1000)
#define MAX_RTL_XTAL_FREQ (DEF_RTL_XTAL_FREQ + 1000)
#define CTRL_IN (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN)
#define CTRL_OUT (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT)
#define CTRL_TIMEOUT 300
#define BULK_TIMEOUT 0
#define EEPROM_ADDR 0xa0
enum usb_reg {
USB_SYSCTL = 0x2000,
USB_CTRL = 0x2010,
USB_STAT = 0x2014,
USB_EPA_CFG = 0x2144,
USB_EPA_CTL = 0x2148,
USB_EPA_MAXPKT = 0x2158,
USB_EPA_MAXPKT_2 = 0x215a,
USB_EPA_FIFO_CFG = 0x2160,
};
enum sys_reg {
DEMOD_CTL = 0x3000,
GPO = 0x3001,
GPI = 0x3002,
GPOE = 0x3003,
GPD = 0x3004,
SYSINTE = 0x3005,
SYSINTS = 0x3006,
GP_CFG0 = 0x3007,
GP_CFG1 = 0x3008,
SYSINTE_1 = 0x3009,
SYSINTS_1 = 0x300a,
DEMOD_CTL_1 = 0x300b,
IR_SUSPEND = 0x300c,
};
enum blocks {
DEMODB = 0,
USBB = 1,
SYSB = 2,
TUNB = 3,
ROMB = 4,
IRB = 5,
IICB = 6,
};
int rtlsdr_read_array(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t *array, uint8_t len)
{
int r;
uint16_t index = (block << 8);
r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, array, len, CTRL_TIMEOUT);
#if 0
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
#endif
return r;
}
int rtlsdr_write_array(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t *array, uint8_t len)
{
int r;
uint16_t index = (block << 8) | 0x10;
r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, array, len, CTRL_TIMEOUT);
#if 0
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
#endif
return r;
}
int rtlsdr_i2c_write_reg(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t reg, uint8_t val)
{
uint16_t addr = i2c_addr;
uint8_t data[2];
data[0] = reg;
data[1] = val;
return rtlsdr_write_array(dev, IICB, addr, (uint8_t *)&data, 2);
}
uint8_t rtlsdr_i2c_read_reg(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t reg)
{
uint16_t addr = i2c_addr;
uint8_t data = 0;
rtlsdr_write_array(dev, IICB, addr, &reg, 1);
rtlsdr_read_array(dev, IICB, addr, &data, 1);
return data;
}
int rtlsdr_i2c_write(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t *buffer, int len)
{
uint16_t addr = i2c_addr;
if (!dev)
return -1;
return rtlsdr_write_array(dev, IICB, addr, buffer, len);
}
int rtlsdr_i2c_read(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t *buffer, int len)
{
uint16_t addr = i2c_addr;
if (!dev)
return -1;
return rtlsdr_read_array(dev, IICB, addr, buffer, len);
}
uint16_t rtlsdr_read_reg(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t len)
{
int r;
unsigned char data[2];
uint16_t index = (block << 8);
uint16_t reg;
r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, data, len, CTRL_TIMEOUT);
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
reg = (data[1] << 8) | data[0];
return reg;
}
int rtlsdr_write_reg(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint16_t val, uint8_t len)
{
int r;
unsigned char data[2];
uint16_t index = (block << 8) | 0x10;
if (len == 1)
data[0] = val & 0xff;
else
data[0] = val >> 8;
data[1] = val & 0xff;
r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, data, len, CTRL_TIMEOUT);
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
return r;
}
uint16_t rtlsdr_demod_read_reg(rtlsdr_dev_t *dev, uint8_t page, uint16_t addr, uint8_t len)
{
int r;
unsigned char data[2];
uint16_t index = page;
uint16_t reg;
addr = (addr << 8) | 0x20;
r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, data, len, CTRL_TIMEOUT);
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
reg = (data[1] << 8) | data[0];
return reg;
}
int rtlsdr_demod_write_reg(rtlsdr_dev_t *dev, uint8_t page, uint16_t addr, uint16_t val, uint8_t len)
{
int r;
unsigned char data[2];
uint16_t index = 0x10 | page;
addr = (addr << 8) | 0x20;
if (len == 1)
data[0] = val & 0xff;
else
data[0] = val >> 8;
data[1] = val & 0xff;
r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, data, len, CTRL_TIMEOUT);
if (r < 0)
fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
rtlsdr_demod_read_reg(dev, 0x0a, 0x01, 1);
return (r == len) ? 0 : -1;
}
void rtlsdr_set_gpio_bit(rtlsdr_dev_t *dev, uint8_t gpio, int val)
{
uint16_t r;
gpio = 1 << gpio;
r = rtlsdr_read_reg(dev, SYSB, GPO, 1);
r = val ? (r | gpio) : (r & ~gpio);
rtlsdr_write_reg(dev, SYSB, GPO, r, 1);
}
void rtlsdr_set_gpio_output(rtlsdr_dev_t *dev, uint8_t gpio)
{
int r;
gpio = 1 << gpio;
r = rtlsdr_read_reg(dev, SYSB, GPD, 1);
rtlsdr_write_reg(dev, SYSB, GPO, r & ~gpio, 1);
r = rtlsdr_read_reg(dev, SYSB, GPOE, 1);
rtlsdr_write_reg(dev, SYSB, GPOE, r | gpio, 1);
}
void rtlsdr_set_i2c_repeater(rtlsdr_dev_t *dev, int on)
{
rtlsdr_demod_write_reg(dev, 1, 0x01, on ? 0x18 : 0x10, 1);
}
int rtlsdr_set_fir(rtlsdr_dev_t *dev)
{
uint8_t fir[20];
int i;
/* format: int8_t[8] */
for (i = 0; i < 8; ++i) {
const int val = dev->fir[i];
if (val < -128 || val > 127) {
return -1;
}
fir[i] = val;
}
/* format: int12_t[8] */
for (i = 0; i < 8; i += 2) {
const int val0 = dev->fir[8+i];
const int val1 = dev->fir[8+i+1];
if (val0 < -2048 || val0 > 2047 || val1 < -2048 || val1 > 2047) {
return -1;
}
fir[8+i*3/2] = val0 >> 4;
fir[8+i*3/2+1] = (val0 << 4) | ((val1 >> 8) & 0x0f);
fir[8+i*3/2+2] = val1;
}
for (i = 0; i < (int)sizeof(fir); i++) {
if (rtlsdr_demod_write_reg(dev, 1, 0x1c + i, fir[i], 1))
return -1;
}
return 0;
}
void rtlsdr_init_baseband(rtlsdr_dev_t *dev)
{
unsigned int i;
/* initialize USB */
rtlsdr_write_reg(dev, USBB, USB_SYSCTL, 0x09, 1);
rtlsdr_write_reg(dev, USBB, USB_EPA_MAXPKT, 0x0002, 2);
rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x1002, 2);
/* poweron demod */
rtlsdr_write_reg(dev, SYSB, DEMOD_CTL_1, 0x22, 1);
rtlsdr_write_reg(dev, SYSB, DEMOD_CTL, 0xe8, 1);
/* reset demod (bit 3, soft_rst) */
rtlsdr_demod_write_reg(dev, 1, 0x01, 0x14, 1);
rtlsdr_demod_write_reg(dev, 1, 0x01, 0x10, 1);
/* disable spectrum inversion and adjacent channel rejection */
rtlsdr_demod_write_reg(dev, 1, 0x15, 0x00, 1);
rtlsdr_demod_write_reg(dev, 1, 0x16, 0x0000, 2);
/* clear both DDC shift and IF frequency registers */
for (i = 0; i < 6; i++)
rtlsdr_demod_write_reg(dev, 1, 0x16 + i, 0x00, 1);
rtlsdr_set_fir(dev);
/* enable SDR mode, disable DAGC (bit 5) */
rtlsdr_demod_write_reg(dev, 0, 0x19, 0x05, 1);
/* init FSM state-holding register */
rtlsdr_demod_write_reg(dev, 1, 0x93, 0xf0, 1);
rtlsdr_demod_write_reg(dev, 1, 0x94, 0x0f, 1);
/* disable AGC (en_dagc, bit 0) (this seems to have no effect) */
rtlsdr_demod_write_reg(dev, 1, 0x11, 0x00, 1);
/* disable RF and IF AGC loop */
rtlsdr_demod_write_reg(dev, 1, 0x04, 0x00, 1);
/* disable PID filter (enable_PID = 0) */
rtlsdr_demod_write_reg(dev, 0, 0x61, 0x60, 1);
/* opt_adc_iq = 0, default ADC_I/ADC_Q datapath */
rtlsdr_demod_write_reg(dev, 0, 0x06, 0x80, 1);
/* Enable Zero-IF mode (en_bbin bit), DC cancellation (en_dc_est),
* IQ estimation/compensation (en_iq_comp, en_iq_est) */
rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1b, 1);
/* disable 4.096 MHz clock output on pin TP_CK0 */
rtlsdr_demod_write_reg(dev, 0, 0x0d, 0x83, 1);
}
int rtlsdr_deinit_baseband(rtlsdr_dev_t *dev)
{
int r = 0;
if (!dev)
return -1;
if (dev->tuner && dev->tuner->exit) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->exit(dev); /* deinitialize tuner */
rtlsdr_set_i2c_repeater(dev, 0);
}
/* poweroff demodulator and ADCs */
rtlsdr_write_reg(dev, SYSB, DEMOD_CTL, 0x20, 1);
return r;
}
int rtlsdr_set_if_freq(rtlsdr_dev_t *dev, uint32_t freq)
{
uint32_t rtl_xtal;
int32_t if_freq;
uint8_t tmp;
int r;
if (!dev)
return -1;
/* read corrected clock value */
if (rtlsdr_get_xtal_freq(dev, &rtl_xtal, NULL))
return -2;
if_freq = ((freq * TWO_POW(22)) / rtl_xtal) * (-1);
tmp = (if_freq >> 16) & 0x3f;
r = rtlsdr_demod_write_reg(dev, 1, 0x19, tmp, 1);
tmp = (if_freq >> 8) & 0xff;
r |= rtlsdr_demod_write_reg(dev, 1, 0x1a, tmp, 1);
tmp = if_freq & 0xff;
r |= rtlsdr_demod_write_reg(dev, 1, 0x1b, tmp, 1);
return r;
}
int rtlsdr_set_sample_freq_correction(rtlsdr_dev_t *dev, int ppm)
{
int r = 0;
uint8_t tmp;
int16_t offs = ppm * (-1) * TWO_POW(24) / 1000000;
tmp = offs & 0xff;
r |= rtlsdr_demod_write_reg(dev, 1, 0x3f, tmp, 1);
tmp = (offs >> 8) & 0x3f;
r |= rtlsdr_demod_write_reg(dev, 1, 0x3e, tmp, 1);
return r;
}
int rtlsdr_set_xtal_freq(rtlsdr_dev_t *dev, uint32_t rtl_freq, uint32_t tuner_freq)
{
int r = 0;
if (!dev)
return -1;
if (rtl_freq > 0 &&
(rtl_freq < MIN_RTL_XTAL_FREQ || rtl_freq > MAX_RTL_XTAL_FREQ))
return -2;
if (rtl_freq > 0 && dev->rtl_xtal != rtl_freq) {
dev->rtl_xtal = rtl_freq;
/* update xtal-dependent settings */
if (dev->rate)
r = rtlsdr_set_sample_rate(dev, dev->rate);
}
if (dev->tun_xtal != tuner_freq) {
if (0 == tuner_freq)
dev->tun_xtal = dev->rtl_xtal;
else
dev->tun_xtal = tuner_freq;
/* read corrected clock value into e4k and r82xx structure */
if (rtlsdr_get_xtal_freq(dev, NULL, &dev->e4k_s.vco.fosc) ||
rtlsdr_get_xtal_freq(dev, NULL, &dev->r82xx_c.xtal))
return -3;
/* update xtal-dependent settings */
if (dev->freq)
r = rtlsdr_set_center_freq(dev, dev->freq);
}
return r;
}
int rtlsdr_get_xtal_freq(rtlsdr_dev_t *dev, uint32_t *rtl_freq, uint32_t *tuner_freq)
{
if (!dev)
return -1;
#define APPLY_PPM_CORR(val,ppm) (((val) * (1.0 + (ppm) / 1e6)))
if (rtl_freq)
*rtl_freq = (uint32_t) APPLY_PPM_CORR(dev->rtl_xtal, dev->corr);
if (tuner_freq)
*tuner_freq = (uint32_t) APPLY_PPM_CORR(dev->tun_xtal, dev->corr);
return 0;
}
int rtlsdr_get_usb_strings(rtlsdr_dev_t *dev, char *manufact, char *product,
char *serial)
{
struct libusb_device_descriptor dd;
libusb_device *device = NULL;
const int buf_max = 256;
int r = 0;
if (!dev || !dev->devh)
return -1;
device = libusb_get_device(dev->devh);
r = libusb_get_device_descriptor(device, &dd);
if (r < 0)
return -1;
if (manufact) {
memset(manufact, 0, buf_max);
libusb_get_string_descriptor_ascii(dev->devh, dd.iManufacturer,
(unsigned char *)manufact,
buf_max);
}
if (product) {
memset(product, 0, buf_max);
libusb_get_string_descriptor_ascii(dev->devh, dd.iProduct,
(unsigned char *)product,
buf_max);
}
if (serial) {
memset(serial, 0, buf_max);
libusb_get_string_descriptor_ascii(dev->devh, dd.iSerialNumber,
(unsigned char *)serial,
buf_max);
}
return 0;
}
int rtlsdr_write_eeprom(rtlsdr_dev_t *dev, uint8_t *data, uint8_t offset, uint16_t len)
{
int r = 0;
int i;
uint8_t cmd[2];
if (!dev)
return -1;
if ((len + offset) > 256)
return -2;
for (i = 0; i < len; i++) {
cmd[0] = i + offset;
r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, cmd, 1);
r = rtlsdr_read_array(dev, IICB, EEPROM_ADDR, &cmd[1], 1);
/* only write the byte if it differs */
if (cmd[1] == data[i])
continue;
cmd[1] = data[i];
r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, cmd, 2);
if (r != sizeof(cmd))
return -3;
/* for some EEPROMs (e.g. ATC 240LC02) we need a delay
* between write operations, otherwise they will fail */
#ifdef _WIN32
Sleep(5);
#else
usleep(5000);
#endif
}
return 0;
}
int rtlsdr_read_eeprom(rtlsdr_dev_t *dev, uint8_t *data, uint8_t offset, uint16_t len)
{
int r = 0;
int i;
if (!dev)
return -1;
if ((len + offset) > 256)
return -2;
r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, &offset, 1);
if (r < 0)
return -3;
for (i = 0; i < len; i++) {
r = rtlsdr_read_array(dev, IICB, EEPROM_ADDR, data + i, 1);
if (r < 0)
return -3;
}
return r;
}
int rtlsdr_set_center_freq(rtlsdr_dev_t *dev, uint32_t freq)
{
int r = -1;
if (!dev || !dev->tuner)
return -1;
if (dev->direct_sampling) {
r = rtlsdr_set_if_freq(dev, freq);
} else if (dev->tuner && dev->tuner->set_freq) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->set_freq(dev, freq - dev->offs_freq);
rtlsdr_set_i2c_repeater(dev, 0);
}
if (!r)
dev->freq = freq;
else
dev->freq = 0;
return r;
}
uint32_t rtlsdr_get_center_freq(rtlsdr_dev_t *dev)
{
if (!dev)
return 0;
return dev->freq;
}
int rtlsdr_set_freq_correction(rtlsdr_dev_t *dev, int ppm)
{
int r = 0;
if (!dev)
return -1;
if (dev->corr == ppm)
return -2;
dev->corr = ppm;
r |= rtlsdr_set_sample_freq_correction(dev, ppm);
/* read corrected clock value into e4k and r82xx structure */
if (rtlsdr_get_xtal_freq(dev, NULL, &dev->e4k_s.vco.fosc) ||
rtlsdr_get_xtal_freq(dev, NULL, &dev->r82xx_c.xtal))
return -3;
if (dev->freq) /* retune to apply new correction value */
r |= rtlsdr_set_center_freq(dev, dev->freq);
return r;
}
int rtlsdr_get_freq_correction(rtlsdr_dev_t *dev)
{
if (!dev)
return 0;
return dev->corr;
}
enum rtlsdr_tuner rtlsdr_get_tuner_type(rtlsdr_dev_t *dev)
{
if (!dev)
return RTLSDR_TUNER_UNKNOWN;
return dev->tuner_type;
}
int rtlsdr_get_tuner_gains(rtlsdr_dev_t *dev, int *gains)
{
/* all gain values are expressed in tenths of a dB */
const int e4k_gains[] = { -10, 15, 40, 65, 90, 115, 140, 165, 190, 215,
240, 290, 340, 420 };
const int fc0012_gains[] = { -99, -40, 71, 179, 192 };
const int fc0013_gains[] = { -99, -73, -65, -63, -60, -58, -54, 58, 61,
63, 65, 67, 68, 70, 71, 179, 181, 182,
184, 186, 188, 191, 197 };
const int fc2580_gains[] = { 0 /* no gain values */ };
const int r82xx_gains[] = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157,
166, 197, 207, 229, 254, 280, 297, 328,
338, 364, 372, 386, 402, 421, 434, 439,
445, 480, 496 };
const int unknown_gains[] = { 0 /* no gain values */ };
const int *ptr = NULL;
int len = 0;
if (!dev)
return -1;
switch (dev->tuner_type) {
case RTLSDR_TUNER_E4000:
ptr = e4k_gains; len = sizeof(e4k_gains);
break;
case RTLSDR_TUNER_FC0012:
ptr = fc0012_gains; len = sizeof(fc0012_gains);
break;
case RTLSDR_TUNER_FC0013:
ptr = fc0013_gains; len = sizeof(fc0013_gains);
break;
case RTLSDR_TUNER_FC2580:
ptr = fc2580_gains; len = sizeof(fc2580_gains);
break;
case RTLSDR_TUNER_R820T:
case RTLSDR_TUNER_R828D:
ptr = r82xx_gains; len = sizeof(r82xx_gains);
break;
default:
ptr = unknown_gains; len = sizeof(unknown_gains);
break;
}
if (!gains) { /* no buffer provided, just return the count */
return len / sizeof(int);
} else {
if (len)
memcpy(gains, ptr, len);
return len / sizeof(int);
}
}
int rtlsdr_set_tuner_gain(rtlsdr_dev_t *dev, int gain)
{
int r = 0;
if (!dev || !dev->tuner)
return -1;
if (dev->tuner->set_gain) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->set_gain((void *)dev, gain);
rtlsdr_set_i2c_repeater(dev, 0);
}
if (!r)
dev->gain = gain;
else
dev->gain = 0;
return r;
}
int rtlsdr_get_tuner_gain(rtlsdr_dev_t *dev)
{
if (!dev)
return 0;
return dev->gain;
}
int rtlsdr_set_tuner_if_gain(rtlsdr_dev_t *dev, int stage, int gain)
{
int r = 0;
if (!dev || !dev->tuner)
return -1;
if (dev->tuner->set_if_gain) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->set_if_gain(dev, stage, gain);
rtlsdr_set_i2c_repeater(dev, 0);
}
return r;
}
int rtlsdr_set_tuner_gain_mode(rtlsdr_dev_t *dev, int mode)
{
int r = 0;
if (!dev || !dev->tuner)
return -1;
if (dev->tuner->set_gain_mode) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->set_gain_mode((void *)dev, mode);
rtlsdr_set_i2c_repeater(dev, 0);
}
return r;
}
int rtlsdr_set_sample_rate(rtlsdr_dev_t *dev, uint32_t samp_rate)
{
int r = 0;
uint16_t tmp;
uint32_t rsamp_ratio, real_rsamp_ratio;
double real_rate;
if (!dev)
return -1;
/* check if the rate is supported by the resampler */
if ((samp_rate <= 225000) || (samp_rate > 3200000) ||
((samp_rate > 300000) && (samp_rate <= 900000))) {
fprintf(stderr, "Invalid sample rate: %u Hz\n", samp_rate);
return -EINVAL;
}
rsamp_ratio = (dev->rtl_xtal * TWO_POW(22)) / samp_rate;
rsamp_ratio &= 0x0ffffffc;
real_rsamp_ratio = rsamp_ratio | ((rsamp_ratio & 0x08000000) << 1);
real_rate = (dev->rtl_xtal * TWO_POW(22)) / real_rsamp_ratio;
if ( ((double)samp_rate) != real_rate )
fprintf(stderr, "Exact sample rate is: %f Hz\n", real_rate);
if (dev->tuner && dev->tuner->set_bw) {
rtlsdr_set_i2c_repeater(dev, 1);
dev->tuner->set_bw(dev, (int)real_rate);
rtlsdr_set_i2c_repeater(dev, 0);
}
dev->rate = (uint32_t)real_rate;
tmp = (rsamp_ratio >> 16);
r |= rtlsdr_demod_write_reg(dev, 1, 0x9f, tmp, 2);
tmp = rsamp_ratio & 0xffff;
r |= rtlsdr_demod_write_reg(dev, 1, 0xa1, tmp, 2);
r |= rtlsdr_set_sample_freq_correction(dev, dev->corr);
/* reset demod (bit 3, soft_rst) */
r |= rtlsdr_demod_write_reg(dev, 1, 0x01, 0x14, 1);
r |= rtlsdr_demod_write_reg(dev, 1, 0x01, 0x10, 1);
/* recalculate offset frequency if offset tuning is enabled */
if (dev->offs_freq)
rtlsdr_set_offset_tuning(dev, 1);
return r;
}
uint32_t rtlsdr_get_sample_rate(rtlsdr_dev_t *dev)
{
if (!dev)
return 0;
return dev->rate;
}
int rtlsdr_set_testmode(rtlsdr_dev_t *dev, int on)
{
if (!dev)
return -1;
return rtlsdr_demod_write_reg(dev, 0, 0x19, on ? 0x03 : 0x05, 1);
}
int rtlsdr_set_agc_mode(rtlsdr_dev_t *dev, int on)
{
if (!dev)
return -1;
return rtlsdr_demod_write_reg(dev, 0, 0x19, on ? 0x25 : 0x05, 1);
}
int rtlsdr_set_direct_sampling(rtlsdr_dev_t *dev, int on)
{
int r = 0;
if (!dev)
return -1;
if (on) {
if (dev->tuner && dev->tuner->exit) {
rtlsdr_set_i2c_repeater(dev, 1);
r = dev->tuner->exit(dev);
rtlsdr_set_i2c_repeater(dev, 0);
}
/* disable Zero-IF mode */
r |= rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1a, 1);
/* disable spectrum inversion */
r |= rtlsdr_demod_write_reg(dev, 1, 0x15, 0x00, 1);
/* only enable In-phase ADC input */
r |= rtlsdr_demod_write_reg(dev, 0, 0x08, 0x4d, 1);
/* swap I and Q ADC, this allows to select between two inputs */
r |= rtlsdr_demod_write_reg(dev, 0, 0x06, (on > 1) ? 0x90 : 0x80, 1);
fprintf(stderr, "Enabled direct sampling mode, input %i\n", on);
dev->direct_sampling = on;
} else {
if (dev->tuner && dev->tuner->init) {
rtlsdr_set_i2c_repeater(dev, 1);
r |= dev->tuner->init(dev);
rtlsdr_set_i2c_repeater(dev, 0);
}
if ((dev->tuner_type == RTLSDR_TUNER_R820T) ||
(dev->tuner_type == RTLSDR_TUNER_R828D)) {
r |= rtlsdr_set_if_freq(dev, R82XX_IF_FREQ);
/* enable spectrum inversion */
r |= rtlsdr_demod_write_reg(dev, 1, 0x15, 0x01, 1);
} else {
r |= rtlsdr_set_if_freq(dev, 0);
/* enable In-phase + Quadrature ADC input */
r |= rtlsdr_demod_write_reg(dev, 0, 0x08, 0xcd, 1);
/* Enable Zero-IF mode */
r |= rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1b, 1);
}
/* opt_adc_iq = 0, default ADC_I/ADC_Q datapath */
r |= rtlsdr_demod_write_reg(dev, 0, 0x06, 0x80, 1);
fprintf(stderr, "Disabled direct sampling mode\n");
dev->direct_sampling = 0;
}
r |= rtlsdr_set_center_freq(dev, dev->freq);
return r;
}
int rtlsdr_get_direct_sampling(rtlsdr_dev_t *dev)
{
if (!dev)
return -1;
return dev->direct_sampling;
}
int rtlsdr_set_offset_tuning(rtlsdr_dev_t *dev, int on)
{
int r = 0;
if (!dev)
return -1;
if ((dev->tuner_type == RTLSDR_TUNER_R820T) ||
(dev->tuner_type == RTLSDR_TUNER_R828D))
return -2;
if (dev->direct_sampling)
return -3;
/* based on keenerds 1/f noise measurements */
dev->offs_freq = on ? ((dev->rate / 2) * 170 / 100) : 0;
r |= rtlsdr_set_if_freq(dev, dev->offs_freq);
if (dev->tuner && dev->tuner->set_bw) {
rtlsdr_set_i2c_repeater(dev, 1);
dev->tuner->set_bw(dev, on ? (2 * dev->offs_freq) : dev->rate);
rtlsdr_set_i2c_repeater(dev, 0);
}
if (dev->freq > dev->offs_freq)
r |= rtlsdr_set_center_freq(dev, dev->freq);
return r;
}
int rtlsdr_get_offset_tuning(rtlsdr_dev_t *dev)
{
if (!dev)
return -1;
return (dev->offs_freq) ? 1 : 0;
}
static rtlsdr_dongle_t *find_known_device(uint16_t vid, uint16_t pid)
{
unsigned int i;
rtlsdr_dongle_t *device = NULL;
for (i = 0; i < sizeof(known_devices)/sizeof(rtlsdr_dongle_t); i++ ) {
if (known_devices[i].vid == vid && known_devices[i].pid == pid) {
device = &known_devices[i];
break;
}
}
return device;
}
uint32_t rtlsdr_get_device_count(void)
{
int i;
libusb_context *ctx;
libusb_device **list;
uint32_t device_count = 0;
struct libusb_device_descriptor dd;
13 years ago
ssize_t cnt;
libusb_init(&ctx);
cnt = libusb_get_device_list(ctx, &list);
for (i = 0; i < cnt; i++) {
libusb_get_device_descriptor(list[i], &dd);
if (find_known_device(dd.idVendor, dd.idProduct))
device_count++;
}
libusb_free_device_list(list, 1);
libusb_exit(ctx);
return device_count;
}
const char *rtlsdr_get_device_name(uint32_t index)
{
int i;
libusb_context *ctx;
libusb_device **list;
struct libusb_device_descriptor dd;
rtlsdr_dongle_t *device = NULL;
uint32_t device_count = 0;
13 years ago
ssize_t cnt;
libusb_init(&ctx);
cnt = libusb_get_device_list(ctx, &list);
for (i = 0; i < cnt; i++) {
libusb_get_device_descriptor(list[i], &dd);
device = find_known_device(dd.idVendor, dd.idProduct);
if (device) {
device_count++;
if (index == device_count - 1)
break;
}
}
libusb_free_device_list(list, 1);
libusb_exit(ctx);
if (device)
return device->name;
else
return "";
}
int rtlsdr_get_device_usb_strings(uint32_t index, char *manufact,
char *product, char *serial)
{
int r = -2;
int i;
libusb_context *ctx;
libusb_device **list;
struct libusb_device_descriptor dd;
rtlsdr_dongle_t *device = NULL;
rtlsdr_dev_t devt;
uint32_t device_count = 0;
ssize_t cnt;
libusb_init(&ctx);
cnt = libusb_get_device_list(ctx, &list);
for (i = 0; i < cnt; i++) {
libusb_get_device_descriptor(list[i], &dd);
device = find_known_device(dd.idVendor, dd.idProduct);
if (device) {
device_count++;
if (index == device_count - 1) {
r = libusb_open(list[i], &devt.devh);
if (!r) {
r = rtlsdr_get_usb_strings(&devt,
manufact,
product,
serial);
libusb_close(devt.devh);
}
break;
}
}
}
libusb_free_device_list(list, 1);
libusb_exit(ctx);
return r;
}
int rtlsdr_get_index_by_serial(const char *serial)
{
int i, cnt, r;
char str[256];
if (!serial)
return -1;
cnt = rtlsdr_get_device_count();
if (!cnt)
return -2;
for (i = 0; i < cnt; i++) {
r = rtlsdr_get_device_usb_strings(i, NULL, NULL, str);
if (!r && !strcmp(serial, str))
return i;
}
return -3;
}
int rtlsdr_open(rtlsdr_dev_t **out_dev, uint32_t index)
{
int r;
int i;
libusb_device **list;
rtlsdr_dev_t *dev = NULL;
libusb_device *device = NULL;
uint32_t device_count = 0;
struct libusb_device_descriptor dd;
uint8_t reg;
13 years ago
ssize_t cnt;
dev = malloc(sizeof(rtlsdr_dev_t));
if (NULL == dev)
return -ENOMEM;
memset(dev, 0, sizeof(rtlsdr_dev_t));
memcpy(dev->fir, fir_default, sizeof(fir_default));
libusb_init(&dev->ctx);
dev->dev_lost = 1;
cnt = libusb_get_device_list(dev->ctx, &list);
for (i = 0; i < cnt; i++) {
device = list[i];
libusb_get_device_descriptor(list[i], &dd);
if (find_known_device(dd.idVendor, dd.idProduct)) {
device_count++;
}
if (index == device_count - 1)
break;
device = NULL;
}
if (!device) {
r = -1;
goto err;
}
r = libusb_open(device, &dev->devh);
if (r < 0) {
libusb_free_device_list(list, 1);
fprintf(stderr, "usb_open error %d\n", r);
if(r == LIBUSB_ERROR_ACCESS)
fprintf(stderr, "Please fix the device permissions, e.g. "
"by installing the udev rules file rtl-sdr.rules\n");
goto err;
}
libusb_free_device_list(list, 1);
if (libusb_kernel_driver_active(dev->devh, 0) == 1) {
dev->driver_active = 1;
#ifdef DETACH_KERNEL_DRIVER
if (!libusb_detach_kernel_driver(dev->devh, 0)) {
fprintf(stderr, "Detached kernel driver\n");
} else {
fprintf(stderr, "Detaching kernel driver failed!");
goto err;
}
#else
fprintf(stderr, "\nKernel driver is active, or device is "
"claimed by second instance of librtlsdr."
"\nIn the first case, please either detach"
" or blacklist the kernel module\n"
"(dvb_usb_rtl28xxu), or enable automatic"
" detaching at compile time.\n\n");
#endif
}
r = libusb_claim_interface(dev->devh, 0);
if (r < 0) {
fprintf(stderr, "usb_claim_interface error %d\n", r);
goto err;
}
dev->rtl_xtal = DEF_RTL_XTAL_FREQ;
/* perform a dummy write, if it fails, reset the device */
if (rtlsdr_write_reg(dev, USBB, USB_SYSCTL, 0x09, 1) < 0) {
fprintf(stderr, "Resetting device...\n");
libusb_reset_device(dev->devh);
}
rtlsdr_init_baseband(dev);
dev->dev_lost = 0;
/* Probe tuners */
rtlsdr_set_i2c_repeater(dev, 1);
reg = rtlsdr_i2c_read_reg(dev, E4K_I2C_ADDR, E4K_CHECK_ADDR);
if (reg == E4K_CHECK_VAL) {
fprintf(stderr, "Found Elonics E4000 tuner\n");
dev->tuner_type = RTLSDR_TUNER_E4000;
goto found;
}
reg = rtlsdr_i2c_read_reg(dev, FC0013_I2C_ADDR, FC0013_CHECK_ADDR);
if (reg == FC0013_CHECK_VAL) {
fprintf(stderr, "Found Fitipower FC0013 tuner\n");
dev->tuner_type = RTLSDR_TUNER_FC0013;
goto found;
}
reg = rtlsdr_i2c_read_reg(dev, R820T_I2C_ADDR, R82XX_CHECK_ADDR);
if (reg == R82XX_CHECK_VAL) {
fprintf(stderr, "Found Rafael Micro R820T tuner\n");
dev->tuner_type = RTLSDR_TUNER_R820T;
goto found;
}
reg = rtlsdr_i2c_read_reg(dev, R828D_I2C_ADDR, R82XX_CHECK_ADDR);
if (reg == R82XX_CHECK_VAL) {
fprintf(stderr, "Found Rafael Micro R828D tuner\n");
dev->tuner_type = RTLSDR_TUNER_R828D;
goto found;
}
/* initialise GPIOs */
rtlsdr_set_gpio_output(dev, 5);
/* reset tuner before probing */
rtlsdr_set_gpio_bit(dev, 5, 1);
rtlsdr_set_gpio_bit(dev, 5, 0);
reg = rtlsdr_i2c_read_reg(dev, FC2580_I2C_ADDR, FC2580_CHECK_ADDR);
if ((reg & 0x7f) == FC2580_CHECK_VAL) {
fprintf(stderr, "Found FCI 2580 tuner\n");
dev->tuner_type = RTLSDR_TUNER_FC2580;
goto found;
}
reg = rtlsdr_i2c_read_reg(dev, FC0012_I2C_ADDR, FC0012_CHECK_ADDR);
if (reg == FC0012_CHECK_VAL) {
fprintf(stderr, "Found Fitipower FC0012 tuner\n");
rtlsdr_set_gpio_output(dev, 6);
dev->tuner_type = RTLSDR_TUNER_FC0012;
goto found;
}
found:
/* use the rtl clock value by default */
dev->tun_xtal = dev->rtl_xtal;
dev->tuner = &tuners[dev->tuner_type];
switch (dev->tuner_type) {
case RTLSDR_TUNER_R828D:
dev->tun_xtal = R828D_XTAL_FREQ;
case RTLSDR_TUNER_R820T:
/* disable Zero-IF mode */
rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1a, 1);
/* only enable In-phase ADC input */
rtlsdr_demod_write_reg(dev, 0, 0x08, 0x4d, 1);
/* the R82XX use 3.57 MHz IF for the DVB-T 6 MHz mode, and
* 4.57 MHz for the 8 MHz mode */
rtlsdr_set_if_freq(dev, R82XX_IF_FREQ);
/* enable spectrum inversion */
rtlsdr_demod_write_reg(dev, 1, 0x15, 0x01, 1);
break;
case RTLSDR_TUNER_UNKNOWN:
fprintf(stderr, "No supported tuner found\n");
rtlsdr_set_direct_sampling(dev, 1);
break;
default:
break;
}
if (dev->tuner->init)
r = dev->tuner->init(dev);
rtlsdr_set_i2c_repeater(dev, 0);
*out_dev = dev;
return 0;
err:
if (dev) {
if (dev->ctx)
libusb_exit(dev->ctx);
free(dev);
}
return r;
}
int rtlsdr_close(rtlsdr_dev_t *dev)
{
if (!dev)
return -1;
if(!dev->dev_lost) {
/* block until all async operations have been completed (if any) */
while (RTLSDR_INACTIVE != dev->async_status) {
#ifdef _WIN32
Sleep(1);
#else
usleep(1000);
#endif
}
rtlsdr_deinit_baseband(dev);
}
libusb_release_interface(dev->devh, 0);
#ifdef DETACH_KERNEL_DRIVER
if (dev->driver_active) {
if (!libusb_attach_kernel_driver(dev->devh, 0))
fprintf(stderr, "Reattached kernel driver\n");
else
fprintf(stderr, "Reattaching kernel driver failed!\n");
}
#endif
libusb_close(dev->devh);
libusb_exit(dev->ctx);
free(dev);
return 0;
}
int rtlsdr_reset_buffer(rtlsdr_dev_t *dev)
{
if (!dev)
return -1;
rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x1002, 2);
rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x0000, 2);
return 0;
}
int rtlsdr_read_sync(rtlsdr_dev_t *dev, void *buf, int len, int *n_read)
{
if (!dev)
return -1;
return libusb_bulk_transfer(dev->devh, 0x81, buf, len, n_read, BULK_TIMEOUT);
}
static void LIBUSB_CALL _libusb_callback(struct libusb_transfer *xfer)
{
rtlsdr_dev_t *dev = (rtlsdr_dev_t *)xfer->user_data;
if (LIBUSB_TRANSFER_COMPLETED == xfer->status) {
if (dev->cb)
dev->cb(xfer->buffer, xfer->actual_length, dev->cb_ctx);
libusb_submit_transfer(xfer); /* resubmit transfer */
dev->xfer_errors = 0;
} else if (LIBUSB_TRANSFER_CANCELLED != xfer->status) {
#ifndef _WIN32
if (LIBUSB_TRANSFER_ERROR == xfer->status)
dev->xfer_errors++;
if (dev->xfer_errors >= dev->xfer_buf_num ||
LIBUSB_TRANSFER_NO_DEVICE == xfer->status) {
#endif
dev->dev_lost = 1;
rtlsdr_cancel_async(dev);
fprintf(stderr, "cb transfer status: %d, "
"canceling...\n", xfer->status);
#ifndef _WIN32
}
#endif
}
}
int rtlsdr_wait_async(rtlsdr_dev_t *dev, rtlsdr_read_async_cb_t cb, void *ctx)
{
return rtlsdr_read_async(dev, cb, ctx, 0, 0);
}
static int _rtlsdr_alloc_async_buffers(rtlsdr_dev_t *dev)
{
unsigned int i;
if (!dev)
return -1;
if (!dev->xfer) {
dev->xfer = malloc(dev->xfer_buf_num *
sizeof(struct libusb_transfer *));
for(i = 0; i < dev->xfer_buf_num; ++i)
dev->xfer[i] = libusb_alloc_transfer(0);
}
if (!dev->xfer_buf) {
dev->xfer_buf = malloc(dev->xfer_buf_num *
sizeof(unsigned char *));
for(i = 0; i < dev->xfer_buf_num; ++i)
dev->xfer_buf[i] = malloc(dev->xfer_buf_len);
}
return 0;
}
static int _rtlsdr_free_async_buffers(rtlsdr_dev_t *dev)
{
unsigned int i;
if (!dev)
return -1;
if (dev->xfer) {
for(i = 0; i < dev->xfer_buf_num; ++i) {
if (dev->xfer[i]) {
libusb_free_transfer(dev->xfer[i]);
}
}
free(dev->xfer);
dev->xfer = NULL;
}
if (dev->xfer_buf) {
for(i = 0; i < dev->xfer_buf_num; ++i) {
if (dev->xfer_buf[i])
free(dev->xfer_buf[i]);
}
free(dev->xfer_buf);
dev->xfer_buf = NULL;
}
return 0;
}
int rtlsdr_read_async(rtlsdr_dev_t *dev, rtlsdr_read_async_cb_t cb, void *ctx,
uint32_t buf_num, uint32_t buf_len)
{
unsigned int i;
int r = 0;
struct timeval tv = { 1, 0 };
struct timeval zerotv = { 0, 0 };
enum rtlsdr_async_status next_status = RTLSDR_INACTIVE;
if (!dev)
return -1;
if (RTLSDR_INACTIVE != dev->async_status)
return -2;
dev->async_status = RTLSDR_RUNNING;
dev->async_cancel = 0;
dev->cb = cb;
dev->cb_ctx = ctx;
if (buf_num > 0)
dev->xfer_buf_num = buf_num;
else
dev->xfer_buf_num = DEFAULT_BUF_NUMBER;
if (buf_len > 0 && buf_len % 512 == 0) /* len must be multiple of 512 */
dev->xfer_buf_len = buf_len;
else
dev->xfer_buf_len = DEFAULT_BUF_LENGTH;
_rtlsdr_alloc_async_buffers(dev);
for(i = 0; i < dev->xfer_buf_num; ++i) {
libusb_fill_bulk_transfer(dev->xfer[i],
dev->devh,
0x81,
dev->xfer_buf[i],
dev->xfer_buf_len,
_libusb_callback,
(void *)dev,
BULK_TIMEOUT);
r = libusb_submit_transfer(dev->xfer[i]);
if (r < 0) {
fprintf(stderr, "Failed to submit transfer %i!\n", i);
dev->async_status = RTLSDR_CANCELING;
break;
}
}
while (RTLSDR_INACTIVE != dev->async_status) {
r = libusb_handle_events_timeout_completed(dev->ctx, &tv,
&dev->async_cancel);
if (r < 0) {
/*fprintf(stderr, "handle_events returned: %d\n", r);*/
if (r == LIBUSB_ERROR_INTERRUPTED) /* stray signal */
continue;
break;
}
if (RTLSDR_CANCELING == dev->async_status) {
next_status = RTLSDR_INACTIVE;
if (!dev->xfer)
break;
for(i = 0; i < dev->xfer_buf_num; ++i) {
if (!dev->xfer[i])
continue;
if (LIBUSB_TRANSFER_CANCELLED !=
dev->xfer[i]->status) {
r = libusb_cancel_transfer(dev->xfer[i]);
/* handle events after canceling
* to allow transfer status to
* propagate */
libusb_handle_events_timeout_completed(dev->ctx,
&zerotv, NULL);
if (r < 0)
continue;
next_status = RTLSDR_CANCELING;
}
}
if (dev->dev_lost || RTLSDR_INACTIVE == next_status) {
/* handle any events that still need to
* be handled before exiting after we
* just cancelled all transfers */
libusb_handle_events_timeout_completed(dev->ctx,
&zerotv, NULL);
break;
}
}
}
_rtlsdr_free_async_buffers(dev);
dev->async_status = next_status;
return r;
}
int rtlsdr_cancel_async(rtlsdr_dev_t *dev)
{
if (!dev)
return -1;
/* if streaming, try to cancel gracefully */
if (RTLSDR_RUNNING == dev->async_status) {
dev->async_status = RTLSDR_CANCELING;
dev->async_cancel = 1;
return 0;
}
/* if called while in pending state, change the state forcefully */
#if 0
if (RTLSDR_INACTIVE != dev->async_status) {
dev->async_status = RTLSDR_INACTIVE;
return 0;
}
#endif
return -2;
}
uint32_t rtlsdr_get_tuner_clock(void *dev)
{
uint32_t tuner_freq;
if (!dev)
return 0;
/* read corrected clock value */
if (rtlsdr_get_xtal_freq((rtlsdr_dev_t *)dev, NULL, &tuner_freq))
return 0;
return tuner_freq;
}
int rtlsdr_i2c_write_fn(void *dev, uint8_t addr, uint8_t *buf, int len)
{
if (dev)
return rtlsdr_i2c_write(((rtlsdr_dev_t *)dev), addr, buf, len);
return -1;
}
int rtlsdr_i2c_read_fn(void *dev, uint8_t addr, uint8_t *buf, int len)
{
if (dev)
return rtlsdr_i2c_read(((rtlsdr_dev_t *)dev), addr, buf, len);
return -1;
}