add FC0012 driver

Thanks to David Badsen!

Signed-off-by: Steve Markgraf <steve@steve-m.de>
master
Steve Markgraf 13 years ago
parent 4ad93906a4
commit 367113b5c8
  1. 25
      include/tuner_fc0012.h
  2. 2
      src/Makefile.am
  3. 17
      src/rtl-sdr.c
  4. 310
      src/tuner_fc0012.c

@ -0,0 +1,25 @@
#ifndef __TUNER_FC0012_H
#define __TUNER_FC0012_H
#define FC0012_OK 0
#define FC0012_ERROR 1
#define FC0012_I2C_ADDR 0xc6
#define FC0012_CHECK_ADDR 0x00
#define FC0012_CHECK_VAL 0xa1
#define FC0012_BANDWIDTH_6MHZ 6
#define FC0012_BANDWIDTH_7MHZ 7
#define FC0012_BANDWIDTH_8MHZ 8
#define FC0012_LNA_GAIN_LOW 0x00
#define FC0012_LNA_GAIN_MID 0x08
#define FC0012_LNA_GAIN_HI 0x17
#define FC0012_LNA_GAIN_MAX 0x10
int FC0012_Open(void *pTuner);
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte);
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte);
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth);
#endif

@ -7,7 +7,7 @@ AM_CFLAGS = -fPIC -Wall
lib_LTLIBRARIES = librtlsdr.la
librtlsdr_la_SOURCES = rtl-sdr.c tuner_e4000.c tuner_fc0013.c
librtlsdr_la_SOURCES = rtl-sdr.c tuner_e4000.c tuner_fc0012.c tuner_fc0013.c
librtlsdr_la_LDFALGS = -version-info $(LIBVERSION)
bin_PROGRAMS = rtl_sdr

@ -27,6 +27,7 @@
#include <libusb.h>
#include "tuner_e4000.h"
#include "tuner_fc0012.h"
#include "tuner_fc0013.h"
typedef struct rtlsdr_tuner {
@ -47,10 +48,17 @@ int e4k_tune(void *dev, int freq) { return e4000_SetRfFreqHz(dev, freq); }
int e4k_set_bw(void *dev, int bw) { return e4000_SetBandwidthHz(dev, 8000000); }
int e4k_set_gain(void *dev, int gain) { return 0; }
int fc0012_init(void *dev) { return 0; }
int fc0012_init(void *dev) { return FC0012_Open(dev); }
int fc0012_exit(void *dev) { return 0; }
int fc0012_tune(void *dev, int freq) { return 0; }
int fc0012_set_bw(void *dev, int bw) { return 0; }
int fc0012_tune(void *dev, int freq) {
/* TODO set GPIO6 accordingly */
unsigned int bw = 6;
return FC0012_SetFrequency(dev, freq/1000, bw & 0xff);
}
int fc0012_set_bw(void *dev, int bw) {
unsigned long freq = ((rtlsdr_tuner_t *)dev)->freq;
return FC0013_SetFrequency(dev, freq/1000, bw/1000000);
}
int fc0012_set_gain(void *dev, int gain) { return 0; }
int fc0013_init(void *dev) { return FC0013_Open(dev); }
@ -559,9 +567,6 @@ const char *rtlsdr_get_device_name(uint32_t index)
}
/* TODO: put those defines in the tuner header once the drivers are added */
#define FC0012_I2C_ADDR 0xc6
#define FC0012_CHECK_ADDR 0x00
#define FC0012_CHECK_VAL 0xa1
#define FC2580_I2C_ADDR 0xac
#define FC2580_CHECK_ADDR 0x01

@ -0,0 +1,310 @@
/*
* fc0012 tuner support for rtl-sdr
*
* Based on tuner_fc0012.c found as part of the (seemingly GPLed)
* rtl2832u Linux DVB driver.
*
* Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to>
*/
#include <stdio.h>
#include <stdint.h>
#include "tuner_fc0012.h"
#include "i2c.h"
#define CRYSTAL_FREQ 28800000
#define FC0012_LNAGAIN FC0012_LNA_GAIN_HI
/* Incomplete list of register settings:
*
* Name Reg Bits Desc
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
* VCO_SPEED 0x06 3 Set the speed of the VCO. example
* driver hardcodes to 1 for some reason
* BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
* 8MHz=0x00
* XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
* or 0 for 36MHz
* EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
* (Receive Signal Strength Indicator)
* LNA_FORCE 0x0d 0
* AGC_FORCE 0x0d ?
* LNA_GAIN 0x13 0-4 Low noise amp gain
* LNA_COMPS 0x15 3 ?
* VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
*
*/
/* glue functions to rtl-sdr code */
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
{
uint8_t data[2];
data[0] = RegAddr;
data[1] = Byte;
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, data, 2) < 0)
return FC0012_ERROR;
return FC0012_OK;
}
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
{
uint8_t data = RegAddr;
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
return FC0012_ERROR;
if (rtlsdr_i2c_read((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
return FC0012_ERROR;
*pByte = data;
return FC0012_OK;
}
#ifdef DEBUG
#define DEBUGF printf
#else
#define DEBUGF(...) ()
#endif
#if 0
void FC0012_Dump_Registers()
{
#ifdef DEBUG
unsigned char regBuf;
int ret;
int i;
DEBUGF("\nFC0012 registers:\n");
for (i=0; i<=0x15; ++i)
{
ret = FC0012_Read(pTuner, i, &regBuf);
if (ret) DEBUGF("\nCouldn't read register %02x\n", i);
DEBUGF("R%x=%02x ",i,regBuf);
}
DEBUGF("\n");
FC0012_Read(pTuner, 0x06, &regBuf);
DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down");
DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed");
DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz");
FC0012_Read(pTuner, 0x07, &regBuf);
DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>");
FC0012_Read(pTuner, 0x09, &regBuf);
DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled");
FC0012_Read(pTuner, 0x0d, &regBuf);
DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced");
FC0012_Read(pTuner, 0x13, &regBuf);
DEBUGF("LNA Gain:\t");
switch (regBuf) {
case (0x10): DEBUGF("19.7dB\n"); break;
case (0x17): DEBUGF("17.9dB\n"); break;
case (0x08): DEBUGF("7.1dB\n"); break;
case (0x02): DEBUGF("-9.9dB\n"); break;
default: DEBUGF("unknown gain value 0x02x\n");
}
#endif
}
#endif
int FC0012_Open(void *pTuner)
{
// DEBUGF("FC0012_Open start");
if (FC0012_Write(pTuner, 0x01, 0x05)) return -1;
if (FC0012_Write(pTuner, 0x02, 0x10)) return -1;
if (FC0012_Write(pTuner, 0x03, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x04, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1;
if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
//if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x10, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1;
if (FC0012_Write(pTuner, 0x14, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
/* Black magic from nim_rtl2832_fc0012.c in DVB driver.
Even though we've set 0x11 to 0x00 above, this needs to happen to have
it go back
*/
if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1;
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1;
// DEBUGF("FC0012_Open SUCCESS");
return FC0012_OK;
}
# if 0
// Frequency is in kHz. Bandwidth is in MHz
// This is pseudocode to set GPIO6 for VHF/UHF filter switching.
// Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth)
{
if( Frequency < 260000 && Frequency > 150000 )
{
// set GPIO6 = low
// 1. Set tuner frequency
// 2. if the program quality is not good enough, switch to frequency + 500kHz
// 3. if the program quality is still no good, switch to frequency - 500kHz
}
else
{
// set GPIO6 = high
// set tuner frequency
}
}
#endif
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
{
int VCO1 = 0;
unsigned long doubleVCO;
unsigned short xin, xdiv;
unsigned char reg[21], am, pm, multi;
unsigned char read_byte;
unsigned long CrystalFreqKhz;
// DEBUGF("FC0012_SetFrequency start");
CrystalFreqKhz = (CRYSTAL_FREQ + 500) / 1000;
//===================================== Select frequency divider and the frequency of VCO
if (Frequency * 96 < 3560000)
{
multi = 96; reg[5] = 0x82; reg[6] = 0x00;
}
else if (Frequency * 64 < 3560000)
{
multi = 64; reg[5] = 0x82; reg[6] = 0x02;
}
else if (Frequency * 48 < 3560000)
{
multi = 48; reg[5] = 0x42; reg[6] = 0x00;
}
else if (Frequency * 32 < 3560000)
{
multi = 32; reg[5] = 0x42; reg[6] = 0x02;
}
else if (Frequency * 24 < 3560000)
{
multi = 24; reg[5] = 0x22; reg[6] = 0x00;
}
else if (Frequency * 16 < 3560000)
{
multi = 16; reg[5] = 0x22; reg[6] = 0x02;
}
else if (Frequency * 12 < 3560000)
{
multi = 12; reg[5] = 0x12; reg[6] = 0x00;
}
else if (Frequency * 8 < 3560000)
{
multi = 8; reg[5] = 0x12; reg[6] = 0x02;
}
else if (Frequency * 6 < 3560000)
{
multi = 6; reg[5] = 0x0A; reg[6] = 0x00;
}
else
{
multi = 4; reg[5] = 0x0A; reg[6] = 0x02;
}
doubleVCO = Frequency * multi;
reg[6] = reg[6] | 0x08;
VCO1 = 1;
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2));
if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) )
xdiv = xdiv + 1;
pm = (unsigned char)( xdiv / 8 );
am = (unsigned char)( xdiv - (8 * pm));
if (am < 2) {
reg[1] = am + 8;
reg[2] = pm - 1;
} else {
reg[1] = am;
reg[2] = pm;
}
// From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2));
xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2));
if( xin >= (unsigned short) 16384 )
xin = xin + (unsigned short) 32768;
reg[3] = (unsigned char)(xin >> 8);
reg[4] = (unsigned char)(xin & 0x00FF);
// DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
switch(Bandwidth)
{
case 6: reg[6] = 0x80 | reg[6]; break;
case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break;
case 8: default: reg[6] = ~0xC0 & reg[6]; break;
}
if (FC0012_Write(pTuner, 0x01, reg[1])) return -1;
if (FC0012_Write(pTuner, 0x02, reg[2])) return -1;
if (FC0012_Write(pTuner, 0x03, reg[3])) return -1;
if (FC0012_Write(pTuner, 0x04, reg[4])) return -1;
//reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
// Same with hardcoding VCO=1
if (FC0012_Write(pTuner, 0x05, reg[5])) return -1;
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
// VCO Calibration
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
// VCO Re-Calibration if needed
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1;
reg[14] = 0x3F & read_byte;
if (VCO1)
{
if (reg[14] > 0x3C)
{
reg[6] = 0x08 | reg[6];
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
}
}
else
{
if (reg[14] < 0x02) {
reg[6] = 0x08 | reg[6];
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
}
}
// DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
return FC0012_OK;
}
Loading…
Cancel
Save