parent
4ad93906a4
commit
367113b5c8
@ -0,0 +1,25 @@ |
||||
#ifndef __TUNER_FC0012_H |
||||
#define __TUNER_FC0012_H |
||||
|
||||
#define FC0012_OK 0 |
||||
#define FC0012_ERROR 1 |
||||
|
||||
#define FC0012_I2C_ADDR 0xc6 |
||||
#define FC0012_CHECK_ADDR 0x00 |
||||
#define FC0012_CHECK_VAL 0xa1 |
||||
|
||||
#define FC0012_BANDWIDTH_6MHZ 6 |
||||
#define FC0012_BANDWIDTH_7MHZ 7 |
||||
#define FC0012_BANDWIDTH_8MHZ 8 |
||||
|
||||
#define FC0012_LNA_GAIN_LOW 0x00 |
||||
#define FC0012_LNA_GAIN_MID 0x08 |
||||
#define FC0012_LNA_GAIN_HI 0x17 |
||||
#define FC0012_LNA_GAIN_MAX 0x10 |
||||
|
||||
int FC0012_Open(void *pTuner); |
||||
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte); |
||||
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte); |
||||
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth); |
||||
|
||||
#endif |
@ -0,0 +1,310 @@ |
||||
/*
|
||||
* fc0012 tuner support for rtl-sdr |
||||
* |
||||
* Based on tuner_fc0012.c found as part of the (seemingly GPLed) |
||||
* rtl2832u Linux DVB driver. |
||||
* |
||||
* Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to> |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <stdint.h> |
||||
|
||||
#include "tuner_fc0012.h" |
||||
#include "i2c.h" |
||||
|
||||
#define CRYSTAL_FREQ 28800000 |
||||
|
||||
#define FC0012_LNAGAIN FC0012_LNA_GAIN_HI |
||||
|
||||
/* Incomplete list of register settings:
|
||||
* |
||||
* Name Reg Bits Desc |
||||
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp |
||||
* VCO_SPEED 0x06 3 Set the speed of the VCO. example |
||||
* driver hardcodes to 1 for some reason |
||||
* BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40 |
||||
* 8MHz=0x00 |
||||
* XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input |
||||
* or 0 for 36MHz |
||||
* EN_CAL_RSSI 0x09 4 Enable calibrate RSSI |
||||
* (Receive Signal Strength Indicator) |
||||
* LNA_FORCE 0x0d 0 |
||||
* AGC_FORCE 0x0d ? |
||||
* LNA_GAIN 0x13 0-4 Low noise amp gain |
||||
* LNA_COMPS 0x15 3 ? |
||||
* VCO_CALIB 0x0e 7 Set high then low to calibrate VCO |
||||
* |
||||
*/ |
||||
|
||||
/* glue functions to rtl-sdr code */ |
||||
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte) |
||||
{ |
||||
uint8_t data[2]; |
||||
|
||||
data[0] = RegAddr; |
||||
data[1] = Byte; |
||||
|
||||
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, data, 2) < 0) |
||||
return FC0012_ERROR; |
||||
|
||||
return FC0012_OK; |
||||
} |
||||
|
||||
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte) |
||||
{ |
||||
uint8_t data = RegAddr; |
||||
|
||||
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0) |
||||
return FC0012_ERROR; |
||||
|
||||
if (rtlsdr_i2c_read((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0) |
||||
return FC0012_ERROR; |
||||
|
||||
*pByte = data; |
||||
|
||||
return FC0012_OK; |
||||
} |
||||
|
||||
#ifdef DEBUG |
||||
#define DEBUGF printf |
||||
#else |
||||
#define DEBUGF(...) () |
||||
#endif |
||||
#if 0 |
||||
void FC0012_Dump_Registers() |
||||
{ |
||||
#ifdef DEBUG |
||||
unsigned char regBuf; |
||||
int ret; |
||||
int i; |
||||
|
||||
DEBUGF("\nFC0012 registers:\n"); |
||||
for (i=0; i<=0x15; ++i) |
||||
{ |
||||
ret = FC0012_Read(pTuner, i, ®Buf); |
||||
if (ret) DEBUGF("\nCouldn't read register %02x\n", i); |
||||
DEBUGF("R%x=%02x ",i,regBuf); |
||||
} |
||||
DEBUGF("\n"); |
||||
FC0012_Read(pTuner, 0x06, ®Buf); |
||||
DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down"); |
||||
DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed"); |
||||
DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz"); |
||||
FC0012_Read(pTuner, 0x07, ®Buf); |
||||
DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>"); |
||||
FC0012_Read(pTuner, 0x09, ®Buf); |
||||
DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled"); |
||||
FC0012_Read(pTuner, 0x0d, ®Buf); |
||||
DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced"); |
||||
FC0012_Read(pTuner, 0x13, ®Buf); |
||||
DEBUGF("LNA Gain:\t"); |
||||
switch (regBuf) { |
||||
case (0x10): DEBUGF("19.7dB\n"); break; |
||||
case (0x17): DEBUGF("17.9dB\n"); break; |
||||
case (0x08): DEBUGF("7.1dB\n"); break; |
||||
case (0x02): DEBUGF("-9.9dB\n"); break; |
||||
default: DEBUGF("unknown gain value 0x02x\n"); |
||||
} |
||||
#endif |
||||
} |
||||
#endif |
||||
|
||||
int FC0012_Open(void *pTuner) |
||||
{ |
||||
// DEBUGF("FC0012_Open start");
|
||||
if (FC0012_Write(pTuner, 0x01, 0x05)) return -1; |
||||
if (FC0012_Write(pTuner, 0x02, 0x10)) return -1; |
||||
if (FC0012_Write(pTuner, 0x03, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x04, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1; |
||||
if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
|
||||
if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
|
||||
if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
|
||||
if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
|
||||
if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
|
||||
if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
|
||||
//if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
|
||||
if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x10, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
|
||||
if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1; |
||||
if (FC0012_Write(pTuner, 0x14, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
|
||||
|
||||
/* Black magic from nim_rtl2832_fc0012.c in DVB driver.
|
||||
Even though we've set 0x11 to 0x00 above, this needs to happen to have |
||||
it go back |
||||
*/ |
||||
if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1; |
||||
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1; |
||||
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; |
||||
|
||||
// DEBUGF("FC0012_Open SUCCESS");
|
||||
return FC0012_OK; |
||||
} |
||||
|
||||
# if 0 |
||||
// Frequency is in kHz. Bandwidth is in MHz
|
||||
// This is pseudocode to set GPIO6 for VHF/UHF filter switching.
|
||||
// Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
|
||||
void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth) |
||||
{ |
||||
if( Frequency < 260000 && Frequency > 150000 ) |
||||
{ |
||||
// set GPIO6 = low
|
||||
|
||||
// 1. Set tuner frequency
|
||||
// 2. if the program quality is not good enough, switch to frequency + 500kHz
|
||||
// 3. if the program quality is still no good, switch to frequency - 500kHz
|
||||
} |
||||
else |
||||
{ |
||||
// set GPIO6 = high
|
||||
|
||||
// set tuner frequency
|
||||
} |
||||
} |
||||
#endif |
||||
|
||||
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth) |
||||
{ |
||||
int VCO1 = 0; |
||||
unsigned long doubleVCO; |
||||
unsigned short xin, xdiv; |
||||
unsigned char reg[21], am, pm, multi; |
||||
unsigned char read_byte; |
||||
|
||||
unsigned long CrystalFreqKhz; |
||||
|
||||
// DEBUGF("FC0012_SetFrequency start");
|
||||
|
||||
CrystalFreqKhz = (CRYSTAL_FREQ + 500) / 1000; |
||||
|
||||
//===================================== Select frequency divider and the frequency of VCO
|
||||
if (Frequency * 96 < 3560000) |
||||
{ |
||||
multi = 96; reg[5] = 0x82; reg[6] = 0x00; |
||||
} |
||||
else if (Frequency * 64 < 3560000) |
||||
{ |
||||
multi = 64; reg[5] = 0x82; reg[6] = 0x02; |
||||
} |
||||
else if (Frequency * 48 < 3560000) |
||||
{ |
||||
multi = 48; reg[5] = 0x42; reg[6] = 0x00; |
||||
} |
||||
else if (Frequency * 32 < 3560000) |
||||
{ |
||||
multi = 32; reg[5] = 0x42; reg[6] = 0x02; |
||||
} |
||||
else if (Frequency * 24 < 3560000) |
||||
{ |
||||
multi = 24; reg[5] = 0x22; reg[6] = 0x00; |
||||
} |
||||
else if (Frequency * 16 < 3560000) |
||||
{ |
||||
multi = 16; reg[5] = 0x22; reg[6] = 0x02; |
||||
} |
||||
else if (Frequency * 12 < 3560000) |
||||
{ |
||||
multi = 12; reg[5] = 0x12; reg[6] = 0x00; |
||||
} |
||||
else if (Frequency * 8 < 3560000) |
||||
{ |
||||
multi = 8; reg[5] = 0x12; reg[6] = 0x02; |
||||
} |
||||
else if (Frequency * 6 < 3560000) |
||||
{ |
||||
multi = 6; reg[5] = 0x0A; reg[6] = 0x00; |
||||
} |
||||
else |
||||
{ |
||||
multi = 4; reg[5] = 0x0A; reg[6] = 0x02; |
||||
} |
||||
|
||||
doubleVCO = Frequency * multi; |
||||
|
||||
reg[6] = reg[6] | 0x08; |
||||
VCO1 = 1; |
||||
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2)); |
||||
if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) ) |
||||
xdiv = xdiv + 1; |
||||
|
||||
pm = (unsigned char)( xdiv / 8 ); |
||||
am = (unsigned char)( xdiv - (8 * pm)); |
||||
|
||||
if (am < 2) { |
||||
reg[1] = am + 8; |
||||
reg[2] = pm - 1; |
||||
} else { |
||||
reg[1] = am; |
||||
reg[2] = pm; |
||||
} |
||||
|
||||
// From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
|
||||
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2)); |
||||
xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2)); |
||||
if( xin >= (unsigned short) 16384 ) |
||||
xin = xin + (unsigned short) 32768; |
||||
|
||||
reg[3] = (unsigned char)(xin >> 8); |
||||
reg[4] = (unsigned char)(xin & 0x00FF); |
||||
|
||||
// DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
|
||||
|
||||
switch(Bandwidth) |
||||
{ |
||||
case 6: reg[6] = 0x80 | reg[6]; break; |
||||
case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break; |
||||
case 8: default: reg[6] = ~0xC0 & reg[6]; break; |
||||
} |
||||
|
||||
if (FC0012_Write(pTuner, 0x01, reg[1])) return -1; |
||||
if (FC0012_Write(pTuner, 0x02, reg[2])) return -1; |
||||
if (FC0012_Write(pTuner, 0x03, reg[3])) return -1; |
||||
if (FC0012_Write(pTuner, 0x04, reg[4])) return -1; |
||||
//reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
|
||||
// Same with hardcoding VCO=1
|
||||
if (FC0012_Write(pTuner, 0x05, reg[5])) return -1; |
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; |
||||
|
||||
// VCO Calibration
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; |
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; |
||||
|
||||
// VCO Re-Calibration if needed
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; |
||||
if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1; |
||||
reg[14] = 0x3F & read_byte; |
||||
|
||||
if (VCO1) |
||||
{ |
||||
if (reg[14] > 0x3C) |
||||
{ |
||||
reg[6] = 0x08 | reg[6]; |
||||
|
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; |
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; |
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if (reg[14] < 0x02) { |
||||
reg[6] = 0x08 | reg[6]; |
||||
|
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1; |
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1; |
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1; |
||||
} |
||||
} |
||||
|
||||
// DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
|
||||
return FC0012_OK; |
||||
} |
||||
|
Loading…
Reference in new issue