Many thanks to Hoernchen for making the driver work properly and adding manual gain! Signed-off-by: Steve Markgraf <steve@steve-m.de>master
parent
0af094070f
commit
86c34428aa
@ -1,5 +1,5 @@ |
||||
rtlsdr_HEADERS = rtl-sdr.h rtl-sdr_export.h
|
||||
|
||||
noinst_HEADERS = rtlsdr_i2c.h tuner_e4000.h tuner_fc0012.h tuner_fc0013.h tuner_fc2580.h
|
||||
noinst_HEADERS = rtlsdr_i2c.h tuner_e4k.h tuner_fc0012.h tuner_fc0013.h tuner_fc2580.h
|
||||
|
||||
rtlsdrdir = $(includedir)
|
||||
|
@ -0,0 +1,60 @@ |
||||
#ifndef _REG_FIELD_H |
||||
#define _REG_FIELD_H |
||||
|
||||
#include <stdint.h> |
||||
#include <stdarg.h> |
||||
|
||||
enum cmd_op { |
||||
CMD_OP_GET = (1 << 0), |
||||
CMD_OP_SET = (1 << 1), |
||||
CMD_OP_EXEC = (1 << 2), |
||||
}; |
||||
|
||||
enum pstate { |
||||
ST_IN_CMD, |
||||
ST_IN_ARG, |
||||
}; |
||||
|
||||
struct strbuf { |
||||
uint8_t idx; |
||||
char buf[32]; |
||||
}; |
||||
|
||||
struct cmd_state { |
||||
struct strbuf cmd; |
||||
struct strbuf arg; |
||||
enum pstate state; |
||||
void (*out)(const char *format, va_list ap); |
||||
}; |
||||
|
||||
struct cmd { |
||||
const char *cmd; |
||||
uint32_t ops; |
||||
int (*cb)(struct cmd_state *cs, enum cmd_op op, const char *cmd, |
||||
int argc, char **argv); |
||||
const char *help; |
||||
}; |
||||
|
||||
/* structure describing a field in a register */ |
||||
struct reg_field { |
||||
uint8_t reg; |
||||
uint8_t shift; |
||||
uint8_t width; |
||||
}; |
||||
|
||||
struct reg_field_ops { |
||||
const struct reg_field *fields; |
||||
const char **field_names; |
||||
uint32_t num_fields; |
||||
void *data; |
||||
int (*write_cb)(void *data, uint32_t reg, uint32_t val); |
||||
uint32_t (*read_cb)(void *data, uint32_t reg); |
||||
}; |
||||
|
||||
uint32_t reg_field_read(struct reg_field_ops *ops, struct reg_field *field); |
||||
int reg_field_write(struct reg_field_ops *ops, struct reg_field *field, uint32_t val); |
||||
int reg_field_cmd(struct cmd_state *cs, enum cmd_op op, |
||||
const char *cmd, int argc, char **argv, |
||||
struct reg_field_ops *ops); |
||||
|
||||
#endif |
@ -1,129 +0,0 @@ |
||||
#ifndef __TUNER_E4000_H |
||||
#define __TUNER_E4000_H |
||||
|
||||
// Definition (implemeted for E4000)
|
||||
#define E4000_1_SUCCESS 1 |
||||
#define E4000_1_FAIL 0 |
||||
#define E4000_I2C_SUCCESS 1 |
||||
#define E4000_I2C_FAIL 0 |
||||
|
||||
#define E4K_I2C_ADDR 0xc8 |
||||
#define E4K_CHECK_ADDR 0x02 |
||||
#define E4K_CHECK_VAL 0x40 |
||||
|
||||
// Function (implemeted for E4000)
|
||||
int |
||||
I2CReadByte(void *pTuner, |
||||
unsigned char NoUse, |
||||
unsigned char RegAddr, |
||||
unsigned char *pReadingByte |
||||
); |
||||
|
||||
int |
||||
I2CWriteByte( |
||||
void *pTuner, |
||||
unsigned char NoUse, |
||||
unsigned char RegAddr, |
||||
unsigned char WritingByte |
||||
); |
||||
|
||||
int |
||||
I2CWriteArray(void *pTuner, |
||||
unsigned char NoUse, |
||||
unsigned char RegStartAddr, |
||||
unsigned char ByteNum, |
||||
unsigned char *pWritingBytes |
||||
); |
||||
|
||||
|
||||
|
||||
// Functions (from E4000 source code)
|
||||
int tunerreset (void *pTuner); |
||||
int Tunerclock(void *pTuner); |
||||
int Qpeak(void *pTuner); |
||||
int DCoffloop(void *pTuner); |
||||
int GainControlinit(void *pTuner); |
||||
|
||||
int Gainmanual(void *pTuner); |
||||
int E4000_gain_freq(void *pTuner, int frequency); |
||||
int PLL(void *pTuner, int Ref_clk, int Freq); |
||||
int LNAfilter(void *pTuner, int Freq); |
||||
int IFfilter(void *pTuner, int bandwidth, int Ref_clk); |
||||
int freqband(void *pTuner, int Freq); |
||||
int DCoffLUT(void *pTuner); |
||||
int GainControlauto(void *pTuner); |
||||
|
||||
int E4000_sensitivity(void *pTuner, int Freq, int bandwidth); |
||||
int E4000_linearity(void *pTuner, int Freq, int bandwidth); |
||||
int E4000_high_linearity(void *pTuner); |
||||
int E4000_nominal(void *pTuner, int Freq, int bandwidth); |
||||
|
||||
|
||||
// The following context is E4000 tuner API source code
|
||||
|
||||
// Definitions
|
||||
|
||||
// Bandwidth in Hz
|
||||
enum E4000_BANDWIDTH_HZ |
||||
{ |
||||
E4000_BANDWIDTH_6000000HZ = 6000000, |
||||
E4000_BANDWIDTH_7000000HZ = 7000000, |
||||
E4000_BANDWIDTH_8000000HZ = 8000000, |
||||
}; |
||||
|
||||
|
||||
// Manipulaing functions
|
||||
void |
||||
e4000_GetTunerType( |
||||
void *pTuner, |
||||
int *pTunerType |
||||
); |
||||
|
||||
void |
||||
e4000_GetDeviceAddr( |
||||
void *pTuner, |
||||
unsigned char *pDeviceAddr |
||||
); |
||||
|
||||
int |
||||
e4000_Initialize( |
||||
void *pTuner |
||||
); |
||||
|
||||
int |
||||
e4000_SetRfFreqHz( |
||||
void *pTuner, |
||||
unsigned long RfFreqHz |
||||
); |
||||
|
||||
int |
||||
e4000_GetRfFreqHz( |
||||
void *pTuner, |
||||
unsigned long *pRfFreqHz |
||||
); |
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Extra manipulaing functions
|
||||
int |
||||
e4000_GetRegByte( |
||||
void *pTuner, |
||||
unsigned char RegAddr, |
||||
unsigned char *pReadingByte |
||||
); |
||||
|
||||
int |
||||
e4000_SetBandwidthHz( |
||||
void *pTuner, |
||||
unsigned long BandwidthHz |
||||
); |
||||
|
||||
int |
||||
e4000_GetBandwidthHz( |
||||
void *pTuner, |
||||
unsigned long *pBandwidthHz |
||||
); |
||||
|
||||
#endif |
@ -0,0 +1,219 @@ |
||||
#ifndef _E4K_TUNER_H |
||||
#define _E4K_TUNER_H |
||||
|
||||
/* (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
|
||||
* |
||||
* All Rights Reserved |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation; either version 3 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#define E4K_I2C_ADDR 0xc8 |
||||
#define E4K_CHECK_ADDR 0x02 |
||||
#define E4K_CHECK_VAL 0x40 |
||||
|
||||
enum e4k_reg { |
||||
E4K_REG_MASTER1 = 0x00, |
||||
E4K_REG_MASTER2 = 0x01, |
||||
E4K_REG_MASTER3 = 0x02, |
||||
E4K_REG_MASTER4 = 0x03, |
||||
E4K_REG_MASTER5 = 0x04, |
||||
E4K_REG_CLK_INP = 0x05, |
||||
E4K_REG_REF_CLK = 0x06, |
||||
E4K_REG_SYNTH1 = 0x07, |
||||
E4K_REG_SYNTH2 = 0x08, |
||||
E4K_REG_SYNTH3 = 0x09, |
||||
E4K_REG_SYNTH4 = 0x0a, |
||||
E4K_REG_SYNTH5 = 0x0b, |
||||
E4K_REG_SYNTH6 = 0x0c, |
||||
E4K_REG_SYNTH7 = 0x0d, |
||||
E4K_REG_SYNTH8 = 0x0e, |
||||
E4K_REG_SYNTH9 = 0x0f, |
||||
E4K_REG_FILT1 = 0x10, |
||||
E4K_REG_FILT2 = 0x11, |
||||
E4K_REG_FILT3 = 0x12, |
||||
// gap
|
||||
E4K_REG_GAIN1 = 0x14, |
||||
E4K_REG_GAIN2 = 0x15, |
||||
E4K_REG_GAIN3 = 0x16, |
||||
E4K_REG_GAIN4 = 0x17, |
||||
// gap
|
||||
E4K_REG_AGC1 = 0x1a, |
||||
E4K_REG_AGC2 = 0x1b, |
||||
E4K_REG_AGC3 = 0x1c, |
||||
E4K_REG_AGC4 = 0x1d, |
||||
E4K_REG_AGC5 = 0x1e, |
||||
E4K_REG_AGC6 = 0x1f, |
||||
E4K_REG_AGC7 = 0x20, |
||||
E4K_REG_AGC8 = 0x21, |
||||
// gap
|
||||
E4K_REG_AGC11 = 0x24, |
||||
E4K_REG_AGC12 = 0x25, |
||||
// gap
|
||||
E4K_REG_DC1 = 0x29, |
||||
E4K_REG_DC2 = 0x2a, |
||||
E4K_REG_DC3 = 0x2b, |
||||
E4K_REG_DC4 = 0x2c, |
||||
E4K_REG_DC5 = 0x2d, |
||||
E4K_REG_DC6 = 0x2e, |
||||
E4K_REG_DC7 = 0x2f, |
||||
E4K_REG_DC8 = 0x30, |
||||
// gap
|
||||
E4K_REG_QLUT0 = 0x50, |
||||
E4K_REG_QLUT1 = 0x51, |
||||
E4K_REG_QLUT2 = 0x52, |
||||
E4K_REG_QLUT3 = 0x53, |
||||
// gap
|
||||
E4K_REG_ILUT0 = 0x60, |
||||
E4K_REG_ILUT1 = 0x61, |
||||
E4K_REG_ILUT2 = 0x62, |
||||
E4K_REG_ILUT3 = 0x63, |
||||
// gap
|
||||
E4K_REG_DCTIME1 = 0x70, |
||||
E4K_REG_DCTIME2 = 0x71, |
||||
E4K_REG_DCTIME3 = 0x72, |
||||
E4K_REG_DCTIME4 = 0x73, |
||||
E4K_REG_PWM1 = 0x74, |
||||
E4K_REG_PWM2 = 0x75, |
||||
E4K_REG_PWM3 = 0x76, |
||||
E4K_REG_PWM4 = 0x77, |
||||
E4K_REG_BIAS = 0x78, |
||||
E4K_REG_CLKOUT_PWDN = 0x7a, |
||||
E4K_REG_CHFILT_CALIB = 0x7b, |
||||
E4K_REG_I2C_REG_ADDR = 0x7d, |
||||
// FIXME
|
||||
}; |
||||
|
||||
#define E4K_MASTER1_RESET (1 << 0) |
||||
#define E4K_MASTER1_NORM_STBY (1 << 1) |
||||
#define E4K_MASTER1_POR_DET (1 << 2) |
||||
|
||||
#define E4K_SYNTH1_PLL_LOCK (1 << 0) |
||||
#define E4K_SYNTH1_BAND_SHIF 1 |
||||
|
||||
#define E4K_SYNTH7_3PHASE_EN (1 << 3) |
||||
|
||||
#define E4K_SYNTH8_VCOCAL_UPD (1 << 2) |
||||
|
||||
#define E4K_FILT3_DISABLE (1 << 5) |
||||
|
||||
#define E4K_AGC1_LIN_MODE (1 << 4) |
||||
#define E4K_AGC1_LNA_UPDATE (1 << 5) |
||||
#define E4K_AGC1_LNA_G_LOW (1 << 6) |
||||
#define E4K_AGC1_LNA_G_HIGH (1 << 7) |
||||
|
||||
#define E4K_AGC6_LNA_CAL_REQ (1 << 4) |
||||
|
||||
#define E4K_AGC7_MIX_GAIN_AUTO (1 << 0) |
||||
#define E4K_AGC7_GAIN_STEP_5dB (1 << 5) |
||||
|
||||
#define E4K_AGC8_SENS_LIN_AUTO (1 << 0) |
||||
|
||||
#define E4K_AGC11_LNA_GAIN_ENH (1 << 0) |
||||
|
||||
#define E4K_DC1_CAL_REQ (1 << 0) |
||||
|
||||
#define E4K_DC5_I_LUT_EN (1 << 0) |
||||
#define E4K_DC5_Q_LUT_EN (1 << 1) |
||||
#define E4K_DC5_RANGE_DET_EN (1 << 2) |
||||
#define E4K_DC5_RANGE_EN (1 << 3) |
||||
#define E4K_DC5_TIMEVAR_EN (1 << 4) |
||||
|
||||
#define E4K_CLKOUT_DISABLE 0x96 |
||||
|
||||
#define E4K_CHFCALIB_CMD (1 << 0) |
||||
|
||||
#define E4K_AGC1_MOD_MASK 0xF |
||||
|
||||
enum e4k_agc_mode { |
||||
E4K_AGC_MOD_SERIAL = 0x0, |
||||
E4K_AGC_MOD_IF_PWM_LNA_SERIAL = 0x1, |
||||
E4K_AGC_MOD_IF_PWM_LNA_AUTONL = 0x2, |
||||
E4K_AGC_MOD_IF_PWM_LNA_SUPERV = 0x3, |
||||
E4K_AGC_MOD_IF_SERIAL_LNA_PWM = 0x4, |
||||
E4K_AGC_MOD_IF_PWM_LNA_PWM = 0x5, |
||||
E4K_AGC_MOD_IF_DIG_LNA_SERIAL = 0x6, |
||||
E4K_AGC_MOD_IF_DIG_LNA_AUTON = 0x7, |
||||
E4K_AGC_MOD_IF_DIG_LNA_SUPERV = 0x8, |
||||
E4K_AGC_MOD_IF_SERIAL_LNA_AUTON = 0x9, |
||||
E4K_AGC_MOD_IF_SERIAL_LNA_SUPERV = 0xa, |
||||
}; |
||||
|
||||
enum e4k_band { |
||||
E4K_BAND_VHF2 = 0, |
||||
E4K_BAND_VHF3 = 1, |
||||
E4K_BAND_UHF = 2, |
||||
E4K_BAND_L = 3, |
||||
}; |
||||
|
||||
enum e4k_mixer_filter_bw { |
||||
E4K_F_MIX_BW_27M = 0, |
||||
E4K_F_MIX_BW_4M6 = 8, |
||||
E4K_F_MIX_BW_4M2 = 9, |
||||
E4K_F_MIX_BW_3M8 = 10, |
||||
E4K_F_MIX_BW_3M4 = 11, |
||||
E4K_F_MIX_BW_3M = 12, |
||||
E4K_F_MIX_BW_2M7 = 13, |
||||
E4K_F_MIX_BW_2M3 = 14, |
||||
E4K_F_MIX_BW_1M9 = 15, |
||||
}; |
||||
|
||||
enum e4k_if_filter { |
||||
E4K_IF_FILTER_MIX, |
||||
E4K_IF_FILTER_CHAN, |
||||
E4K_IF_FILTER_RC |
||||
}; |
||||
struct e4k_pll_params { |
||||
uint32_t fosc; |
||||
uint32_t intended_flo; |
||||
uint32_t flo; |
||||
uint16_t x; |
||||
uint8_t z; |
||||
uint8_t r; |
||||
uint8_t r_idx; |
||||
uint8_t threephase; |
||||
}; |
||||
|
||||
struct e4k_state { |
||||
void *i2c_dev; |
||||
uint8_t i2c_addr; |
||||
enum e4k_band band; |
||||
struct e4k_pll_params vco; |
||||
void *rtl_dev; |
||||
}; |
||||
|
||||
int e4k_init(struct e4k_state *e4k); |
||||
int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value); |
||||
int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value); |
||||
int e4k_commonmode_set(struct e4k_state *e4k, int8_t value); |
||||
int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq); |
||||
int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p); |
||||
int e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo); |
||||
int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter); |
||||
int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter, |
||||
uint32_t bandwidth); |
||||
int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on); |
||||
int e4k_rf_filter_set(struct e4k_state *e4k); |
||||
|
||||
int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val); |
||||
uint8_t e4k_reg_read(struct e4k_state *e4k, uint8_t reg); |
||||
|
||||
int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange); |
||||
int e4k_dc_offset_calibrate(struct e4k_state *e4k); |
||||
int e4k_dc_offset_gen_table(struct e4k_state *e4k); |
||||
|
||||
int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain); |
||||
int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual); |
||||
int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain); |
||||
#endif /* _E4K_TUNER_H */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,955 @@ |
||||
/* (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
|
||||
* |
||||
* All Rights Reserved |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation; either version 3 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#include <limits.h> |
||||
#include <stdint.h> |
||||
#include <errno.h> |
||||
#include <string.h> |
||||
#include <stdio.h> |
||||
|
||||
#include <reg_field.h> |
||||
#include <tuner_e4k.h> |
||||
|
||||
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) |
||||
|
||||
/* If this is defined, the limits are somewhat relaxed compared to what the
|
||||
* vendor claims is possible */ |
||||
#define OUT_OF_SPEC |
||||
|
||||
#define MHZ(x) ((x)*1000*1000) |
||||
#define KHZ(x) ((x)*1000) |
||||
|
||||
uint32_t unsigned_delta(uint32_t a, uint32_t b) |
||||
{ |
||||
if (a > b) |
||||
return a - b; |
||||
else |
||||
return b - a; |
||||
} |
||||
|
||||
/* look-up table bit-width -> mask */ |
||||
static const uint8_t width2mask[] = { |
||||
0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff |
||||
}; |
||||
|
||||
/***********************************************************************
|
||||
* Register Access */ |
||||
|
||||
#if 0 |
||||
/*! \brief Write a register of the tuner chip
|
||||
* \param[in] e4k reference to the tuner |
||||
* \param[in] reg number of the register |
||||
* \param[in] val value to be written |
||||
* \returns 0 on success, negative in case of error |
||||
*/ |
||||
int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val) |
||||
{ |
||||
/* FIXME */ |
||||
return 0; |
||||
} |
||||
|
||||
/*! \brief Read a register of the tuner chip
|
||||
* \param[in] e4k reference to the tuner |
||||
* \param[in] reg number of the register |
||||
* \returns positive 8bit register contents on success, negative in case of error |
||||
*/ |
||||
int e4k_reg_read(struct e4k_state *e4k, uint8_t reg) |
||||
{ |
||||
/* FIXME */ |
||||
return 0; |
||||
} |
||||
#endif |
||||
|
||||
/*! \brief Set or clear some (masked) bits inside a register
|
||||
* \param[in] e4k reference to the tuner |
||||
* \param[in] reg number of the register |
||||
* \param[in] mask bit-mask of the value |
||||
* \param[in] val data value to be written to register |
||||
* \returns 0 on success, negative in case of error |
||||
*/ |
||||
static int e4k_reg_set_mask(struct e4k_state *e4k, uint8_t reg, |
||||
uint8_t mask, uint8_t val) |
||||
{ |
||||
uint8_t tmp = e4k_reg_read(e4k, reg); |
||||
|
||||
if ((tmp & mask) == val) |
||||
return 0; |
||||
|
||||
return e4k_reg_write(e4k, reg, (tmp & ~mask) | (val & mask)); |
||||
} |
||||
|
||||
/*! \brief Write a given field inside a register
|
||||
* \param[in] e4k reference to the tuner |
||||
* \param[in] field structure describing the field |
||||
* \param[in] val value to be written |
||||
* \returns 0 on success, negative in case of error |
||||
*/ |
||||
static int e4k_field_write(struct e4k_state *e4k, const struct reg_field *field, uint8_t val) |
||||
{ |
||||
int rc; |
||||
uint8_t mask; |
||||
|
||||
rc = e4k_reg_read(e4k, field->reg); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
mask = width2mask[field->width] << field->shift; |
||||
|
||||
return e4k_reg_set_mask(e4k, field->reg, mask, val << field->shift); |
||||
} |
||||
|
||||
/*! \brief Read a given field inside a register
|
||||
* \param[in] e4k reference to the tuner |
||||
* \param[in] field structure describing the field |
||||
* \returns positive value of the field, negative in case of error |
||||
*/ |
||||
static int e4k_field_read(struct e4k_state *e4k, const struct reg_field *field) |
||||
{ |
||||
int rc; |
||||
|
||||
rc = e4k_reg_read(e4k, field->reg); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
rc = (rc >> field->shift) & width2mask[field->width]; |
||||
|
||||
return rc; |
||||
} |
||||
|
||||
/***********************************************************************
|
||||
* Filter Control */ |
||||
|
||||
static const uint32_t rf_filt_center_uhf[] = { |
||||
MHZ(360), MHZ(380), MHZ(405), MHZ(425), |
||||
MHZ(450), MHZ(475), MHZ(505), MHZ(540), |
||||
MHZ(575), MHZ(615), MHZ(670), MHZ(720), |
||||
MHZ(760), MHZ(840), MHZ(890), MHZ(970) |
||||
}; |
||||
|
||||
static const uint32_t rf_filt_center_l[] = { |
||||
MHZ(1300), MHZ(1320), MHZ(1360), MHZ(1410), |
||||
MHZ(1445), MHZ(1460), MHZ(1490), MHZ(1530), |
||||
MHZ(1560), MHZ(1590), MHZ(1640), MHZ(1660), |
||||
MHZ(1680), MHZ(1700), MHZ(1720), MHZ(1750) |
||||
}; |
||||
|
||||
static int closest_arr_idx(const uint32_t *arr, unsigned int arr_size, uint32_t freq) |
||||
{ |
||||
unsigned int i, bi = 0; |
||||
uint32_t best_delta = 0xffffffff; |
||||
|
||||
/* iterate over the array containing a list of the center
|
||||
* frequencies, selecting the closest one */ |
||||
for (i = 0; i < arr_size; i++) { |
||||
uint32_t delta = unsigned_delta(freq, arr[i]); |
||||
if (delta < best_delta) { |
||||
best_delta = delta; |
||||
bi = i; |
||||
} |
||||
} |
||||
|
||||
return bi; |
||||
} |
||||
|
||||
/* return 4-bit index as to which RF filter to select */ |
||||
static int choose_rf_filter(uint32_t freq) |
||||
{ |
||||
int rc; |
||||
|
||||
if (freq < MHZ(350)) |
||||
rc = 0; |
||||
else if (freq < MHZ(1000)) |
||||
rc = closest_arr_idx(rf_filt_center_uhf, |
||||
ARRAY_SIZE(rf_filt_center_uhf), |
||||
freq); |
||||
else |
||||
rc = closest_arr_idx(rf_filt_center_l, |
||||
ARRAY_SIZE(rf_filt_center_l), |
||||
freq); |
||||
|
||||
return rc; |
||||
} |
||||
|
||||
/* \brief Automatically select apropriate RF filter based on e4k state */ |
||||
int e4k_rf_filter_set(struct e4k_state *e4k) |
||||
{ |
||||
int rc; |
||||
|
||||
rc = choose_rf_filter(e4k->vco.flo); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
return e4k_reg_set_mask(e4k, E4K_REG_FILT1, 0xF, rc); |
||||
} |
||||
|
||||
/* Mixer Filter */ |
||||
static const uint32_t mix_filter_bw[] = { |
||||
KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), |
||||
KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), |
||||
KHZ(4600), KHZ(4200), KHZ(3800), KHZ(3400), |
||||
KHZ(3300), KHZ(2700), KHZ(2300), KHZ(1900) |
||||
}; |
||||
|
||||
/* IF RC Filter */ |
||||
static const uint32_t ifrc_filter_bw[] = { |
||||
KHZ(21400), KHZ(21000), KHZ(17600), KHZ(14700), |
||||
KHZ(12400), KHZ(10600), KHZ(9000), KHZ(7700), |
||||
KHZ(6400), KHZ(5300), KHZ(4400), KHZ(3400), |
||||
KHZ(2600), KHZ(1800), KHZ(1200), KHZ(1000) |
||||
}; |
||||
|
||||
/* IF Channel Filter */ |
||||
static const uint32_t ifch_filter_bw[] = { |
||||
KHZ(5500), KHZ(5300), KHZ(5000), KHZ(4800), |
||||
KHZ(4600), KHZ(4400), KHZ(4300), KHZ(4100), |
||||
KHZ(3900), KHZ(3800), KHZ(3700), KHZ(3600), |
||||
KHZ(3400), KHZ(3300), KHZ(3200), KHZ(3100), |
||||
KHZ(3000), KHZ(2950), KHZ(2900), KHZ(2800), |
||||
KHZ(2750), KHZ(2700), KHZ(2600), KHZ(2550), |
||||
KHZ(2500), KHZ(2450), KHZ(2400), KHZ(2300), |
||||
KHZ(2280), KHZ(2240), KHZ(2200), KHZ(2150) |
||||
}; |
||||
|
||||
static const uint32_t *if_filter_bw[] = { |
||||
mix_filter_bw, |
||||
ifch_filter_bw, |
||||
ifrc_filter_bw, |
||||
}; |
||||
|
||||
static const uint32_t if_filter_bw_len[] = { |
||||
ARRAY_SIZE(mix_filter_bw), |
||||
ARRAY_SIZE(ifch_filter_bw), |
||||
ARRAY_SIZE(ifrc_filter_bw), |
||||
}; |
||||
|
||||
static const struct reg_field if_filter_fields[] = { |
||||
{ |
||||
E4K_REG_FILT2, 4, 4, |
||||
}, |
||||
{ |
||||
E4K_REG_FILT3, 0, 5, |
||||
}, |
||||
{ |
||||
E4K_REG_FILT2, 0, 4, |
||||
} |
||||
}; |
||||
|
||||
static int find_if_bw(enum e4k_if_filter filter, uint32_t bw) |
||||
{ |
||||
if (filter >= ARRAY_SIZE(if_filter_bw)) |
||||
return -EINVAL; |
||||
|
||||
return closest_arr_idx(if_filter_bw[filter], |
||||
if_filter_bw_len[filter], bw); |
||||
} |
||||
|
||||
/*! \brief Set the filter band-width of any of the IF filters
|
||||
* \param[in] e4k reference to the tuner chip |
||||
* \param[in] filter filter to be configured |
||||
* \param[in] bandwidth bandwidth to be configured |
||||
* \returns positive actual filter band-width, negative in case of error |
||||
*/ |
||||
int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter, |
||||
uint32_t bandwidth) |
||||
{ |
||||
int bw_idx; |
||||
const struct reg_field *field; |
||||
|
||||
if (filter >= ARRAY_SIZE(if_filter_bw)) |
||||
return -EINVAL; |
||||
|
||||
bw_idx = find_if_bw(filter, bandwidth); |
||||
|
||||
field = &if_filter_fields[filter]; |
||||
|
||||
return e4k_field_write(e4k, field, bw_idx); |
||||
} |
||||
|
||||
/*! \brief Enables / Disables the channel filter
|
||||
* \param[in] e4k reference to the tuner chip |
||||
* \param[in] on 1=filter enabled, 0=filter disabled |
||||
* \returns 0 success, negative errors |
||||
*/ |
||||
int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on) |
||||
{ |
||||
return e4k_reg_set_mask(e4k, E4K_REG_FILT3, E4K_FILT3_DISABLE, |
||||
on ? 0 : E4K_FILT3_DISABLE); |
||||
} |
||||
|
||||
int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter) |
||||
{ |
||||
const uint32_t *arr; |
||||
int rc; |
||||
const struct reg_field *field; |
||||
|
||||
if (filter >= ARRAY_SIZE(if_filter_bw)) |
||||
return -EINVAL; |
||||
|
||||
field = &if_filter_fields[filter]; |
||||
|
||||
rc = e4k_field_read(e4k, field); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
arr = if_filter_bw[filter]; |
||||
|
||||
return arr[rc]; |
||||
} |
||||
|
||||
|
||||
/***********************************************************************
|
||||
* Frequency Control */ |
||||
|
||||
#define E4K_FVCO_MIN_KHZ 2600000 /* 2.6 GHz */ |
||||
#define E4K_FVCO_MAX_KHZ 3900000 /* 3.9 GHz */ |
||||
#define E4K_PLL_Y 65536 |
||||
|
||||
#ifdef OUT_OF_SPEC |
||||
#define E4K_FLO_MIN_MHZ 50 |
||||
#define E4K_FLO_MAX_MHZ 2200UL |
||||
#else |
||||
#define E4K_FLO_MIN_MHZ 64 |
||||
#define E4K_FLO_MAX_MHZ 1700 |
||||
#endif |
||||
|
||||
struct pll_settings { |
||||
uint32_t freq; |
||||
uint8_t reg_synth7; |
||||
uint8_t mult; |
||||
}; |
||||
|
||||
static const struct pll_settings pll_vars[] = { |
||||
{KHZ(72400), (1 << 3) | 7, 48}, |
||||
{KHZ(81200), (1 << 3) | 6, 40}, |
||||
{KHZ(108300), (1 << 3) | 5, 32}, |
||||
{KHZ(162500), (1 << 3) | 4, 24}, |
||||
{KHZ(216600), (1 << 3) | 3, 16}, |
||||
{KHZ(325000), (1 << 3) | 2, 12}, |
||||
{KHZ(350000), (1 << 3) | 1, 8}, |
||||
{KHZ(432000), (0 << 3) | 3, 8}, |
||||
{KHZ(667000), (0 << 3) | 2, 6}, |
||||
{KHZ(1200000), (0 << 3) | 1, 4} |
||||
}; |
||||
|
||||
static int is_fvco_valid(uint32_t fvco_z) |
||||
{ |
||||
/* check if the resulting fosc is valid */ |
||||
if (fvco_z/1000 < E4K_FVCO_MIN_KHZ || |
||||
fvco_z/1000 > E4K_FVCO_MAX_KHZ) { |
||||
fprintf(stderr, "Fvco %u invalid\n", fvco_z); |
||||
return 0; |
||||
} |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
static int is_fosc_valid(uint32_t fosc) |
||||
{ |
||||
if (fosc < MHZ(16) || fosc > MHZ(30)) { |
||||
fprintf(stderr, "Fosc %u invalid\n", fosc); |
||||
return 0; |
||||
} |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
static int is_z_valid(uint32_t z) |
||||
{ |
||||
if (z > 255) { |
||||
fprintf(stderr, "Z %u invalid\n", z); |
||||
return 0; |
||||
} |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
/*! \brief Determine if 3-phase mixing shall be used or not */ |
||||
static int use_3ph_mixing(uint32_t flo) |
||||
{ |
||||
/* this is a magic number somewhre between VHF and UHF */ |
||||
if (flo < MHZ(350)) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/* \brief compute Fvco based on Fosc, Z and X
|
||||
* \returns positive value (Fvco in Hz), 0 in case of error */ |
||||
static uint64_t compute_fvco(uint32_t f_osc, uint8_t z, uint16_t x) |
||||
{ |
||||
uint64_t fvco_z, fvco_x, fvco; |
||||
|
||||
/* We use the following transformation in order to
|
||||
* handle the fractional part with integer arithmetic: |
||||
* Fvco = Fosc * (Z + X/Y) <=> Fvco = Fosc * Z + (Fosc * X)/Y |
||||
* This avoids X/Y = 0. However, then we would overflow a 32bit |
||||
* integer, as we cannot hold e.g. 26 MHz * 65536 either. |
||||
*/ |
||||
fvco_z = (uint64_t)f_osc * z; |
||||
|
||||
#if 0 |
||||
if (!is_fvco_valid(fvco_z)) |
||||
return 0; |
||||
#endif |
||||
|
||||
fvco_x = ((uint64_t)f_osc * x) / E4K_PLL_Y; |
||||
|
||||
fvco = fvco_z + fvco_x; |
||||
|
||||
return fvco; |
||||
} |
||||
|
||||
static int compute_flo(uint32_t f_osc, uint8_t z, uint16_t x, uint8_t r) |
||||
{ |
||||
uint64_t fvco = compute_fvco(f_osc, z, x); |
||||
if (fvco == 0) |
||||
return -EINVAL; |
||||
|
||||
return fvco / r; |
||||
} |
||||
|
||||
static int e4k_band_set(struct e4k_state *e4k, enum e4k_band band) |
||||
{ |
||||
int rc; |
||||
|
||||
switch (band) { |
||||
case E4K_BAND_VHF2: |
||||
case E4K_BAND_VHF3: |
||||
case E4K_BAND_UHF: |
||||
e4k_reg_write(e4k, E4K_REG_BIAS, 3); |
||||
break; |
||||
case E4K_BAND_L: |
||||
e4k_reg_write(e4k, E4K_REG_BIAS, 0); |
||||
break; |
||||
} |
||||
|
||||
rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, band << 1); |
||||
if (rc >= 0) |
||||
e4k->band = band; |
||||
|
||||
return rc; |
||||
} |
||||
|
||||
/*! \brief Compute PLL parameters for givent target frequency
|
||||
* \param[out] oscp Oscillator parameters, if computation successful |
||||
* \param[in] fosc Clock input frequency applied to the chip (Hz) |
||||
* \param[in] intended_flo target tuning frequency (Hz) |
||||
* \returns actual PLL frequency, as close as possible to intended_flo, |
||||
* negative in case of error |
||||
*/ |
||||
int e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo) |
||||
{ |
||||
uint32_t i; |
||||
uint8_t r = 2; |
||||
uint64_t intended_fvco, remainder; |
||||
uint64_t z = 0; |
||||
uint32_t x; |
||||
int flo; |
||||
int three_phase_mixing = 0; |
||||
oscp->r_idx = 0; |
||||
|
||||
if (!is_fosc_valid(fosc)) |
||||
return -EINVAL; |
||||
|
||||
for(i = 0; i < ARRAY_SIZE(pll_vars); ++i) { |
||||
if(intended_flo < pll_vars[i].freq) { |
||||
three_phase_mixing = (pll_vars[i].reg_synth7 & 0x08) ? 1 : 0; |
||||
oscp->r_idx = pll_vars[i].reg_synth7; |
||||
r = pll_vars[i].mult; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
//fprintf(stderr, "Fint=%u, R=%u\n", intended_flo, r);
|
||||
|
||||
/* flo(max) = 1700MHz, R(max) = 48, we need 64bit! */ |
||||
intended_fvco = (uint64_t)intended_flo * r; |
||||
|
||||
/* compute integral component of multiplier */ |
||||
z = intended_fvco / fosc; |
||||
|
||||
/* compute fractional part. this will not overflow,
|
||||
* as fosc(max) = 30MHz and z(max) = 255 */ |
||||
remainder = intended_fvco - (fosc * z); |
||||
/* remainder(max) = 30MHz, E4K_PLL_Y = 65536 -> 64bit! */ |
||||
x = (remainder * E4K_PLL_Y) / fosc; |
||||
/* x(max) as result of this computation is 65536 */ |
||||
|
||||
flo = compute_flo(fosc, z, x, r); |
||||
|
||||
oscp->fosc = fosc; |
||||
oscp->flo = flo; |
||||
oscp->intended_flo = intended_flo; |
||||
oscp->r = r; |
||||
// oscp->r_idx = pll_vars[i].reg_synth7 & 0x0;
|
||||
oscp->threephase = three_phase_mixing; |
||||
oscp->x = x; |
||||
oscp->z = z; |
||||
|
||||
return flo; |
||||
} |
||||
|
||||
int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p) |
||||
{ |
||||
uint8_t val; |
||||
|
||||
/* program R + 3phase/2phase */ |
||||
e4k_reg_write(e4k, E4K_REG_SYNTH7, p->r_idx); |
||||
/* program Z */ |
||||
e4k_reg_write(e4k, E4K_REG_SYNTH3, p->z); |
||||
/* program X */ |
||||
e4k_reg_write(e4k, E4K_REG_SYNTH4, p->x & 0xff); |
||||
e4k_reg_write(e4k, E4K_REG_SYNTH5, p->x >> 8); |
||||
|
||||
/* we're in auto calibration mode, so there's no need to trigger it */ |
||||
|
||||
memcpy(&e4k->vco, p, sizeof(e4k->vco)); |
||||
|
||||
/* set the band */ |
||||
if (e4k->vco.flo < MHZ(140)) |
||||
e4k_band_set(e4k, E4K_BAND_VHF2); |
||||
else if (e4k->vco.flo < MHZ(350)) |
||||
e4k_band_set(e4k, E4K_BAND_VHF3); |
||||
else if (e4k->vco.flo < MHZ(1000)) |
||||
e4k_band_set(e4k, E4K_BAND_UHF); |
||||
else |
||||
e4k_band_set(e4k, E4K_BAND_L); |
||||
|
||||
/* select and set proper RF filter */ |
||||
e4k_rf_filter_set(e4k); |
||||
|
||||
return e4k->vco.flo; |
||||
} |
||||
|
||||
/*! \brief High-level tuning API, just specify frquency
|
||||
* |
||||
* This function will compute matching PLL parameters, program them into the |
||||
* hardware and set the band as well as RF filter. |
||||
* |
||||
* \param[in] e4k reference to tuner |
||||
* \param[in] freq frequency in Hz |
||||
* \returns actual tuned frequency, negative in case of error |
||||
*/ |
||||
int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq) |
||||
{ |
||||
int rc, i; |
||||
struct e4k_pll_params p; |
||||
|
||||
/* determine PLL parameters */ |
||||
rc = e4k_compute_pll_params(&p, e4k->vco.fosc, freq); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
/* actually tune to those parameters */ |
||||
rc = e4k_tune_params(e4k, &p); |
||||
|
||||
/* check PLL lock */ |
||||
rc = e4k_reg_read(e4k, E4K_REG_SYNTH1); |
||||
if (!(rc & 0x01)) { |
||||
printf("[E4K] PLL not locked!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/***********************************************************************
|
||||
* Gain Control */ |
||||
|
||||
static const int8_t if_stage1_gain[] = { |
||||
-3, 6 |
||||
}; |
||||
|
||||
static const int8_t if_stage23_gain[] = { |
||||
0, 3, 6, 9 |
||||
}; |
||||
|
||||
static const int8_t if_stage4_gain[] = { |
||||
0, 1, 2, 2 |
||||
}; |
||||
|
||||
static const int8_t if_stage56_gain[] = { |
||||
3, 6, 9, 12, 15, 15, 15, 15 |
||||
}; |
||||
|
||||
static const int8_t *if_stage_gain[] = { |
||||
0, |
||||
if_stage1_gain, |
||||
if_stage23_gain, |
||||
if_stage23_gain, |
||||
if_stage4_gain, |
||||
if_stage56_gain, |
||||
if_stage56_gain |
||||
}; |
||||
|
||||
static const uint8_t if_stage_gain_len[] = { |
||||
0, |
||||
ARRAY_SIZE(if_stage1_gain), |
||||
ARRAY_SIZE(if_stage23_gain), |
||||
ARRAY_SIZE(if_stage23_gain), |
||||
ARRAY_SIZE(if_stage4_gain), |
||||
ARRAY_SIZE(if_stage56_gain), |
||||
ARRAY_SIZE(if_stage56_gain) |
||||
}; |
||||
|
||||
static const struct reg_field if_stage_gain_regs[] = { |
||||
{ E4K_REG_GAIN3, 0, 1 }, |
||||
{ E4K_REG_GAIN3, 1, 2 }, |
||||
{ E4K_REG_GAIN3, 3, 2 }, |
||||
{ E4K_REG_GAIN3, 5, 2 }, |
||||
{ E4K_REG_GAIN4, 0, 3 }, |
||||
{ E4K_REG_GAIN4, 3, 3 } |
||||
}; |
||||
|
||||
static const int32_t lnagain[] = { |
||||
-50, 0, |
||||
-25, 1, |
||||
0, 4, |
||||
25, 5, |
||||
50, 6, |
||||
75, 7, |
||||
100, 8, |
||||
125, 9, |
||||
150, 10, |
||||
175, 11, |
||||
200, 12, |
||||
250, 13, |
||||
300, 14, |
||||
}; |
||||
|
||||
static const int32_t enhgain[] = { |
||||
10, 30, 50, 70 |
||||
}; |
||||
|
||||
int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain) |
||||
{ |
||||
uint32_t i; |
||||
for(i = 0; i < ARRAY_SIZE(lnagain)/2; ++i) { |
||||
if(lnagain[i*2] == gain) { |
||||
e4k_reg_set_mask(e4k, E4K_REG_GAIN1, 0xf, lnagain[i*2+1]); |
||||
return gain; |
||||
} |
||||
} |
||||
return -EINVAL; |
||||
} |
||||
|
||||
int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain) |
||||
{ |
||||
uint32_t i; |
||||
for(i = 0; i < ARRAY_SIZE(enhgain); ++i) { |
||||
if(enhgain[i] == gain) { |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (i << 1)); |
||||
return gain; |
||||
} |
||||
} |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0); |
||||
return 0; |
||||
} |
||||
|
||||
int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual) |
||||
{ |
||||
if (manual) { |
||||
/* Set LNA mode to manual */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL); |
||||
|
||||
/* Set Mixer Gain Control to manual */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); |
||||
} else { |
||||
/* Set LNA mode to auto */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_IF_SERIAL_LNA_AUTON); |
||||
/* Set Mixer Gain Control to auto */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 1); |
||||
|
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int find_stage_gain(uint8_t stage, int8_t val) |
||||
{ |
||||
const int8_t *arr; |
||||
int i; |
||||
|
||||
if (stage >= ARRAY_SIZE(if_stage_gain)) |
||||
return -EINVAL; |
||||
|
||||
arr = if_stage_gain[stage]; |
||||
|
||||
for (i = 0; i < if_stage_gain_len[stage]; i++) { |
||||
if (arr[i] == val) |
||||
return i; |
||||
} |
||||
return -EINVAL; |
||||
} |
||||
|
||||
/*! \brief Set the gain of one of the IF gain stages
|
||||
* \param[e4k] handle to the tuner chip |
||||
* \param [stage] numbere of the stage (1..6) |
||||
* \param [value] gain value in dBm |
||||
* \returns 0 on success, negative in case of error |
||||
*/ |
||||
int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value) |
||||
{ |
||||
int rc; |
||||
uint8_t mask; |
||||
const struct reg_field *field; |
||||
|
||||
rc = find_stage_gain(stage, value); |
||||
if (rc < 0) |
||||
return rc; |
||||
|
||||
/* compute the bit-mask for the given gain field */ |
||||
field = &if_stage_gain_regs[stage]; |
||||
mask = width2mask[field->width] << field->shift; |
||||
|
||||
return e4k_reg_set_mask(e4k, field->reg, mask, rc << field->shift); |
||||
} |
||||
|
||||
int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value) |
||||
{ |
||||
uint8_t bit; |
||||
|
||||
switch (value) { |
||||
case 4: |
||||
bit = 0; |
||||
break; |
||||
case 12: |
||||
bit = 1; |
||||
break; |
||||
default: |
||||
return -EINVAL; |
||||
} |
||||
|
||||
return e4k_reg_set_mask(e4k, E4K_REG_GAIN2, 1, bit); |
||||
} |
||||
|
||||
int e4k_commonmode_set(struct e4k_state *e4k, int8_t value) |
||||
{ |
||||
if(value < 0) |
||||
return -EINVAL; |
||||
else if(value > 7) |
||||
return -EINVAL; |
||||
|
||||
return e4k_reg_set_mask(e4k, E4K_REG_DC7, 7, value); |
||||
} |
||||
|
||||
/***********************************************************************
|
||||
* DC Offset */ |
||||
|
||||
int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange) |
||||
{ |
||||
int res; |
||||
|
||||
if((iofs < 0x00) || (iofs > 0x3f)) |
||||
return -EINVAL; |
||||
if((irange < 0x00) || (irange > 0x03)) |
||||
return -EINVAL; |
||||
if((qofs < 0x00) || (qofs > 0x3f)) |
||||
return -EINVAL; |
||||
if((qrange < 0x00) || (qrange > 0x03)) |
||||
return -EINVAL; |
||||
|
||||
res = e4k_reg_set_mask(e4k, E4K_REG_DC2, 0x3f, iofs); |
||||
if(res < 0) |
||||
return res; |
||||
|
||||
res = e4k_reg_set_mask(e4k, E4K_REG_DC3, 0x3f, qofs); |
||||
if(res < 0) |
||||
return res; |
||||
|
||||
res = e4k_reg_set_mask(e4k, E4K_REG_DC4, 0x33, (qrange << 4) | irange); |
||||
return res; |
||||
} |
||||
|
||||
/*! \brief Perform a DC offset calibration right now
|
||||
* \param[e4k] handle to the tuner chip |
||||
*/ |
||||
int e4k_dc_offset_calibrate(struct e4k_state *e4k) |
||||
{ |
||||
/* make sure the DC range detector is enabled */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_DC5, E4K_DC5_RANGE_DET_EN, E4K_DC5_RANGE_DET_EN); |
||||
|
||||
return e4k_reg_write(e4k, E4K_REG_DC1, 0x01); |
||||
} |
||||
|
||||
|
||||
static const int8_t if_gains_max[] = { |
||||
0, 6, 9, 9, 2, 15, 15 |
||||
}; |
||||
|
||||
struct gain_comb { |
||||
int8_t mixer_gain; |
||||
int8_t if1_gain; |
||||
uint8_t reg; |
||||
}; |
||||
|
||||
static const struct gain_comb dc_gain_comb[] = { |
||||
{ 4, -3, 0x50 }, |
||||
{ 4, 6, 0x51 }, |
||||
{ 12, -3, 0x52 }, |
||||
{ 12, 6, 0x53 }, |
||||
}; |
||||
|
||||
#define TO_LUT(offset, range) (offset | (range << 6)) |
||||
|
||||
int e4k_dc_offset_gen_table(struct e4k_state *e4k) |
||||
{ |
||||
uint32_t i; |
||||
|
||||
/* FIXME: read ont current gain values and write them back
|
||||
* before returning to the caller */ |
||||
|
||||
/* disable auto mixer gain */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); |
||||
|
||||
/* set LNA/IF gain to full manual */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, |
||||
E4K_AGC_MOD_SERIAL); |
||||
|
||||
/* set all 'other' gains to maximum */ |
||||
for (i = 2; i <= 6; i++) |
||||
e4k_if_gain_set(e4k, i, if_gains_max[i]); |
||||
|
||||
/* iterate over all mixer + if_stage_1 gain combinations */ |
||||
for (i = 0; i < ARRAY_SIZE(dc_gain_comb); i++) { |
||||
uint8_t offs_i, offs_q, range, range_i, range_q; |
||||
|
||||
/* set the combination of mixer / if1 gain */ |
||||
e4k_mixer_gain_set(e4k, dc_gain_comb[i].mixer_gain); |
||||
e4k_if_gain_set(e4k, 1, dc_gain_comb[i].if1_gain); |
||||
|
||||
/* perform actual calibration */ |
||||
e4k_dc_offset_calibrate(e4k); |
||||
|
||||
/* extract I/Q offset and range values */ |
||||
offs_i = e4k_reg_read(e4k, E4K_REG_DC2) & 0x3f; |
||||
offs_q = e4k_reg_read(e4k, E4K_REG_DC3) & 0x3f; |
||||
range = e4k_reg_read(e4k, E4K_REG_DC4); |
||||
range_i = range & 0x3; |
||||
range_q = (range >> 4) & 0x3; |
||||
|
||||
printf("Table %u I=%u/%u, Q=%u/%u\n", |
||||
i, range_i, offs_i, range_q, offs_q); |
||||
|
||||
/* write into the table */ |
||||
e4k_reg_write(e4k, dc_gain_comb[i].reg, |
||||
TO_LUT(offs_q, range_q)); |
||||
e4k_reg_write(e4k, dc_gain_comb[i].reg + 0x10, |
||||
TO_LUT(offs_i, range_i)); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/***********************************************************************
|
||||
* Initialization */ |
||||
|
||||
static int magic_init(struct e4k_state *e4k) |
||||
{ |
||||
e4k_reg_write(e4k, 0x7e, 0x01); |
||||
e4k_reg_write(e4k, 0x7f, 0xfe); |
||||
e4k_reg_write(e4k, 0x82, 0x00); |
||||
e4k_reg_write(e4k, 0x86, 0x50); /* polarity A */ |
||||
e4k_reg_write(e4k, 0x87, 0x20); |
||||
e4k_reg_write(e4k, 0x88, 0x01); |
||||
e4k_reg_write(e4k, 0x9f, 0x7f); |
||||
e4k_reg_write(e4k, 0xa0, 0x07); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/*! \brief Initialize the E4K tuner
|
||||
*/ |
||||
int e4k_init(struct e4k_state *e4k) |
||||
{ |
||||
/* make a dummy i2c read or write command, will not be ACKed! */ |
||||
e4k_reg_read(e4k, 0); |
||||
|
||||
/* Make sure we reset everything and clear POR indicator */ |
||||
e4k_reg_write(e4k, E4K_REG_MASTER1, |
||||
E4K_MASTER1_RESET | |
||||
E4K_MASTER1_NORM_STBY | |
||||
E4K_MASTER1_POR_DET |
||||
); |
||||
|
||||
/* Configure clock input */ |
||||
e4k_reg_write(e4k, E4K_REG_CLK_INP, 0x00); |
||||
|
||||
/* Disable clock output */ |
||||
e4k_reg_write(e4k, E4K_REG_REF_CLK, 0x00); |
||||
e4k_reg_write(e4k, E4K_REG_CLKOUT_PWDN, 0x96); |
||||
|
||||
/* Write some magic values into registers */ |
||||
magic_init(e4k); |
||||
#if 0 |
||||
/* Set common mode voltage a bit higher for more margin 850 mv */ |
||||
e4k_commonmode_set(e4k, 4); |
||||
|
||||
/* Initialize DC offset lookup tables */ |
||||
e4k_dc_offset_gen_table(e4k); |
||||
|
||||
/* Enable time variant DC correction */ |
||||
e4k_reg_write(e4k, E4K_REG_DCTIME1, 0x01); |
||||
e4k_reg_write(e4k, E4K_REG_DCTIME2, 0x01); |
||||
#endif |
||||
|
||||
/* Set LNA mode to manual */ |
||||
e4k_reg_write(e4k, E4K_REG_AGC4, 0x10); /* High threshold */ |
||||
e4k_reg_write(e4k, E4K_REG_AGC5, 0x04); /* Low threshold */ |
||||
e4k_reg_write(e4k, E4K_REG_AGC6, 0x1a); /* LNA calib + loop rate */ |
||||
|
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, |
||||
E4K_AGC_MOD_SERIAL); |
||||
|
||||
/* Set Mixer Gain Control to manual */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); |
||||
|
||||
#if 0 |
||||
/* Enable LNA Gain enhancement */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, |
||||
E4K_AGC11_LNA_GAIN_ENH | (2 << 1)); |
||||
|
||||
/* Enable automatic IF gain mode switching */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_AGC8, 0x1, E4K_AGC8_SENS_LIN_AUTO); |
||||
#endif |
||||
|
||||
/* Use auto-gain as default */ |
||||
e4k_enable_manual_gain(e4k, 0); |
||||
|
||||
/* Select moderate gain levels */ |
||||
e4k_if_gain_set(e4k, 1, 6); |
||||
e4k_if_gain_set(e4k, 2, 0); |
||||
e4k_if_gain_set(e4k, 3, 0); |
||||
e4k_if_gain_set(e4k, 4, 0); |
||||
e4k_if_gain_set(e4k, 5, 9); |
||||
e4k_if_gain_set(e4k, 6, 9); |
||||
|
||||
/* Set the most narrow filter we can possibly use */ |
||||
e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_MIX, KHZ(1900)); |
||||
e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_RC, KHZ(1000)); |
||||
e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_CHAN, KHZ(2150)); |
||||
e4k_if_filter_chan_enable(e4k, 1); |
||||
|
||||
/* Disable time variant DC correction and LUT */ |
||||
e4k_reg_set_mask(e4k, E4K_REG_DC5, 0x03, 0); |
||||
e4k_reg_set_mask(e4k, E4K_REG_DCTIME1, 0x03, 0); |
||||
e4k_reg_set_mask(e4k, E4K_REG_DCTIME2, 0x03, 0); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue