parent
e7f2e51288
commit
947b1be4d6
@ -0,0 +1,130 @@ |
||||
## UNITS.INI |
||||
## GEX v1.0.0 on STM32F072-HUB |
||||
## built Jun 15 2018 at 13:45:28 |
||||
|
||||
[UNITS] |
||||
# Create units by adding their names next to a type (e.g. DO=A,B), |
||||
# remove the same way. Reload to update the unit sections below. |
||||
|
||||
# Digital output |
||||
DO=areset |
||||
# Digital input with triggers |
||||
DI=psign |
||||
# Neopixel RGB LED strip |
||||
NPX= |
||||
# I2C master |
||||
I2C= |
||||
# SPI master |
||||
SPI=spi |
||||
# Serial port |
||||
USART= |
||||
# 1-Wire master |
||||
1WIRE= |
||||
# Analog/digital converter |
||||
ADC=adc |
||||
# Shift register driver (595, 4094) |
||||
SIPO= |
||||
# Frequency and pulse measurement |
||||
FCAP=fcap |
||||
# Capacitive touch sensing |
||||
TOUCH= |
||||
# Simple PWM output |
||||
PWMDIM= |
||||
# Two-channel analog output with waveforms |
||||
DAC= |
||||
|
||||
[DO:areset@1] |
||||
# Port name |
||||
port=A |
||||
# Pins (comma separated, supports ranges) |
||||
pins=8 |
||||
# Initially high pins |
||||
initial=8 |
||||
# Open-drain pins |
||||
open-drain= |
||||
|
||||
[DI:psign@2] |
||||
# Port name |
||||
port=A |
||||
# Pins (comma separated, supports ranges) |
||||
pins=3 |
||||
# Pins with pull-up |
||||
pull-up= |
||||
# Pins with pull-down |
||||
pull-down= |
||||
|
||||
# Trigger pins activated by rising/falling edge |
||||
trig-rise= |
||||
trig-fall= |
||||
# Trigger pins auto-armed by default |
||||
auto-trigger= |
||||
# Triggers hold-off time (ms) |
||||
hold-off=100 |
||||
|
||||
[SPI:spi@3] |
||||
# Peripheral number (SPIx) |
||||
device=1 |
||||
# Pin mappings (SCK,MISO,MOSI) |
||||
# SPI1: (0) A5,A6,A7 (1) B3,B4,B5 |
||||
# SPI2: (0) B13,B14,B15 |
||||
remap=0 |
||||
|
||||
# Prescaller: 2,4,8,...,256 |
||||
prescaller=64 |
||||
# Clock polarity: 0,1 (clock idle level) |
||||
cpol=1 |
||||
# Clock phase: 0,1 (active edge, 0-first, 1-second) |
||||
cpha=1 |
||||
# Transmit only, disable MISO |
||||
tx-only=N |
||||
# Bit order (LSB or MSB first) |
||||
first-bit=MSB |
||||
|
||||
# SS port name |
||||
port=A |
||||
# SS pins (comma separated, supports ranges) |
||||
pins=14 |
||||
|
||||
[ADC:adc@4] |
||||
# Enabled channels, comma separated |
||||
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
||||
# A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 C0 C1 C2 C3 C4 C5 Tsens Vref |
||||
channels=1-2, 17 |
||||
|
||||
# Sampling time (0-7) |
||||
sample_time=2 |
||||
# Sampling frequency (Hz) |
||||
frequency=10000 |
||||
|
||||
# Sample buffer size |
||||
# - shared by all enabled channels |
||||
# - defines the maximum pre-trigger size (divide by # of channels) |
||||
# - captured data is sent in half-buffer chunks |
||||
# - buffer overrun aborts the data capture |
||||
buffer_size=256 |
||||
|
||||
# Enable continuous sampling with averaging |
||||
# Caution: This can cause DAC output glitches |
||||
averaging=Y |
||||
# Exponential averaging coefficient (permil, range 0-1000 ~ 0.000-1.000) |
||||
# - used formula: y[t]=(1-k)*y[t-1]+k*u[t] |
||||
# - not available when a capture is running |
||||
avg_factor=800 |
||||
|
||||
[FCAP:fcap@5] |
||||
# Signal input pin - one of: |
||||
# Full support: A0, A5, A15 |
||||
# Indirect only: A1, B3 |
||||
pin=A0 |
||||
|
||||
# Active level or edge (0-low,falling; 1-high,rising) |
||||
active-level=1 |
||||
# Input filtering (0-15) |
||||
input-filter=0 |
||||
# Pulse counter pre-divider (1,2,4,8) |
||||
direct-presc=1 |
||||
# Pulse counting interval (ms) |
||||
direct-time=1000 |
||||
|
||||
# Mode on startup: N-none, I-indirect, D-direct, F-free count |
||||
initial-mode=N |
@ -0,0 +1,203 @@ |
||||
#!/bin/env python3 |
||||
import math |
||||
|
||||
import numpy as np |
||||
from matplotlib import pyplot as plt |
||||
|
||||
import gex |
||||
import time |
||||
|
||||
class ADG: |
||||
def __init__(self, client:gex.Client): |
||||
self.client = client |
||||
self.spi = gex.SPI(client, 'spi') |
||||
self.pb = gex.PayloadBuilder(endian='big') |
||||
|
||||
def write_word(self, u16): |
||||
self.pb.reset() |
||||
self.pb.u16(u16) |
||||
self.spi.write(0, self.pb.close()) |
||||
|
||||
def initialize(self): |
||||
# enable 28-bit writes, reset registers, configured for SINE output |
||||
self.write_word(0x2100) |
||||
self.write_word(0xC000) # phase word |
||||
self.set_frequency(0) # freq 0 |
||||
self.write_word(0x2000) |
||||
|
||||
def set_frequency(self, hz): |
||||
word = round(hz * 10.73741824) |
||||
self.write_word(0x4000 | (word & 0x0003FFF)) |
||||
self.write_word(0x4000 | (word & 0xFFFC000)>>14) |
||||
|
||||
def wfm_dc(self): |
||||
self.write_word(0x2100) |
||||
self.write_word(0x2000) |
||||
self.set_frequency(0) |
||||
|
||||
def wfm_sine(self, freq=None): |
||||
self.write_word(0x2000) |
||||
if freq is not None: |
||||
self.set_frequency(freq) |
||||
|
||||
with gex.Client(gex.TrxRawUSB()) as client: |
||||
# =============================================== |
||||
|
||||
# Delay between adjusting input and starting the measurement. |
||||
# Should be several multiples of the time constant |
||||
settling_time_s = (4700*100e-9)*10 |
||||
|
||||
# max change in DB between samples to detect faulty measurements that need to be repeated |
||||
max_allowed_shift_db = 5 |
||||
# db shift compensation (spread through the frequency sweep to adjust for different slopes) |
||||
allowed_shift_compensation = -4.5 |
||||
|
||||
|
||||
if False: |
||||
# highpass filter example (corner 340 Hz) |
||||
settling_time_s = (4700*100e-9)*10 |
||||
max_allowed_shift_db = 5 |
||||
allowed_shift_compensation = -4.5 |
||||
|
||||
|
||||
if True: |
||||
# lowpass filter example (corner 340 Hz) |
||||
settling_time_s = (4700*100e-9)*10 |
||||
max_allowed_shift_db = 1 |
||||
allowed_shift_compensation = 1.2 |
||||
|
||||
|
||||
# Frequency sweep parameters |
||||
f_0 = 5 |
||||
f_1 = 5000 |
||||
f_step = 15 |
||||
|
||||
# Retry on failure |
||||
retry_count = 5 |
||||
retry_delay_s = settling_time_s*10 |
||||
|
||||
# Initial sample granularity |
||||
samples_per_period = 60 |
||||
capture_periods = 10 |
||||
|
||||
# Parameters for automatic params adjustment |
||||
max_allowed_sample_rate = 36000 |
||||
max_allowed_nr_periods = 80 |
||||
min_samples_per_period = 4 |
||||
|
||||
# =============================================== |
||||
|
||||
allowed_shift_compensation /= (f_1 - f_0) / f_step |
||||
|
||||
adc = gex.ADC(client, 'adc') |
||||
|
||||
gen = ADG(client) |
||||
gen.initialize() |
||||
|
||||
|
||||
table = [] |
||||
|
||||
last_db = None |
||||
for f in range(f_0, f_1, f_step): |
||||
#dac.set_frequency(1, f) |
||||
gen.set_frequency(f) |
||||
|
||||
max_allowed_shift_db += allowed_shift_compensation |
||||
|
||||
# Adjust measurement parameters |
||||
while True: |
||||
desiredf = f*samples_per_period |
||||
if desiredf > max_allowed_sample_rate: |
||||
oldspp = samples_per_period |
||||
samples_per_period = math.ceil(samples_per_period * 0.9) |
||||
|
||||
if samples_per_period == oldspp: |
||||
samples_per_period -= 1 |
||||
|
||||
if samples_per_period <= min_samples_per_period: |
||||
samples_per_period = min_samples_per_period |
||||
break |
||||
|
||||
if capture_periods < max_allowed_nr_periods: |
||||
capture_periods = math.ceil(capture_periods * 1.1) |
||||
|
||||
continue |
||||
break |
||||
|
||||
num_samples = samples_per_period * capture_periods |
||||
print("\x1b[90mCap %d samples at %d Hz (samples per period %d, periods: %d, max db shift %f)\x1b[0m" % ( |
||||
num_samples, desiredf, samples_per_period, capture_periods, max_allowed_shift_db)) |
||||
|
||||
adc.set_sample_rate(desiredf) |
||||
|
||||
last_db_in_fail = None |
||||
suc = False |
||||
for i in range(retry_count): |
||||
time.sleep(settling_time_s if i == 0 else retry_delay_s) |
||||
|
||||
t = None |
||||
|
||||
samples = adc.capture(num_samples) |
||||
ar = np.array(samples, dtype=float) |
||||
|
||||
try: |
||||
t = np.reshape(ar, [num_samples, 2]) |
||||
except ValueError: |
||||
print("\x1b[31mCorrupt capture, repeating - try %d\x1b[0m" % (i+1)) |
||||
continue |
||||
|
||||
y1 = np.max(t[:,0]) - np.min(t[:,0]) |
||||
y2 = np.max(t[:,1]) - np.min(t[:,1]) |
||||
gain_raw = y2/y1 |
||||
gain_db = 20*math.log10(gain_raw) |
||||
|
||||
# check feasibility |
||||
if last_db is not None: |
||||
dbdelta = abs(last_db - gain_db) |
||||
if dbdelta > max_allowed_shift_db: |
||||
print("\x1b[31mGlitch detected (dB delta %f), repeating - try %d\x1b[0m" % (dbdelta, i+1)) |
||||
last_db_in_fail = gain_db |
||||
continue |
||||
|
||||
last_db = gain_db |
||||
|
||||
avr1 = np.average(t[:,0]) |
||||
avr2 = np.average(t[:,0]) |
||||
|
||||
aa = np.subtract(t[:,0], avr1) |
||||
bb = np.subtract(t[:, 1], avr2) |
||||
|
||||
phaseoffset = (math.acos((np.dot(aa,bb))/(np.linalg.norm(aa) * np.linalg.norm(bb))) / math.pi) * -180 |
||||
|
||||
table.append(f) |
||||
table.append(gain_db) |
||||
table.append(phaseoffset) |
||||
print("f %f Hz ... Gain %f dB ... Phase %f °" % (f, gain_db, phaseoffset)) |
||||
|
||||
suc = True |
||||
break |
||||
if not suc: |
||||
last_db = last_db_in_fail |
||||
|
||||
gen.wfm_dc() |
||||
|
||||
t = np.reshape(np.array(table), [int(len(table) / 3), 3]) |
||||
|
||||
freqs = t[:, 0] |
||||
gains = t[:, 1] |
||||
phases = t[:, 2] |
||||
|
||||
plt.figure() |
||||
plt.ylabel('Gain (dB)') |
||||
plt.xlabel('Frequency (Hz)') |
||||
plt.semilogx(freqs, gains) # Bode magnitude plot |
||||
plt.grid() |
||||
|
||||
plt.figure() |
||||
plt.ylabel('Phase (deg)') |
||||
plt.xlabel('Frequency (Hz)') |
||||
plt.semilogx(freqs, phases) # Bode phase plot |
||||
plt.grid() |
||||
plt.show() |
||||
|
||||
|
Loading…
Reference in new issue