rtl_power: more lowpass options

Signed-off-by: Steve Markgraf <steve@steve-m.de>
master
Kyle Keen 11 years ago committed by Steve Markgraf
parent 8f1d108122
commit c5b8a21300
  1. 113
      src/rtl_power.c

@ -34,7 +34,6 @@
* general astronomy usefulness * general astronomy usefulness
* multiple dongles * multiple dongles
* multiple FFT workers * multiple FFT workers
* bandwidths smaller than 1MHz (with optional xlate?)
* check edge cropping for off-by-one and rounding errors * check edge cropping for off-by-one and rounding errors
* 1.8MS/s for hiding xtal harmonics * 1.8MS/s for hiding xtal harmonics
*/ */
@ -88,6 +87,7 @@ struct tuning_state
long *avg; /* length == 2^bin_e */ long *avg; /* length == 2^bin_e */
int samples; int samples;
int downsample; int downsample;
int downsample_passes; /* for the recursive filter */
double crop; double crop;
//pthread_rwlock_t avg_lock; //pthread_rwlock_t avg_lock;
//pthread_mutex_t avg_mutex; //pthread_mutex_t avg_mutex;
@ -103,6 +103,8 @@ struct tuning_state
struct tuning_state tunes[MAX_TUNES]; struct tuning_state tunes[MAX_TUNES];
int tune_count = 0; int tune_count = 0;
int boxcar = 1;
void usage(void) void usage(void)
{ {
fprintf(stderr, fprintf(stderr,
@ -127,9 +129,11 @@ void usage(void)
"\t[-w window (default: rectangle)]\n" "\t[-w window (default: rectangle)]\n"
"\t (hamming, blackman, blackman-harris, hann-poisson, bartlett, youssef)\n" "\t (hamming, blackman, blackman-harris, hann-poisson, bartlett, youssef)\n"
// kaiser // kaiser
"\t[-c crop_percent (default: 0%, recommended: 20%%-50%%)]\n" "\t[-c crop_percent (default: 0%%, recommended: 20%%-50%%)]\n"
"\t (discards data at the edges, 100%% discards everything)\n" "\t (discards data at the edges, 100%% discards everything)\n"
"\t (has no effect for bins > 1MHz or bandwidth < 1MHz)\n" "\t (has no effect for bins larger than 1MHz)\n"
"\t[-F enables low-leakage downsample filter (default: off)]\n"
"\t (has bad roll off, try with '-c 50%%')\n"
"\n" "\n"
"CSV FFT output columns:\n" "CSV FFT output columns:\n"
"\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n" "\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n"
@ -477,7 +481,8 @@ void frequency_range(char *arg, double crop)
// do we want the fewest ranges (easy) or the fewest bins (harder)? // do we want the fewest ranges (easy) or the fewest bins (harder)?
{ {
char *start, *stop, *step; char *start, *stop, *step;
int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len, downsample; int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len;
int downsample, downsample_passes;
double bin_size; double bin_size;
struct tuning_state *ts; struct tuning_state *ts;
/* hacky string parsing */ /* hacky string parsing */
@ -492,21 +497,28 @@ void frequency_range(char *arg, double crop)
stop[-1] = ':'; stop[-1] = ':';
step[-1] = ':'; step[-1] = ':';
downsample = 1; downsample = 1;
if ((upper - lower) < 1000000) { downsample_passes = 0;
crop = 0.0;}
/* evenly sized ranges, as close to 2MHz as possible */ /* evenly sized ranges, as close to 2MHz as possible */
for (i=1; i<1500; i++) { for (i=1; i<1500; i++) {
bw_seen = (upper - lower) / i; bw_seen = (upper - lower) / i;
bw_used = (int)((double)(bw_seen) / (1.0 - crop)); bw_used = (int)((double)(bw_seen) / (1.0 - crop));
if (bw_used > 2000000) { if (bw_used > 2000000) {
continue;} continue;}
if (bw_used < 1000000) {
downsample = 2000000 / bw_seen;
bw_used = bw_seen * downsample;
}
tune_count = i; tune_count = i;
break; break;
} }
/* unless small bandwidth */
if (bw_used < 1000000) {
tune_count = 1;}
if (boxcar && bw_used < 1000000) {
downsample = 2000000 / bw_used;
bw_used = bw_used * downsample;
}
while (bw_used < 1000000) { /* not boxcar */
downsample_passes++;
downsample = 1 << downsample_passes;
bw_used = (int)((double)(bw_seen * downsample) / (1.0 - crop));
}
/* number of bins is power-of-two, bin size is under limit */ /* number of bins is power-of-two, bin size is under limit */
for (i=1; i<=21; i++) { for (i=1; i<=21; i++) {
bin_e = i; bin_e = i;
@ -526,7 +538,7 @@ void frequency_range(char *arg, double crop)
fprintf(stderr, "Error: bandwidth too wide.\n"); fprintf(stderr, "Error: bandwidth too wide.\n");
exit(1); exit(1);
} }
buf_len = (1<<bin_e) * 2 * downsample; buf_len = 2 * (1<<bin_e) * downsample;
if (buf_len < DEFAULT_BUF_LENGTH) { if (buf_len < DEFAULT_BUF_LENGTH) {
buf_len = DEFAULT_BUF_LENGTH; buf_len = DEFAULT_BUF_LENGTH;
} }
@ -539,6 +551,7 @@ void frequency_range(char *arg, double crop)
ts->samples = 0; ts->samples = 0;
ts->crop = crop; ts->crop = crop;
ts->downsample = downsample; ts->downsample = downsample;
ts->downsample_passes = downsample_passes;
ts->avg = (long*)malloc((1<<bin_e) * sizeof(long)); ts->avg = (long*)malloc((1<<bin_e) * sizeof(long));
if (!ts->avg) { if (!ts->avg) {
fprintf(stderr, "Error: malloc.\n"); fprintf(stderr, "Error: malloc.\n");
@ -578,6 +591,58 @@ void retune(rtlsdr_dev_t *d, int freq)
fprintf(stderr, "Error: bad retune.\n");} fprintf(stderr, "Error: bad retune.\n");}
} }
void fifth_order(int16_t *data, int length)
/* for half of interleaved data */
{
int i;
int a, b, c, d, e, f;
a = data[0];
b = data[2];
c = data[4];
d = data[6];
e = data[8];
f = data[10];
/* a downsample should improve resolution, so don't fully shift */
/* ease in instead of being stateful */
data[0] = ((a+b)*10 + (c+d)*5 + d + f) >> 4;
data[2] = ((b+c)*10 + (a+d)*5 + e + f) >> 4;
data[4] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
for (i=12; i<length; i+=4) {
a = c;
b = d;
c = e;
d = f;
e = data[i-2];
f = data[i];
data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
}
}
void remove_dc(int16_t *data, int length)
/* works on interleaved data */
{
int i;
int16_t ave;
long sum = 0L;
for (i=0; i < length; i+=2) {
sum += data[i];
}
ave = (int16_t)(sum / (long)(length));
if (ave == 0) {
return;}
for (i=0; i < length; i+=2) {
data[i] -= ave;
}
}
void downsample_iq(int16_t *data, int length)
{
fifth_order(data, length);
//remove_dc(data, length);
fifth_order(data+1, length-1);
//remove_dc(data+1, length-1);
}
void scanner(void) void scanner(void)
{ {
int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds; int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds;
@ -601,20 +666,28 @@ void scanner(void)
rms_power(ts); rms_power(ts);
continue; continue;
} }
/* sign and downsample */ /* prep for fft */
for (j=0; j<buf_len; j++) { for (j=0; j<buf_len; j++) {
fft_buf[j] = 0; fft_buf[j] = (int16_t)ts->buf8[j] - 127;
} }
ds = ts->downsample; ds = ts->downsample;
j=0, j2=0; if (boxcar) {
j=2, j2=0;
while (j < buf_len) { while (j < buf_len) {
fft_buf[j2] += (int16_t)ts->buf8[j] - 127; fft_buf[j2] += fft_buf[j];
fft_buf[j2+1] += (int16_t)ts->buf8[j+1] - 127; fft_buf[j2+1] += fft_buf[j+1];
j += 2; j += 2;
if (j % (ds*2) == 0) { if (j % (ds*2) == 0) {
j2 += 2;} j2 += 2;}
} }
/* fft */ } else { /* recursive */
for (j=0; j < ts->downsample_passes; j++) {
downsample_iq(fft_buf, buf_len >> j);
}
}
remove_dc(fft_buf, buf_len >> j);
remove_dc(fft_buf+1, (buf_len >> j) - 1);
/* window function and fft */
for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) { for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) {
// todo, let rect skip this // todo, let rect skip this
for (j=0; j<bin_len; j++) { for (j=0; j<bin_len; j++) {
@ -707,8 +780,9 @@ int main(int argc, char **argv)
char t_str[50]; char t_str[50];
struct tm *cal_time; struct tm *cal_time;
double (*window_fn)(int, int) = rectangle; double (*window_fn)(int, int) = rectangle;
freq_optarg = "";
while ((opt = getopt(argc, argv, "f:i:s:t:d:g:p:e:w:c:1h")) != -1) { while ((opt = getopt(argc, argv, "f:i:s:t:d:g:p:e:w:c:1Fh")) != -1) {
switch (opt) { switch (opt) {
case 'f': // lower:upper:bin_size case 'f': // lower:upper:bin_size
freq_optarg = strdup(optarg); freq_optarg = strdup(optarg);
@ -762,6 +836,9 @@ int main(int argc, char **argv)
case '1': case '1':
single = 1; single = 1;
break; break;
case 'F':
boxcar = 0;
break;
case 'h': case 'h':
default: default:
usage(); usage();

Loading…
Cancel
Save