|
|
|
@ -34,7 +34,7 @@ |
|
|
|
|
* general astronomy usefulness |
|
|
|
|
* multiple dongles |
|
|
|
|
* multiple FFT workers |
|
|
|
|
* bandwidths smaller than 1MHz |
|
|
|
|
* bandwidths smaller than 1MHz (with optional xlate?) |
|
|
|
|
* check edge cropping for off-by-one and rounding errors |
|
|
|
|
* 1.8MS/s for hiding xtal harmonics |
|
|
|
|
*/ |
|
|
|
@ -87,6 +87,8 @@ struct tuning_state |
|
|
|
|
int bin_e; |
|
|
|
|
long *avg; /* length == 2^bin_e */ |
|
|
|
|
int samples; |
|
|
|
|
int downsample; |
|
|
|
|
double crop; |
|
|
|
|
//pthread_rwlock_t avg_lock;
|
|
|
|
|
//pthread_mutex_t avg_mutex;
|
|
|
|
|
/* having the iq buffer here is wasteful, but will avoid contention */ |
|
|
|
@ -127,7 +129,7 @@ void usage(void) |
|
|
|
|
// kaiser
|
|
|
|
|
"\t[-c crop_percent (default: 0%, recommended: 20%%-50%%)]\n" |
|
|
|
|
"\t (discards data at the edges, 100%% discards everything)\n" |
|
|
|
|
"\t (has no effect in rms bin mode)\n" |
|
|
|
|
"\t (has no effect for bins > 1MHz or bandwidth < 1MHz)\n" |
|
|
|
|
"\n" |
|
|
|
|
"CSV FFT output columns:\n" |
|
|
|
|
"\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n" |
|
|
|
@ -146,6 +148,18 @@ void usage(void) |
|
|
|
|
exit(1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void multi_bail(void) |
|
|
|
|
{ |
|
|
|
|
if (do_exit == 1) |
|
|
|
|
{ |
|
|
|
|
fprintf(stderr, "Signal caught, finishing scan pass.\n"); |
|
|
|
|
} |
|
|
|
|
if (do_exit >= 2) |
|
|
|
|
{ |
|
|
|
|
fprintf(stderr, "Signal caught, aborting immediately.\n"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef _WIN32 |
|
|
|
|
BOOL WINAPI |
|
|
|
|
sighandler(int signum) |
|
|
|
@ -165,18 +179,6 @@ static void sighandler(int signum) |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void multi_bail(void) |
|
|
|
|
{ |
|
|
|
|
if (do_exit == 1) |
|
|
|
|
{ |
|
|
|
|
fprintf(stderr, "Signal caught, finishing scan pass.\n"); |
|
|
|
|
} |
|
|
|
|
if (do_exit >= 2) |
|
|
|
|
{ |
|
|
|
|
fprintf(stderr, "Signal caught, aborting immediately.\n"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* more cond dumbness */ |
|
|
|
|
#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m) |
|
|
|
|
#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m) |
|
|
|
@ -475,7 +477,8 @@ void frequency_range(char *arg, double crop) |
|
|
|
|
// do we want the fewest ranges (easy) or the fewest bins (harder)?
|
|
|
|
|
{ |
|
|
|
|
char *start, *stop, *step; |
|
|
|
|
int i, j, upper, lower, max_size, bw_seen, bw_used, bin_size, bin_e, buf_len; |
|
|
|
|
int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len, downsample; |
|
|
|
|
double bin_size; |
|
|
|
|
struct tuning_state *ts; |
|
|
|
|
/* hacky string parsing */ |
|
|
|
|
start = arg; |
|
|
|
@ -488,20 +491,27 @@ void frequency_range(char *arg, double crop) |
|
|
|
|
max_size = (int)atofs(step); |
|
|
|
|
stop[-1] = ':'; |
|
|
|
|
step[-1] = ':'; |
|
|
|
|
downsample = 1; |
|
|
|
|
if ((upper - lower) < 1000000) { |
|
|
|
|
crop = 0.0;} |
|
|
|
|
/* evenly sized ranges, as close to 2MHz as possible */ |
|
|
|
|
for (i=1; i<1500; i++) { |
|
|
|
|
bw_seen = (upper - lower) / i; |
|
|
|
|
bw_used = (int)((double)(bw_seen) / (1.0 - crop)); |
|
|
|
|
if (bw_used > 2000000) { |
|
|
|
|
continue;} |
|
|
|
|
if (bw_used < 1000000) { |
|
|
|
|
downsample = 2000000 / bw_seen; |
|
|
|
|
bw_used = bw_seen * downsample; |
|
|
|
|
} |
|
|
|
|
tune_count = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
/* number of bins is power-of-two, bin size is under limit */ |
|
|
|
|
for (i=1; i<=21; i++) { |
|
|
|
|
bin_e = i; |
|
|
|
|
bin_size = bw_used / (1<<i); |
|
|
|
|
if (bin_size <= max_size) { |
|
|
|
|
bin_size = (double)bw_used / (double)((1<<i) * downsample); |
|
|
|
|
if (bin_size <= (double)max_size) { |
|
|
|
|
break;} |
|
|
|
|
} |
|
|
|
|
/* unless giant bins */ |
|
|
|
@ -510,14 +520,15 @@ void frequency_range(char *arg, double crop) |
|
|
|
|
bw_used = max_size; |
|
|
|
|
tune_count = (upper - lower) / bw_seen; |
|
|
|
|
bin_e = 0; |
|
|
|
|
crop = 0; |
|
|
|
|
} |
|
|
|
|
if (tune_count > MAX_TUNES) { |
|
|
|
|
fprintf(stderr, "Error: bandwidth too wide.\n"); |
|
|
|
|
exit(1); |
|
|
|
|
} |
|
|
|
|
buf_len = DEFAULT_BUF_LENGTH; |
|
|
|
|
if ((2<<bin_e) > buf_len) { |
|
|
|
|
buf_len = (2<<bin_e); |
|
|
|
|
buf_len = (1<<bin_e) * 2 * downsample; |
|
|
|
|
if (buf_len < DEFAULT_BUF_LENGTH) { |
|
|
|
|
buf_len = DEFAULT_BUF_LENGTH; |
|
|
|
|
} |
|
|
|
|
/* build the array */ |
|
|
|
|
for (i=0; i<tune_count; i++) { |
|
|
|
@ -526,6 +537,8 @@ void frequency_range(char *arg, double crop) |
|
|
|
|
ts->rate = bw_used; |
|
|
|
|
ts->bin_e = bin_e; |
|
|
|
|
ts->samples = 0; |
|
|
|
|
ts->crop = crop; |
|
|
|
|
ts->downsample = downsample; |
|
|
|
|
ts->avg = (long*)malloc((1<<bin_e) * sizeof(long)); |
|
|
|
|
if (!ts->avg) { |
|
|
|
|
fprintf(stderr, "Error: malloc.\n"); |
|
|
|
@ -544,11 +557,13 @@ void frequency_range(char *arg, double crop) |
|
|
|
|
/* report */ |
|
|
|
|
fprintf(stderr, "Number of frequency hops: %i\n", tune_count); |
|
|
|
|
fprintf(stderr, "Dongle bandwidth: %iHz\n", bw_used); |
|
|
|
|
fprintf(stderr, "Downsampling by: %ix\n", downsample); |
|
|
|
|
fprintf(stderr, "Cropping by: %0.2f%%\n", crop*100); |
|
|
|
|
fprintf(stderr, "Total FFT bins: %i\n", tune_count * (1<<bin_e)); |
|
|
|
|
fprintf(stderr, "Logged FFT bins: %i\n", \
|
|
|
|
|
(int)((double)(tune_count * (1<<bin_e)) * (1.0-crop))); |
|
|
|
|
fprintf(stderr, "FFT bin size: %iHz\n", bin_size); |
|
|
|
|
fprintf(stderr, "Buffer size: %0.2fms\n", 1000 * 0.5 * (float)buf_len / (float)bw_used); |
|
|
|
|
fprintf(stderr, "FFT bin size: %0.2fHz\n", bin_size); |
|
|
|
|
fprintf(stderr, "Buffer size: %i bytes (%0.2fms)\n", buf_len, 1000 * 0.5 * (float)buf_len / (float)bw_used); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void retune(rtlsdr_dev_t *d, int freq) |
|
|
|
@ -565,7 +580,8 @@ void retune(rtlsdr_dev_t *d, int freq) |
|
|
|
|
|
|
|
|
|
void scanner(void) |
|
|
|
|
{ |
|
|
|
|
int i, j, f, n_read, offset, bin_e, bin_len, buf_len; |
|
|
|
|
int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds; |
|
|
|
|
int32_t w; |
|
|
|
|
struct tuning_state *ts; |
|
|
|
|
bin_e = tunes[0].bin_e; |
|
|
|
|
bin_len = 1 << bin_e; |
|
|
|
@ -585,31 +601,48 @@ void scanner(void) |
|
|
|
|
rms_power(ts); |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
/* fft */ |
|
|
|
|
/* sign and downsample */ |
|
|
|
|
for (j=0; j<buf_len; j++) { |
|
|
|
|
fft_buf[j] = (int16_t)ts->buf8[j] - 127; |
|
|
|
|
fft_buf[j] = 0; |
|
|
|
|
} |
|
|
|
|
for (offset=0; offset<buf_len; offset+=(2*bin_len)) { |
|
|
|
|
ds = ts->downsample; |
|
|
|
|
j=0, j2=0; |
|
|
|
|
while (j < buf_len) { |
|
|
|
|
fft_buf[j2] += (int16_t)ts->buf8[j] - 127; |
|
|
|
|
fft_buf[j2+1] += (int16_t)ts->buf8[j+1] - 127; |
|
|
|
|
j += 2; |
|
|
|
|
if (j % (ds*2) == 0) { |
|
|
|
|
j2 += 2;} |
|
|
|
|
} |
|
|
|
|
/* fft */ |
|
|
|
|
for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) { |
|
|
|
|
// todo, let rect skip this
|
|
|
|
|
for (j=0; j<bin_len; j++) { |
|
|
|
|
fft_buf[offset+j*2] *= window_coefs[j]; |
|
|
|
|
fft_buf[offset+j*2+1] *= window_coefs[j]; |
|
|
|
|
w = (int32_t)fft_buf[offset+j*2]; |
|
|
|
|
w *= (int32_t)(window_coefs[j]); |
|
|
|
|
//w /= (int32_t)(ds);
|
|
|
|
|
fft_buf[offset+j*2] = (int16_t)w; |
|
|
|
|
w = (int32_t)fft_buf[offset+j*2+1]; |
|
|
|
|
w *= (int32_t)(window_coefs[j]); |
|
|
|
|
//w /= (int32_t)(ds);
|
|
|
|
|
fft_buf[offset+j*2+1] = (int16_t)w; |
|
|
|
|
} |
|
|
|
|
fix_fft(fft_buf+offset, bin_e); |
|
|
|
|
for (j=0; j<bin_len; j++) { |
|
|
|
|
ts->avg[j] += (long) abs(fft_buf[offset+j*2]); |
|
|
|
|
} |
|
|
|
|
ts->samples += 1; |
|
|
|
|
ts->samples += ds; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void csv_dbm(struct tuning_state *ts, double crop) |
|
|
|
|
void csv_dbm(struct tuning_state *ts) |
|
|
|
|
{ |
|
|
|
|
int i, len, i1, i2, bw2, bin_count; |
|
|
|
|
int i, len, ds, i1, i2, bw2, bin_count; |
|
|
|
|
long tmp; |
|
|
|
|
double dbm; |
|
|
|
|
len = 1 << ts->bin_e; |
|
|
|
|
ds = ts->downsample; |
|
|
|
|
/* fix FFT stuff quirks */ |
|
|
|
|
if (ts->bin_e > 0) { |
|
|
|
|
/* nuke DC component (not effective for all windows) */ |
|
|
|
@ -622,14 +655,14 @@ void csv_dbm(struct tuning_state *ts, double crop) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
/* Hz low, Hz high, Hz step, samples, dbm, dbm, ... */ |
|
|
|
|
bin_count = (int)((double)len * (1.0 - crop)); |
|
|
|
|
bw2 = (int)(((double)ts->rate * (double)bin_count) / (len * 2)); |
|
|
|
|
bin_count = (int)((double)len * (1.0 - ts->crop)); |
|
|
|
|
bw2 = (int)(((double)ts->rate * (double)bin_count) / (len * 2 * ds)); |
|
|
|
|
fprintf(file, "%i, %i, %.2f, %i, ", ts->freq - bw2, ts->freq + bw2, |
|
|
|
|
(double)ts->rate / (double)len, ts->samples); |
|
|
|
|
(double)ts->rate / (double)(len*ds), ts->samples); |
|
|
|
|
// something seems off with the dbm math
|
|
|
|
|
i1 = 0 + (int)((double)len * crop * 0.5); |
|
|
|
|
i2 = (len-1) - (int)((double)len * crop * 0.5); |
|
|
|
|
for (i=i1; i<i2; i++) { |
|
|
|
|
i1 = 0 + (int)((double)len * ts->crop * 0.5); |
|
|
|
|
i2 = (len-1) - (int)((double)len * ts->crop * 0.5); |
|
|
|
|
for (i=i1; i<=i2; i++) { |
|
|
|
|
dbm = (double)ts->avg[i]; |
|
|
|
|
dbm /= (double)ts->rate; |
|
|
|
|
dbm /= (double)ts->samples; |
|
|
|
@ -655,6 +688,7 @@ int main(int argc, char **argv) |
|
|
|
|
#endif |
|
|
|
|
char *filename = NULL; |
|
|
|
|
int i, length, n_read, r, opt, wb_mode = 0; |
|
|
|
|
int f_set = 0; |
|
|
|
|
int gain = AUTO_GAIN; // tenths of a dB
|
|
|
|
|
uint8_t *buffer; |
|
|
|
|
uint32_t dev_index = 0; |
|
|
|
@ -678,6 +712,7 @@ int main(int argc, char **argv) |
|
|
|
|
switch (opt) { |
|
|
|
|
case 'f': // lower:upper:bin_size
|
|
|
|
|
freq_optarg = strdup(optarg); |
|
|
|
|
f_set = 1; |
|
|
|
|
break; |
|
|
|
|
case 'd': |
|
|
|
|
dev_index = atoi(optarg); |
|
|
|
@ -734,6 +769,16 @@ int main(int argc, char **argv) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!f_set) { |
|
|
|
|
fprintf(stderr, "No frequency range provided.\n"); |
|
|
|
|
exit(1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if ((crop < 0.0) || (crop > 1.0)) { |
|
|
|
|
fprintf(stderr, "Crop value outside of 0 to 1.\n"); |
|
|
|
|
exit(1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
frequency_range(freq_optarg, crop); |
|
|
|
|
|
|
|
|
|
if (tune_count == 0) { |
|
|
|
@ -803,6 +848,7 @@ int main(int argc, char **argv) |
|
|
|
|
if (strcmp(filename, "-") == 0) { /* Write log to stdout */ |
|
|
|
|
file = stdout; |
|
|
|
|
#ifdef _WIN32 |
|
|
|
|
// Is this necessary? Output is ascii.
|
|
|
|
|
_setmode(_fileno(file), _O_BINARY); |
|
|
|
|
#endif |
|
|
|
|
} else { |
|
|
|
@ -833,14 +879,14 @@ int main(int argc, char **argv) |
|
|
|
|
while (!do_exit) { |
|
|
|
|
scanner(); |
|
|
|
|
time_now = time(NULL); |
|
|
|
|
if (time_now <= next_tick) { |
|
|
|
|
if (time_now < next_tick) { |
|
|
|
|
continue;} |
|
|
|
|
// time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...
|
|
|
|
|
cal_time = localtime(&time_now); |
|
|
|
|
strftime(t_str, 50, "%Y-%m-%d, %H:%M:%S", cal_time); |
|
|
|
|
for (i=0; i<tune_count; i++) { |
|
|
|
|
fprintf(file, "%s, ", t_str); |
|
|
|
|
csv_dbm(&tunes[i], crop); |
|
|
|
|
csv_dbm(&tunes[i]); |
|
|
|
|
} |
|
|
|
|
fflush(file); |
|
|
|
|
while (time(NULL) >= next_tick) { |
|
|
|
|