more explanation of the software apis

master
Ondřej Hruška 7 years ago
parent 038d7d3e2b
commit b4130014bb
Signed by: MightyPork
GPG Key ID: 2C5FD5035250423D
  1. 151
      ch.pc_software.tex
  2. 8
      ch.unit.i2c.tex
  3. 4
      pre.minted.tex
  4. BIN
      thesis.pdf

@ -40,11 +40,12 @@ The library is composed of a \textit{transport}, the core class called \textit{c
The unit classes wrap the command and event \gls{API} described in \cref{sec:units-overview}; all classes and methods are annotated by documentation comments for easy understanding. The unit classes wrap the command and event \gls{API} described in \cref{sec:units-overview}; all classes and methods are annotated by documentation comments for easy understanding.
An example Python program showing a pattern with the \gls{LED} matrix driver IS31FL3730 is presented below as an illustration of the library usage. A photo of the produced pattern can be seen in \cref{fig:pydemo}. An example Python program displaying a test pattern on a \gls{LED} matrix using the \gls{I2C}-connected driver chip IS31FL3730 is presented in \cref{lst:py_api} as an illustration of the library usage. A photo of the produced \gls{LED} pattern can be seen in \cref{fig:pydemo}.
\todo[inline]{add left line next to this listing} \begin{listing}[h]
\begin{minted}{python} \begin{pythoncode}
#!/bin/env python3 #!/bin/env python3
# The I2C unit called 'i2c' is configured to use PB6 and PB7
import gex import gex
with gex.Client(gex.TrxRawUSB()) as client: with gex.Client(gex.TrxRawUSB()) as client:
bus = gex.I2C(client, 'i2c') bus = gex.I2C(client, 'i2c')
@ -64,32 +65,156 @@ with gex.Client(gex.TrxRawUSB()) as client:
]) ])
# update display # update display
bus.write_reg(addr, 0x0C, 0x01) bus.write_reg(addr, 0x0C, 0x01)
\end{minted} \end{pythoncode}
\caption{\label{lst:py_api} An example Python program using the GEX client library}
\end{listing}
\begin{figure}[h] \begin{figure}[h]
\centering \centering
\includegraphics[width=.7\textwidth] {img/phatmtx.jpg} \includegraphics[width=.7\textwidth] {img/phatmtx.jpg}
\caption{\label{fig:pydemo}GEX Zero with the Micro Dot pHAT add-on board showing a test pattern} \caption{\label{fig:pydemo}GEX Zero with the Micro Dot pHAT add-on board, showing a test pattern defined in a Python script}
\end{figure} \end{figure}
\section{MATLAB integration} \section{MATLAB integration}
The Python library can be accessed from MATLAB scripts thanks to the MATLAB's two-way Python integration~\cite{matlabpy}. Controlling GEX from MATLAB may be useful when additional processing is required, e.g. with data from the \gls{ADC}; however, in many cases, an open source alternative native to Python exists that could be used for the same purpose, such as the NumPy and SciPy libraries~\cite{numpyscipy}. The Python library can be accessed from MATLAB scripts thanks to the MATLAB's two-way Python integration~\cite{matlabpy}. Controlling GEX from MATLAB may be useful when additional processing is required, e.g., with data from the \gls{ADC}; however, in many cases, an open source alternative native to Python exists that could be used for the same purpose, such as the NumPy and SciPy libraries~\cite{numpyscipy}.
\todo[inline]{add a matlab example} The example in \cref{lst:matlab_api} demonstrates the use of MATLAB to calculate the frequency spectrum of an analog signal captured with GEX. The syntax needed to use the serial port transport (instead of a raw access to USB endpoints) is shown in a comment.
\section{C Library} \begin{listing}
\begin{matlabcode}
The C library is more simplistic than the Python one; it supports only the serial port transport (\gls{UART} or \gls{CDCACM}) and does not implement asynchronous polling or the unit support drivers. What \textit{is} implement---the transport, a basic protocol handler, and payload building and parsing utilities---is sufficient for most applications, though less convenient than the Python library. % The ADC unit called 'adc' is configured to use PA1 as Channel 0
This low-level library is intended for applications where the performance of the Python implementation is insufficient, or where an integration with existing C code is required. The full \gls{API} can be found in the library header files. A C version of the example Python script controlling a \gls{LED} matrix driver follows: %trx = py.gex.TrxSerialThread(pyargs('port', '/dev/ttyUSB1', ...
% 'baud', 115200));
trx = py.gex.TrxRawUSB();
client = py.gex.Client(trx);
adc = py.gex.ADC(client, 'adc');
\todo[inline]{add the example} L = 1000;
Fs = 1000;
adc.set_sample_rate(uint32(Fs)); % casting to unsigned integer
data = adc.capture(uint32(L));
data = double(py.array.array('f',data)); % numpy array to matlab format
Y = fft(data);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
\todo[inline]{Measurement / evaluation examples here...} plot(f,P1)
client.close()
\end{matlabcode}
\caption{\label{lst:matlab_api} Calling the Python GEX library from a MATLAB script}
\end{listing}
\section{C Library}
The C library is more simplistic than the Python one; it supports only the serial port transport (\gls{UART} or \gls{CDCACM}) and does not implement asynchronous polling or the unit support drivers. What \textit{is} implement---the transport, a basic protocol handler, and payload building and parsing utilities---is sufficient for most applications, though less convenient than the Python library.
This low-level library is intended for applications where the performance of the Python implementation is insufficient, or where an integration with existing C code is required. The full \gls{API} can be found in the library header files. A C version of the example Python script shown above, controlling a \gls{LED} matrix driver, is presented in \cref{lst:c_api_full}.
\begin{listing}
\begin{ccode}
#include <signal.h>
#include <assert.h>
#include "gex.h"
static GexClient *gex;
/** Signal handler closing the serial port at exit */
static void sigintHandler(int sig)
{
(void)sig;
if (gex != NULL) GEX_DeInit(gex);
exit(0);
}
int main(void)
{
signal(SIGINT, sigintHandler);
// Initialize GEX and the I2C unit handle
gex = GEX_Init("/dev/ttyACM0", 200);
assert(NULL != gex);
GexUnit *bus = GEX_GetUnit(gex, "i2c", "I2C");
assert(NULL != bus);
// Configure the matrix driver
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x00\x18", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0d\x0e", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x19\x40", 4);
// Load data
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x01"
"\xAA\x55\xAA\x55\xAA\x55\xAA\x55", 11);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0e"
"\xFF\x00\xFF\x00\xFF\x00\xFF\x00", 11);
// Update display
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0c\x01", 4);
}
\end{ccode}
\caption{\label{lst:c_api_full} An example C program controlling GEX using the low-level GEX library; this code has the same effect as the Python script shown in \cref{lst:py_api}.}
\end{listing}
The reader might point out that this example is unnecessarily obtuse, and that the payloads could be constructed in a more readable way. Indeed, two better methods are available.
\subsection{Structure-based Payload Construction}
\begin{listing}
\begin{ccode}
struct i2c_write {
uint16_t address;
uint8_t reg;
uint8_t value[8]; // largest needed payload size
} __attribute__((packed));
// 1-byte value
GEX_Send(bus, 2, (void *) &(struct i2c_write) {
.address = 0x61,
.reg = 0x00,
.value = {0x18},
}, 3 + 1); // use only 1 byte of the value array
// 8-byte value
GEX_Send(bus, 2, (void *) &(struct i2c_write) {
.address = 0x61,
.reg = 0x01,
.value = {0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55},
}, 3 + 8);
\end{ccode}
\caption{\label{lst:c_api_struct} The variable-length struct approach to payload building}
\end{listing}
The structure-based method utilizes C structs to access individual fields in the payload. Simple payloads can be represented by a struct without problems, but payloads of a dynamic length pose a challenge; we can either define a new struct for each required length, or, when the variable-length array is located at the end of the payload, a struct with the largest needed payload size is defined and the real length is then specified when sending the message. The latter approach is illustrated in \cref{lst:c_api_struct}.
\subsection{Using the Payload Builder Utility}
\begin{listing}
\begin{ccode}
uint8_t buff[20];
PayloadBuilder pb;
pb = pb_init(&buff, 20, NULL);
pb_u16(&pb, 0x61);
pb_u8(&pb, 0x00);
pb_u8(&pb, 0x18);
GEX_Send(bus, 2, buff, pb_length(&pb));
pb_rewind(&pb); // reset the builder for a new frame
uint8_t screen[8] = {0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55};
pb_u16(&pb, 0x61);
pb_u8(&pb, 0x01);
pb_buf(&pb, &screen, 8);
GEX_Send(bus, 2, buff, pb_length(&pb));
\end{ccode}
\caption{\label{lst:c_api_pb}Building and sending payloads using the PayloadBuilder utility}
\end{listing}
The Payload Builder utility, which comes with the TinyFrame library, may be used to construct message payloads; its usage is shown in \cref{lst:c_api_pb}. The third parameter of \mono{pb\_init()} is optional: a pointer to a function called when the buffer overflows; this callback is used to flush the buffer and rewind it, or to throw an error.
Payload Builder is accompanied by Payload Parser, a tool doing exactly the opposite, parsing a binary payload. That is not needed in our example, but we will find Payload Parser useful when processing the response to a query command, or an asynchronous event payload. Where a variable is written to a payload with \mono{pb\_u8(\&pb, var)}, it is retrieved with \mono{pp\_u8(\&pp)}. The full API of those payload utilities can be found in their well-commented header files.

@ -1,13 +1,13 @@
\section{\IIC Unit} \section{\texorpdfstring{\IIC}{I2C} Unit}
The \gls{I2C} unit provides access to one of the microcontroller's \gls{I2C} peripherals. More on the \IIC bus can be found in \cref{sec:theory-i2c}. The \gls{I2C} unit provides access to one of the microcontroller's \gls{I2C} peripherals. More on the \IIC bus can be found in \cref{sec:theory-i2c}.
The unit can be configured to use either of the three standard speeds (Standard, Fast and Fast+) and supports both 10-bit and 7-bit addressing. 10-bit addresses can be used in commands by setting their highest bit (0x8000), as a flag to the unit; the 7 or 10 least significant bits will be used as the actual address. The unit can be configured to use either of the three standard speeds (Standard, Fast and Fast+) and supports both 10-bit and 7-bit addressing. 10-bit addresses can be used in commands by setting their highest bit (0x8000), as a flag to the unit; the 7 or 10 least significant bits will be used as the actual address.
\subsection{\IIC Configuration} \subsection{\texorpdfstring{\IIC}{I2C} Configuration}
\begin{inicode} \begin{inicode}
[I2C:d@4] [I2C:i2c@4]
# Peripheral number (I2Cx) # Peripheral number (I2Cx)
device=1 device=1
# Pin mappings (SCL,SDA) # Pin mappings (SCL,SDA)
@ -23,7 +23,7 @@ analog-filter=Y
digital-filter=0 digital-filter=0
\end{inicode} \end{inicode}
\subsection{\IIC Commands} \subsection{\texorpdfstring{\IIC}{I2C} Commands}
\begin{cmdlist} \begin{cmdlist}

@ -4,4 +4,8 @@
\LetLtxMacro{\cminted}{\minted} \LetLtxMacro{\cminted}{\minted}
\let\endcminted\endminted \let\endcminted\endminted
\xpretocmd{\cminted}{\RecustomVerbatimEnvironment{Verbatim}{BVerbatim}{}}{}{} \xpretocmd{\cminted}{\RecustomVerbatimEnvironment{Verbatim}{BVerbatim}{}}{}{}
\newminted{ini}{frame=leftline,autogobble=true} \newminted{ini}{frame=leftline,autogobble=true}
\newminted{python}{frame=leftline,autogobble=true}
\newminted{c}{frame=leftline,autogobble=true}
\newminted{matlab}{frame=leftline,autogobble=true}

Binary file not shown.
Loading…
Cancel
Save