calibration mostly working

calib-gui
Ondřej Hruška 2 years ago
parent 6749bb5f52
commit 1331460ecb
  1. 19
      Core/Src/Gui/app_gui.h
  2. 149
      Core/Src/Gui/screen_calibration.c
  3. 6
      Core/Src/Gui/screen_home.c
  4. 70
      Core/Src/Gui/screen_menu.c
  5. 2
      Core/Src/app_heater.c
  6. 109
      Core/Src/app_temp.c
  7. 5
      Core/Src/app_temp.h

@ -41,6 +41,7 @@ uint32_t push_time();
void screen_home(GuiEvent event); void screen_home(GuiEvent event);
void screen_manual(GuiEvent event); void screen_manual(GuiEvent event);
void screen_manual_menu(GuiEvent event); void screen_manual_menu(GuiEvent event);
void screen_calibration(GuiEvent event);
struct State { struct State {
/// Latest oven temp readout /// Latest oven temp readout
@ -78,24 +79,6 @@ struct State {
/// Pointer to the currently active screen func /// Pointer to the currently active screen func
screen_t screen; screen_t screen;
/// Generic menu
struct menu_state {
int pos;
int len;
uint32_t change_time;
uint32_t slide_end_time;
uint16_t text_slide;
uint8_t tick_counter;
} menu;
struct calib_state {
int phase;
float sample1;
float sample2;
int temp1;
int temp2;
} calib;
}; };
extern struct State s_app; extern struct State s_app;

@ -4,6 +4,7 @@
#include <stddef.h> #include <stddef.h>
#include <string.h>
#include "app_gui.h" #include "app_gui.h"
#include "app_heater.h" #include "app_heater.h"
#include "screen_menu.h" #include "screen_menu.h"
@ -12,6 +13,28 @@
#include "snprintf.h" #include "snprintf.h"
#include "FreeRTOS.h" #include "FreeRTOS.h"
struct calib_state {
int phase;
float sample1;
float sample2;
int temp1;
int temp2;
} s_calib;
enum Phase {
PH_HELLO = 0,
PH_SAMPLE1,
PH_TEMP1,
PH_SAMPLE2,
PH_TEMP2,
PH_DONE,
};
static void next_phase() {
PUTS("Phase++\r\n");
s_calib.phase++;
}
static const char* calib0_opts[] = { static const char* calib0_opts[] = {
"Pokračovat", "Pokračovat",
"Zrušit", "Zrušit",
@ -22,7 +45,7 @@ static void calib0_cb(int opt) {
switch (opt) { switch (opt) {
case 0: case 0:
// Continue // Continue
s_app.calib.phase++; next_phase();
request_paint(); request_paint();
app_heater_manual_override(100); app_heater_manual_override(100);
break; break;
@ -41,13 +64,15 @@ static const char* calib1_opts[] = {
}; };
static void calib1_cb(int opt) { static void calib1_cb(int opt) {
switch (opt) { switch (opt) {
case 0: case 0:
// Continue // Continue
s_app.calib.phase++; next_phase();
request_paint(); request_paint();
s_app.calib.sample1 = app_temp_read_oven_raw(); s_calib.sample1 = app_temp_read_oven_raw();
app_heater_manual_override(0); app_heater_manual_override(0);
break; break;
@ -69,9 +94,9 @@ static void calib3_cb(int opt) {
switch (opt) { switch (opt) {
case 0: case 0:
// Continue // Continue
s_app.calib.phase++; next_phase();
request_paint(); request_paint();
s_app.calib.sample2 = app_temp_read_oven_raw(); s_calib.sample2 = app_temp_read_oven_raw();
app_heater_manual_override(0); app_heater_manual_override(0);
break; break;
@ -82,54 +107,41 @@ static void calib3_cb(int opt) {
} }
} }
void screen_manual_menu(GuiEvent event) void screen_calibration(GuiEvent event)
{ {
if (event == GUI_EVENT_SCREEN_INIT) { if (event == GUI_EVENT_SCREEN_INIT) {
s_app.calib.phase = 0; memset(&s_calib, 0, sizeof(s_calib));
s_app.calib.sample1 = s_app.calib.sample2 = 0.0f; // continue to the rest - so the menu can be inited
s_app.calib.temp1 = s_app.calib.temp2 = 0;
} }
int phase = s_app.calib.phase;
int *pT; int *pT;
switch (phase) { switch (s_calib.phase) {
case 0: case PH_HELLO:
if (event == GUI_EVENT_PAINT) { if (event == GUI_EVENT_PAINT) {
fb_text(FBW/2, 14, "Vychlaďte", TEXT_CENTER, 1); fb_text(FBW/2, 14, "Vychlaď", TEXT_CENTER, 1);
fb_text(FBW/2, 24, "troubu", TEXT_CENTER, 1); fb_text(FBW/2, 24, "troubu", TEXT_CENTER, 1);
} }
screen_menu(event, calib1_opts, calib1_cb); screen_menu(event, calib0_opts, calib0_cb);
break; break;
case 1: // Heater is active, waiting for mark case PH_SAMPLE1: // Heater is active, waiting for mark
case 3: case PH_SAMPLE2:
if (event == GUI_EVENT_PAINT) { if (event == GUI_EVENT_PAINT) {
fb_text(FBW/2, 14, "Zapiš teplotu", TEXT_CENTER, 1); fb_text(FBW/2, 14, "Zapiš teplotu", TEXT_CENTER, 1);
} }
if (phase == 1) { if (s_calib.phase == PH_SAMPLE1) {
screen_menu(event, calib1_opts, calib1_cb); screen_menu(event, calib1_opts, calib1_cb);
} else { } else {
screen_menu(event, calib3_opts, calib3_cb); screen_menu(event, calib3_opts, calib3_cb);
} }
break; break;
case 2: case PH_TEMP1:
case 4: case PH_TEMP2:
if (phase == 2) { if (s_calib.phase == PH_TEMP1) {
pT = &s_app.calib.temp1; pT = &s_calib.temp1;
} else { } else {
pT = &s_app.calib.temp2; pT = &s_calib.temp2;
}
if (event == GUI_EVENT_PAINT) {
fb_text(FBW/2, 14, phase == 2 ? "Teplota 1" : "Teplota 2", TEXT_CENTER, 1);
SPRINTF(stmp, "%d°C", *pT);
fb_text(FBW/2, 30, stmp, TEXT_CENTER | FONT_DOUBLE, 1);
fb_text(2, FBH - 8 * 3, "←→Nastav", 0, 1);
fb_text(2, FBH - 8 * 2, "> Potvrdit", 0, 1);
fb_text(2, FBH - 8 * 1, "» Zrušit", 0, 1);
return;
} }
if (push_time() > pdMS_TO_TICKS(500)) { if (push_time() > pdMS_TO_TICKS(500)) {
@ -139,40 +151,62 @@ void screen_manual_menu(GuiEvent event)
return; return;
} }
if (event == GUI_EVENT_KNOB_PLUS) { switch (event) {
if (*pT < 500) { case GUI_EVENT_PAINT: {
*pT += 1; fb_text(FBW/2, 14, s_calib.phase == PH_TEMP1 ? "Teplota 1" : "Teplota 2", TEXT_CENTER, 1);
input_sound_effect(); SPRINTF(stmp, "%d°C", *pT);
request_paint(); fb_text(FBW/2, 30, stmp, TEXT_CENTER | FONT_DOUBLE, 1);
fb_text(2, FBH - 8 * 3, "←→Nastav", 0, 1);
fb_text(2, FBH - 8 * 2, "> Potvrdit", 0, 1);
fb_text(2, FBH - 8 * 1, "» Zrušit", 0, 1);
return;
} }
}
else if (event == GUI_EVENT_KNOB_MINUS) { case GUI_EVENT_KNOB_PLUS: {
if (*pT > 0) { if (*pT < 500) {
input_sound_effect(); *pT += 1;
*pT -= 1; input_sound_effect();
request_paint(); request_paint();
}
break;
} }
} else if (event == GUI_EVENT_KNOB_RELEASE) {
s_app.calib.phase++;
request_paint();
if (s_app.calib.phase == 5) { case GUI_EVENT_KNOB_MINUS: {
// TODO do the math if (*pT > 0) {
PRINTF("Sample 1 %f, T1 %d\r\n", s_app.calib.sample1, s_app.calib.temp1); input_sound_effect();
PRINTF("Sample 2 %f, T2 %d\r\n", s_app.calib.sample2, s_app.calib.temp2); *pT -= 1;
request_paint();
}
break;
}
case GUI_EVENT_KNOB_RELEASE: {
next_phase();
request_paint();
float corrected1 = c_to_val((float) s_app.calib.temp1); if (s_calib.phase == PH_DONE) {
float corrected2 = c_to_val((float) s_app.calib.temp2); app_heater_manual_override(-1);
// TODO do the math
PRINTF("Sample 1 %f, T1 %d\r\n", s_calib.sample1, s_calib.temp1);
PRINTF("Sample 2 %f, T2 %d\r\n", s_calib.sample2, s_calib.temp2);
float a = ; float corrected1 = c_to_val((float) s_calib.temp1);
float b = ; float corrected2 = c_to_val((float) s_calib.temp2);
// TODO set and persist calibration float a = (corrected1 - corrected2) / (s_calib.sample1 - s_calib.sample2);
float b = corrected1 - a * s_calib.sample1;
app_temp_set_calib(a, b);
} else {
app_heater_manual_override(100);
}
break;
} }
} }
break; break;
case 5: case PH_DONE:
if (event == GUI_EVENT_PAINT) { if (event == GUI_EVENT_PAINT) {
fb_text(FBW/2, 14, "Hotovo", TEXT_CENTER, 1); fb_text(FBW/2, 14, "Hotovo", TEXT_CENTER, 1);
fb_text(FBW/2, 36, "→Hlavní menu", TEXT_CENTER, 1); fb_text(FBW/2, 36, "→Hlavní menu", TEXT_CENTER, 1);
@ -182,5 +216,4 @@ void screen_manual_menu(GuiEvent event)
} }
break; break;
} }
} }

@ -12,8 +12,8 @@
static const char* main_menu_opts[] = { static const char* main_menu_opts[] = {
"Ruční režim", "Ruční režim",
"Kalibrace", "Kalibrace",
"Programy", // "Programy",
"Diagnostika", // "Diagnostika",
NULL NULL
}; };
@ -23,7 +23,7 @@ static void main_menu_cb(int opt) {
switch_screen(screen_manual, true); switch_screen(screen_manual, true);
break; break;
case 1: case 1:
// TODO switch_screen(screen_calibration, true);
break; break;
} }
} }

@ -3,6 +3,7 @@
// //
#include <stdbool.h> #include <stdbool.h>
#include <string.h>
#include "screen_menu.h" #include "screen_menu.h"
#include "app_gui.h" #include "app_gui.h"
#include "FreeRTOS.h" #include "FreeRTOS.h"
@ -12,40 +13,53 @@
#include "ufb/framebuffer.h" #include "ufb/framebuffer.h"
#include "ufb/fb_text.h" #include "ufb/fb_text.h"
struct menu_state {
int pos;
int len;
uint32_t change_time;
uint32_t slide_end_time;
uint16_t text_slide;
void * last_opts;
} s_menu;
void screen_menu(GuiEvent event, const char **options, menu_callback_t cb) { void screen_menu(GuiEvent event, const char **options, menu_callback_t cb) {
if (event != GUI_EVENT_SCREEN_INIT && s_menu.last_opts != (void*) options) {
// ensure the menu is properly inited when the options list changes.
screen_menu(GUI_EVENT_SCREEN_INIT, options, cb);
}
bool menu_changed = false; bool menu_changed = false;
const uint32_t tickNow = xTaskGetTickCount(); const uint32_t tickNow = xTaskGetTickCount();
struct menu_state *menu = &s_app.menu;
switch (event) { switch (event) {
case GUI_EVENT_SCREEN_INIT: case GUI_EVENT_SCREEN_INIT:
menu->pos = 0; memset(&s_menu, 0, sizeof(s_menu));
menu->len = 0; s_menu.last_opts = (void*) options;
menu->change_time = tickNow;
menu->text_slide = 0; s_menu.change_time = tickNow;
// count options
const char **opt = options; const char **opt = options;
while (*opt) { while (*opt) {
menu->len++; s_menu.len++;
opt++; opt++;
} }
break; break;
case GUI_EVENT_SCREEN_TICK: case GUI_EVENT_SCREEN_TICK:
// long text sliding animation // long text sliding animation
if (tickNow - menu->change_time >= pdMS_TO_TICKS(500)) { if (tickNow - s_menu.change_time >= pdMS_TO_TICKS(500)) {
const uint32_t textlen = utf8_strlen(options[menu->pos]) * 6; const uint32_t textlen = utf8_strlen(options[s_menu.pos]) * 6;
if (textlen >= FBW - 2) { if (textlen >= FBW - 2) {
if (textlen - menu->text_slide > FBW - 1) { if (textlen - s_menu.text_slide > FBW - 1) {
menu->text_slide += 1; s_menu.text_slide += 1;
if (textlen - menu->text_slide >= FBW - 1) { if (textlen - s_menu.text_slide >= FBW - 1) {
menu->slide_end_time = tickNow; s_menu.slide_end_time = tickNow;
} }
} else if (tickNow - menu->slide_end_time >= pdMS_TO_TICKS(500)) { } else if (tickNow - s_menu.slide_end_time >= pdMS_TO_TICKS(500)) {
menu->change_time = tickNow; s_menu.change_time = tickNow;
menu->slide_end_time = 0; s_menu.slide_end_time = 0;
menu->text_slide = 0; s_menu.text_slide = 0;
} }
request_paint(); request_paint();
} }
@ -53,13 +67,13 @@ void screen_menu(GuiEvent event, const char **options, menu_callback_t cb) {
break; break;
case GUI_EVENT_PAINT: case GUI_EVENT_PAINT:
for (int i = 0; i < menu->len; i++) { for (int i = 0; i < s_menu.len; i++) {
// is the row currently rendered the selected row? // is the row currently rendered the selected row?
const bool is_selected = menu->pos == i; const bool is_selected = s_menu.pos == i;
const fbcolor_t color = !is_selected; // text color - black if selected, because it's inverted const fbcolor_t color = !is_selected; // text color - black if selected, because it's inverted
const fbpos_t y = 27 + i * 10; const fbpos_t y = 27 + i * 10;
fb_rect(0, y, FBW, 10, !color); fb_rect(0, y, FBW, 10, !color);
fb_text(1 - (is_selected ? menu->text_slide : 0), y + 1, options[i], FONT_5X7, color); fb_text(1 - (is_selected ? s_menu.text_slide : 0), y + 1, options[i], FONT_5X7, color);
// ensure the text doesn't touch the edge (looks ugly) // ensure the text doesn't touch the edge (looks ugly)
fb_vline(FBW - 1, y, 10, !color); fb_vline(FBW - 1, y, 10, !color);
fb_vline(0, y, 10, !color); fb_vline(0, y, 10, !color);
@ -69,28 +83,28 @@ void screen_menu(GuiEvent event, const char **options, menu_callback_t cb) {
// the button is held! release is what activates the button // the button is held! release is what activates the button
case GUI_EVENT_KNOB_RELEASE: case GUI_EVENT_KNOB_RELEASE:
input_sound_effect(); input_sound_effect();
cb(menu->pos); cb(s_menu.pos);
break; break;
case GUI_EVENT_KNOB_PLUS: case GUI_EVENT_KNOB_PLUS:
if (menu->pos < menu->len - 1) { if (s_menu.pos < s_menu.len - 1) {
menu->pos++; s_menu.pos++;
menu_changed = true; menu_changed = true;
} }
break; break;
case GUI_EVENT_KNOB_MINUS: case GUI_EVENT_KNOB_MINUS:
if (menu->pos > 0) { if (s_menu.pos > 0) {
menu->pos--; s_menu.pos--;
menu_changed = true; menu_changed = true;
} }
break; break;
} }
if (menu_changed) { if (menu_changed) {
menu->change_time = tickNow; s_menu.change_time = tickNow;
menu->text_slide = 0; s_menu.text_slide = 0;
menu->slide_end_time = 0; s_menu.slide_end_time = 0;
input_sound_effect(); input_sound_effect();
request_paint(); request_paint();
} }

@ -66,6 +66,8 @@ static inline void heaterExitCritical() {
} }
void app_heater_manual_override(int percent) { void app_heater_manual_override(int percent) {
PRINTF("Set manual override: %d\r\n", percent);
heaterEnterCritical(); heaterEnterCritical();
PID_SetCtlMode(&state.pid, PID_MANUAL); PID_SetCtlMode(&state.pid, PID_MANUAL);
state.manual_override = percent; state.manual_override = percent;

@ -26,17 +26,17 @@ const float V_REFINT = 1.23f;
static struct App { static struct App {
float oven_temp; float oven_temp;
float oven_temp_raw;
float soc_temp; float soc_temp;
float v_sensor;
float cal_a; float cal_a;
float cal_b; float cal_b;
float oventemp_history[OVENTEMP_HISTORY_DEPTH]; // raw temp
uint16_t adc_averagebuf[AVERAGEBUF_DEPTH * 4]; uint16_t adc_averagebuf[AVERAGEBUF_DEPTH * 4];
uint8_t averagebuf_ptr; uint8_t averagebuf_ptr;
float adc_averages[4];
float oventemp_history[OVENTEMP_HISTORY_DEPTH];
uint8_t oventemp_history_ptr; uint8_t oventemp_history_ptr;
} s_analog = { } s_analog = {
.cal_a = 1.0f, // Ax + B = y ... X = raw sample (ratio 0-1 of 3.3), Y = corrected sample
.cal_a = 1.0f, // safe default calibration constants
.cal_b = 0.0f, .cal_b = 0.0f,
}; };
@ -148,6 +148,35 @@ static const float TSENSE_LOOKUP[TSENSE_LOOKUP_LEN] = {
0.219346163379138f, 0.219346163379138f,
}; };
/// if the calibration constants are zero, reset to defaults
static void correct_invalid_calib() {
if (s_analog.cal_a == 0.0f || s_analog.cal_b == 0.0f) {
PRINTF("ADC invalid calib, reset\r\n");
s_analog.cal_a = 1.0f;
s_analog.cal_b = 0.0f;
}
}
/// Set and persist calibration constants
void app_temp_set_calib(float a, float b) {
s_analog.cal_a = a;
s_analog.cal_b = b;
correct_invalid_calib();
EE_Status st = EE_WriteVariable32bits(EE_ADDR_CAL_A, ((x32_t) { .f = a }).u);
if (st == EE_CLEANUP_REQUIRED) {
EE_CleanUp();
} else if (st != EE_OK) {
PRINTF("EE write err %d!\r\n", st);
}
st = EE_WriteVariable32bits(EE_ADDR_CAL_B, ((x32_t) { .f = b }).u);
if (st == EE_CLEANUP_REQUIRED) {
EE_CleanUp();
} else if (st != EE_OK) {
PRINTF("EE write err %d!\r\n", st);
}
}
void app_analog_init() void app_analog_init()
{ {
// read calibration constants // read calibration constants
@ -161,11 +190,7 @@ void app_analog_init()
PRINTF("ADC calib b read from EE: %f\r\n", s_analog.cal_b); PRINTF("ADC calib b read from EE: %f\r\n", s_analog.cal_b);
} }
if (s_analog.cal_a == 0.0f || s_analog.cal_b == 0.0f) { correct_invalid_calib();
PRINTF("ADC invalid calib, reset\r\n");
s_analog.cal_a = 1.0f;
s_analog.cal_b = 0.0f;
}
LL_ADC_Enable(ADC_TEMP); LL_ADC_Enable(ADC_TEMP);
@ -192,7 +217,7 @@ void app_analog_init()
LL_TIM_EnableCounter(TIM1); LL_TIM_EnableCounter(TIM1);
} }
static float val_to_c(float val) float val_to_c(float val)
{ {
// TODO use binary search.. lol // TODO use binary search.. lol
for (int i = 1; i < TSENSE_LOOKUP_LEN; i++) { for (int i = 1; i < TSENSE_LOOKUP_LEN; i++) {
@ -207,6 +232,22 @@ static float val_to_c(float val)
return TSENSE_T_MAX; return TSENSE_T_MAX;
} }
float c_to_val(float cf)
{
int lower = (int) (cf / TSENSE_T_STEP);
if (lower < 0) {
lower = 0;
}
if (lower >= TSENSE_LOOKUP_LEN - 1) {
lower = TSENSE_LOOKUP_LEN - 2;
}
int upper = lower + 1;
float ratio = (cf - ((float)lower * TSENSE_T_STEP)) / 5.0f;
return TSENSE_LOOKUP[lower] + (TSENSE_LOOKUP[upper] - TSENSE_LOOKUP[lower]) * ratio;
}
void app_temp_sample() void app_temp_sample()
{ {
uint32_t sums[4] = {}; uint32_t sums[4] = {};
@ -224,39 +265,38 @@ void app_temp_sample()
return; return;
} }
s_analog.adc_averages[0] = (float) sums[0] / count; float adc_averages[4];
s_analog.adc_averages[1] = (float) sums[1] / count;
s_analog.adc_averages[2] = (float) sums[2] / count; adc_averages[0] = (float) sums[0] / count;
s_analog.adc_averages[3] = (float) sums[3] / count; adc_averages[1] = (float) sums[1] / count;
adc_averages[2] = (float) sums[2] / count;
adc_averages[3] = (float) sums[3] / count;
PRINTF("%f\t%f\t%f\t%f\r\n", PRINTF("%f\t%f\t%f\t%f\r\n",
s_analog.adc_averages[0], adc_averages[0],
s_analog.adc_averages[1], adc_averages[1],
s_analog.adc_averages[2], adc_averages[2],
s_analog.adc_averages[3] adc_averages[3]
); );
/* r_pt100, r_ref, internal_temp, v_ref_int */ /* r_pt100, r_ref, internal_temp, v_ref_int */
float refint = s_analog.adc_averages[3]; float refint = adc_averages[3];
float scale = V_REFINT / refint; float scale = V_REFINT / refint;
const float avg_slope = 4.3f * scale; const float avg_slope = 4.3f * scale;
const float v25 = 1.43f; const float v25 = 1.43f;
const float v_tsen = s_analog.adc_averages[2] * scale; const float v_tsen = adc_averages[2] * scale;
s_analog.soc_temp = (v25 - v_tsen) / avg_slope + 25.f; s_analog.soc_temp = (v25 - v_tsen) / avg_slope + 25.f;
s_analog.v_sensor = s_analog.adc_averages[0] * scale; // good for debug/tuning //s_analog.v_sensor = adc_averages[0] * scale; // good for debug/tuning
// using a voltage divider, so assuming the reference resistor is measured well, // using a voltage divider, so assuming the reference resistor is measured well,
// we can just use the ratio and the exact voltage value is not important. // we can just use the ratio and the exact voltage value is not important.
float x = s_analog.adc_averages[0] / s_analog.adc_averages[1]; float oventemp_sample = adc_averages[0] / adc_averages[1];
float y = s_analog.cal_a * x + s_analog.cal_b;
float actual_temp = val_to_c(y);
PRINTF("Compensated x %f -> y %f, temp %f C\r\n", x, y, actual_temp);
s_analog.oventemp_history[s_analog.oventemp_history_ptr] = actual_temp; s_analog.oventemp_history[s_analog.oventemp_history_ptr] = oventemp_sample;
s_analog.oventemp_history_ptr = (s_analog.oventemp_history_ptr + 1) % OVENTEMP_HISTORY_DEPTH; s_analog.oventemp_history_ptr = (s_analog.oventemp_history_ptr + 1) % OVENTEMP_HISTORY_DEPTH;
float sum = 0; float sum = 0;
@ -270,15 +310,21 @@ void app_temp_sample()
if (depth > 0) { if (depth > 0) {
sum /= depth; sum /= depth;
} }
s_analog.oven_temp = sum;
float y = s_analog.cal_a * sum + s_analog.cal_b;
float actual_temp = val_to_c(y);
PRINTF("Compensated x %f -> y %f, temp %f C\r\n", sum, y, actual_temp);
s_analog.oven_temp = actual_temp;
s_analog.oven_temp_raw = sum;
app_safety_pass_temp_calculation(); app_safety_pass_temp_calculation();
if (s_analog.oven_temp >= 5.0 && s_analog.oven_temp <= 455.0) { if (s_analog.oven_temp_raw >= 0.05 && s_analog.oven_temp_raw <= 0.22) {
app_safety_pass_temp_normal(); app_safety_pass_temp_normal();
} }
if (s_analog.soc_temp >= 5.0 && s_analog.soc_temp <= 80.0) { if (s_analog.soc_temp >= 2.0 && s_analog.soc_temp <= 80.0) {
app_safety_pass_soc_temp_ok(); app_safety_pass_soc_temp_ok();
} }
} }
@ -288,6 +334,11 @@ float app_temp_read_oven()
return s_analog.oven_temp; return s_analog.oven_temp;
} }
float app_temp_read_oven_raw()
{
return s_analog.oven_temp_raw;
}
float app_temp_read_soc() float app_temp_read_soc()
{ {
return s_analog.soc_temp; return s_analog.soc_temp;

@ -7,6 +7,11 @@
void app_analog_init(); void app_analog_init();
float val_to_c(float val);
float c_to_val(float c);
void app_temp_set_calib(float a, float b);
/** /**
* Update temperature measurement. * Update temperature measurement.
* *

Loading…
Cancel
Save