stm32f103 Bluepill usb keyboard demo cmake project (it worked!)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

870 lines
31 KiB

/**
******************************************************************************
* @file stm32f1xx_hal_rcc_ex.c
* @author MCD Application Team
* @version V1.0.4
* @date 29-April-2016
* @brief Extended RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities RCC extension peripheral:
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/** @defgroup RCCEx RCCEx
* @brief RCC Extension HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) are set to their reset values.
@endverbatim
* @{
*/
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified parameters in the
* RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals clocks(RTC clock).
*
* @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source; in this case the Backup domain will be reset in
* order to modify the RTC Clock source, as consequence RTC registers (including
* the backup registers) are set to their reset values.
*
* @note In case of STM32F105xC or STM32F107xC devices, PLLI2S will be enabled if requested on
* one of 2 I2S interfaces. When PLLI2S is enabled, you need to call HAL_RCCEx_DisablePLLI2S to
* manually disable it.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0, temp_reg = 0;
#if defined(STM32F105xC) || defined(STM32F107xC)
uint32_t pllactive = 0;
#endif /* STM32F105xC || STM32F107xC */
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*------------------------------- RTC/LCD Configuration ------------------------*/
if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC))
{
/* check for RTC Parameters used to output RTCCLK */
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
/* Enable Power Clock*/
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
SET_BIT(PWR->CR, PWR_CR_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
{
/* Store the content of BDCR register before the reset of Backup Domain */
temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = temp_reg;
/* Wait for LSERDY if LSE was enabled */
if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
/*------------------------------ ADC clock Configuration ------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
{
/* Check the parameters */
assert_param(IS_RCC_ADCPLLCLK_DIV(PeriphClkInit->AdcClockSelection));
/* Configure the ADC clock source */
__HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
}
#if defined(STM32F105xC) || defined(STM32F107xC)
/*------------------------------ I2S2 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S2) == RCC_PERIPHCLK_I2S2)
{
/* Check the parameters */
assert_param(IS_RCC_I2S2CLKSOURCE(PeriphClkInit->I2s2ClockSelection));
/* Configure the I2S2 clock source */
__HAL_RCC_I2S2_CONFIG(PeriphClkInit->I2s2ClockSelection);
}
/*------------------------------ I2S3 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S3) == RCC_PERIPHCLK_I2S3)
{
/* Check the parameters */
assert_param(IS_RCC_I2S3CLKSOURCE(PeriphClkInit->I2s3ClockSelection));
/* Configure the I2S3 clock source */
__HAL_RCC_I2S3_CONFIG(PeriphClkInit->I2s3ClockSelection);
}
/*------------------------------ PLL I2S Configuration ----------------------*/
/* Check that PLLI2S need to be enabled */
if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S2SRC) || HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
{
/* Update flag to indicate that PLL I2S should be active */
pllactive = 1;
}
/* Check if PLL I2S need to be enabled */
if (pllactive == 1)
{
/* Enable PLL I2S only if not active */
if (HAL_IS_BIT_CLR(RCC->CR, RCC_CR_PLL3ON))
{
/* Check the parameters */
assert_param(IS_RCC_PLLI2S_MUL(PeriphClkInit->PLLI2S.PLLI2SMUL));
assert_param(IS_RCC_HSE_PREDIV2(PeriphClkInit->PLLI2S.HSEPrediv2Value));
/* Prediv2 can be written only when the PLL2 is disabled. */
/* Return an error only if new value is different from the programmed value */
if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL2ON) && \
(__HAL_RCC_HSE_GET_PREDIV2() != PeriphClkInit->PLLI2S.HSEPrediv2Value))
{
return HAL_ERROR;
}
/* Configure the HSE prediv2 factor --------------------------------*/
__HAL_RCC_HSE_PREDIV2_CONFIG(PeriphClkInit->PLLI2S.HSEPrediv2Value);
/* Configure the main PLLI2S multiplication factors. */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SMUL);
/* Enable the main PLLI2S. */
__HAL_RCC_PLLI2S_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Return an error only if user wants to change the PLLI2SMUL whereas PLLI2S is active */
if (READ_BIT(RCC->CFGR2, RCC_CFGR2_PLL3MUL) != PeriphClkInit->PLLI2S.PLLI2SMUL)
{
return HAL_ERROR;
}
}
}
#endif /* STM32F105xC || STM32F107xC */
#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
|| defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
|| defined(STM32F105xC) || defined(STM32F107xC)
/*------------------------------ USB clock Configuration ------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
{
/* Check the parameters */
assert_param(IS_RCC_USBPLLCLK_DIV(PeriphClkInit->UsbClockSelection));
/* Configure the USB clock source */
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
}
#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
return HAL_OK;
}
/**
* @brief Get the PeriphClkInit according to the internal
* RCC configuration registers.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* returns the configuration information for the Extended Peripherals clocks(RTC, I2S, ADC clocks).
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t srcclk = 0;
/* Set all possible values for the extended clock type parameter------------*/
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_RTC;
/* Get the RTC configuration -----------------------------------------------*/
srcclk = __HAL_RCC_GET_RTC_SOURCE();
/* Source clock is LSE or LSI*/
PeriphClkInit->RTCClockSelection = srcclk;
/* Get the ADC clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_ADC;
PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
#if defined(STM32F105xC) || defined(STM32F107xC)
/* Get the I2S2 clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
PeriphClkInit->I2s2ClockSelection = __HAL_RCC_GET_I2S2_SOURCE();
/* Get the I2S3 clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
PeriphClkInit->I2s3ClockSelection = __HAL_RCC_GET_I2S3_SOURCE();
#endif /* STM32F105xC || STM32F107xC */
#if defined(STM32F103xE) || defined(STM32F103xG)
/* Get the I2S2 clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
PeriphClkInit->I2s2ClockSelection = RCC_I2S2CLKSOURCE_SYSCLK;
/* Get the I2S3 clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
PeriphClkInit->I2s3ClockSelection = RCC_I2S3CLKSOURCE_SYSCLK;
#endif /* STM32F103xE || STM32F103xG */
#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
|| defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
|| defined(STM32F105xC) || defined(STM32F107xC)
/* Get the USB clock configuration -----------------------------------------*/
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
}
/**
* @brief Returns the peripheral clock frequency
* @note Returns 0 if peripheral clock is unknown
* @param PeriphClk Peripheral clock identifier
* This parameter can be one of the following values:
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
* @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
@if STM32F103xE
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
@endif
@if STM32F103xG
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
@endif
@if STM32F105xC
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
@if STM32F107xC
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
@if STM32F102xx
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
@if STM32F103xx
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
* @retval Frequency in Hz (0: means that no available frequency for the peripheral)
*/
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
|| defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
|| defined(STM32F105xC) || defined(STM32F107xC)
#if defined(STM32F105xC) || defined(STM32F107xC)
const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13};
const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
#else
const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
const uint8_t aPredivFactorTable[2] = { 1, 2};
#endif
#endif
uint32_t temp_reg = 0, frequency = 0;
#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
|| defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
|| defined(STM32F105xC) || defined(STM32F107xC)
uint32_t prediv1 = 0, pllclk = 0, pllmul = 0;
#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
#if defined(STM32F105xC) || defined(STM32F107xC)
uint32_t pll2mul = 0, pll3mul = 0, prediv2 = 0;
#endif /* STM32F105xC || STM32F107xC */
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
switch (PeriphClk)
{
#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)\
|| defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)\
|| defined(STM32F105xC) || defined(STM32F107xC)
case RCC_PERIPHCLK_USB:
{
/* Get RCC configuration ------------------------------------------------------*/
temp_reg = RCC->CFGR;
/* Check if PLL is enabled */
if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLLON))
{
pllmul = aPLLMULFactorTable[(uint32_t)(temp_reg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
{
#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB)\
|| defined(STM32F100xE)
prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
#else
prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
#if defined(STM32F105xC) || defined(STM32F107xC)
if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
{
/* PLL2 selected as Prediv1 source */
/* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv1) * pllmul);
}
else
{
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
}
/* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
/* In this case need to divide pllclk by 2 */
if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
{
pllclk = pllclk / 2;
}
#else
if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
{
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
}
#endif /* STM32F105xC || STM32F107xC */
}
else
{
/* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
}
/* Calcul of the USB frequency*/
#if defined(STM32F105xC) || defined(STM32F107xC)
/* USBCLK = PLLVCO = (2 x PLLCLK) / USB prescaler */
if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL_DIV2)
{
/* Prescaler of 2 selected for USB */
frequency = pllclk;
}
else
{
/* Prescaler of 3 selected for USB */
frequency = (2 * pllclk) / 3;
}
#else
/* USBCLK = PLLCLK / USB prescaler */
if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL)
{
/* No prescaler selected for USB */
frequency = pllclk;
}
else
{
/* Prescaler of 1.5 selected for USB */
frequency = (pllclk * 2) / 3;
}
#endif
}
break;
}
#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
#if defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC)\
|| defined(STM32F107xC)
case RCC_PERIPHCLK_I2S2:
{
#if defined(STM32F103xE) || defined(STM32F103xG)
/* SYSCLK used as source clock for I2S2 */
frequency = HAL_RCC_GetSysClockFreq();
#else
if (__HAL_RCC_GET_I2S2_SOURCE() == RCC_I2S2CLKSOURCE_SYSCLK)
{
/* SYSCLK used as source clock for I2S2 */
frequency = HAL_RCC_GetSysClockFreq();
}
else
{
/* Check if PLLI2S is enabled */
if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON))
{
/* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> POSITION_VAL(RCC_CFGR2_PLL3MUL)) + 2;
frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
}
}
#endif /* STM32F103xE || STM32F103xG */
break;
}
case RCC_PERIPHCLK_I2S3:
{
#if defined(STM32F103xE) || defined(STM32F103xG)
/* SYSCLK used as source clock for I2S3 */
frequency = HAL_RCC_GetSysClockFreq();
#else
if (__HAL_RCC_GET_I2S3_SOURCE() == RCC_I2S3CLKSOURCE_SYSCLK)
{
/* SYSCLK used as source clock for I2S3 */
frequency = HAL_RCC_GetSysClockFreq();
}
else
{
/* Check if PLLI2S is enabled */
if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON))
{
/* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> POSITION_VAL(RCC_CFGR2_PLL3MUL)) + 2;
frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
}
}
#endif /* STM32F103xE || STM32F103xG */
break;
}
#endif /* STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
case RCC_PERIPHCLK_RTC:
{
/* Get RCC BDCR configuration ------------------------------------------------------*/
temp_reg = RCC->BDCR;
/* Check if LSE is ready if RTC clock selection is LSE */
if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
/* Check if LSI is ready if RTC clock selection is LSI */
else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
{
frequency = LSI_VALUE;
}
else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_HSE_DIV128) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
{
frequency = HSE_VALUE / 128;
}
/* Clock not enabled for RTC*/
else
{
frequency = 0;
}
break;
}
case RCC_PERIPHCLK_ADC:
{
frequency = HAL_RCC_GetPCLK2Freq() / (((__HAL_RCC_GET_ADC_SOURCE() >> POSITION_VAL(RCC_CFGR_ADCPRE_DIV4)) + 1) * 2);
break;
}
default:
{
break;
}
}
return(frequency);
}
/**
* @}
*/
#if defined(STM32F105xC) || defined(STM32F107xC)
/** @defgroup RCCEx_Exported_Functions_Group2 PLLI2S Management function
* @brief PLLI2S Management functions
*
@verbatim
===============================================================================
##### Extended PLLI2S Management functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the PLLI2S
activation or deactivation
@endverbatim
* @{
*/
/**
* @brief Enable PLLI2S
* @param PLLI2SInit pointer to an RCC_PLLI2SInitTypeDef structure that
* contains the configuration information for the PLLI2S
* @note The PLLI2S configuration not modified if used by I2S2 or I2S3 Interface.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_EnablePLLI2S(RCC_PLLI2SInitTypeDef *PLLI2SInit)
{
uint32_t tickstart = 0;
/* Check that PLL I2S has not been already enabled by I2S2 or I2S3*/
if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
{
/* Check the parameters */
assert_param(IS_RCC_PLLI2S_MUL(PLLI2SInit->PLLI2SMUL));
assert_param(IS_RCC_HSE_PREDIV2(PLLI2SInit->HSEPrediv2Value));
/* Prediv2 can be written only when the PLL2 is disabled. */
/* Return an error only if new value is different from the programmed value */
if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL2ON) && \
(__HAL_RCC_HSE_GET_PREDIV2() != PLLI2SInit->HSEPrediv2Value))
{
return HAL_ERROR;
}
/* Disable the main PLLI2S. */
__HAL_RCC_PLLI2S_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the HSE prediv2 factor --------------------------------*/
__HAL_RCC_HSE_PREDIV2_CONFIG(PLLI2SInit->HSEPrediv2Value);
/* Configure the main PLLI2S multiplication factors. */
__HAL_RCC_PLLI2S_CONFIG(PLLI2SInit->PLLI2SMUL);
/* Enable the main PLLI2S. */
__HAL_RCC_PLLI2S_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* PLLI2S cannot be modified as already used by I2S2 or I2S3 */
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Disable PLLI2S
* @note PLLI2S is not disabled if used by I2S2 or I2S3 Interface.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_DisablePLLI2S(void)
{
uint32_t tickstart = 0;
/* Disable PLL I2S as not requested by I2S2 or I2S3*/
if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC))
{
/* Disable the main PLLI2S. */
__HAL_RCC_PLLI2S_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* PLLI2S is currently used by I2S2 or I2S3. Cannot be disabled.*/
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RCCEx_Exported_Functions_Group3 PLL2 Management function
* @brief PLL2 Management functions
*
@verbatim
===============================================================================
##### Extended PLL2 Management functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the PLL2
activation or deactivation
@endverbatim
* @{
*/
/**
* @brief Enable PLL2
* @param PLL2Init pointer to an RCC_PLL2InitTypeDef structure that
* contains the configuration information for the PLL2
* @note The PLL2 configuration not modified if used indirectly as system clock.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_EnablePLL2(RCC_PLL2InitTypeDef *PLL2Init)
{
uint32_t tickstart = 0;
/* This bit can not be cleared if the PLL2 clock is used indirectly as system
clock (i.e. it is used as PLL clock entry that is used as system clock). */
if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
{
return HAL_ERROR;
}
else
{
/* Check the parameters */
assert_param(IS_RCC_PLL2_MUL(PLL2Init->PLL2MUL));
assert_param(IS_RCC_HSE_PREDIV2(PLL2Init->HSEPrediv2Value));
/* Prediv2 can be written only when the PLLI2S is disabled. */
/* Return an error only if new value is different from the programmed value */
if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
(__HAL_RCC_HSE_GET_PREDIV2() != PLL2Init->HSEPrediv2Value))
{
return HAL_ERROR;
}
/* Disable the main PLL2. */
__HAL_RCC_PLL2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL2 is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the HSE prediv2 factor --------------------------------*/
__HAL_RCC_HSE_PREDIV2_CONFIG(PLL2Init->HSEPrediv2Value);
/* Configure the main PLL2 multiplication factors. */
__HAL_RCC_PLL2_CONFIG(PLL2Init->PLL2MUL);
/* Enable the main PLL2. */
__HAL_RCC_PLL2_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL2 is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Disable PLL2
* @note PLL2 is not disabled if used indirectly as system clock.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_DisablePLL2(void)
{
uint32_t tickstart = 0;
/* This bit can not be cleared if the PLL2 clock is used indirectly as system
clock (i.e. it is used as PLL clock entry that is used as system clock). */
if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
{
return HAL_ERROR;
}
else
{
/* Disable the main PLL2. */
__HAL_RCC_PLL2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL2 is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @}
*/
#endif /* STM32F105xC || STM32F107xC */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/