modbus
Ondřej Hruška 2 years ago
parent bf282b0a12
commit 4158f225e1
  1. 5
      components/bme680/CMakeLists.txt
  2. 225
      components/bme680/include/bme680.h
  3. 512
      components/bme680/include/bme680_defs.h
  4. 323
      components/bme680/include/bme68x.h
  5. 972
      components/bme680/include/bme68x_defs.h
  6. 135
      components/bme680/include/bsec2.h
  7. 506
      components/bme680/include/bsec_datatypes.h
  8. 562
      components/bme680/include/bsec_interface.h
  9. BIN
      components/bme680/lib/libalgobsec.a
  10. 1138
      components/bme680/src/bme680.c
  11. 1848
      components/bme680/src/bme68x.c
  12. 403
      components/bme680/src/bsec2.c
  13. 390
      main/voc_sensor.c
  14. 8
      main/voc_sensor.h

@ -5,3 +5,8 @@ set(COMPONENT_SRCDIRS
"src") "src")
register_component() register_component()
add_library(algobsec STATIC IMPORTED)
set_property(TARGET algobsec PROPERTY IMPORTED_LOCATION ${CMAKE_CURRENT_SOURCE_DIR}/lib/libalgobsec.a)
target_link_libraries(${COMPONENT_LIB} PUBLIC algobsec)

@ -1,225 +0,0 @@
/**
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
*
* @file bme680.h
* @date 30 Oct 2017
* @version 3.5.3
* @brief
*
*/
/*! @file bme680.h
@brief Sensor driver for BME680 sensor */
/*!
* @defgroup BME680 SENSOR API
* @{*/
#ifndef BME680_H_
#define BME680_H_
/*! CPP guard */
#ifdef __cplusplus
extern "C"
{
#endif
/* Header includes */
#include "bme680_defs.h"
/* function prototype declarations */
/*!
* @brief This API is the entry point.
* It reads the chip-id and calibration data from the sensor.
*
* @param[in,out] dev : Structure instance of bme680_dev
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_init(struct bme680_dev *dev);
/*!
* @brief This API writes the given data to the register address
* of the sensor.
*
* @param[in] reg_addr : Register address from where the data to be written.
* @param[in] reg_data : Pointer to data buffer which is to be written
* in the sensor.
* @param[in] len : No of bytes of data to write..
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev);
/*!
* @brief This API reads the data from the given register address of the sensor.
*
* @param[in] reg_addr : Register address from where the data to be read
* @param[out] reg_data : Pointer to data buffer to store the read data.
* @param[in] len : No of bytes of data to be read.
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev);
/*!
* @brief This API performs the soft reset of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_soft_reset(struct bme680_dev *dev);
/*!
* @brief This API is used to set the power mode of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev
* @note : Pass the value to bme680_dev.power_mode structure variable.
*
* value | mode
* -------------|------------------
* 0x00 | BME680_SLEEP_MODE
* 0x01 | BME680_FORCED_MODE
*
* * @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_set_sensor_mode(struct bme680_dev *dev);
/*!
* @brief This API is used to get the power mode of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev
* @note : bme680_dev.power_mode structure variable hold the power mode.
*
* value | mode
* ---------|------------------
* 0x00 | BME680_SLEEP_MODE
* 0x01 | BME680_FORCED_MODE
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_sensor_mode(struct bme680_dev *dev);
/*!
* @brief This API is used to set the profile duration of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] duration : Duration of the measurement in ms.
*
* @return Nothing
*/
void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev);
/*!
* @brief This API is used to get the profile duration of the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] duration : Duration of the measurement in ms.
*
* @return Nothing
*/
void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev);
/*!
* @brief This API reads the pressure, temperature and humidity and gas data
* from the sensor, compensates the data and store it in the bme680_data
* structure instance passed by the user.
*
* @param[out] data: Structure instance to hold the data.
* @param[in] dev : Structure instance of bme680_dev.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error
*/
int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev);
/*!
* @brief This API is used to set the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] desired_settings : Variable used to select the settings which
* are to be set in the sensor.
*
* Macros | Functionality
*---------------------------------|----------------------------------------------
* BME680_OST_SEL | To set temperature oversampling.
* BME680_OSP_SEL | To set pressure oversampling.
* BME680_OSH_SEL | To set humidity oversampling.
* BME680_GAS_MEAS_SEL | To set gas measurement setting.
* BME680_FILTER_SEL | To set filter setting.
* BME680_HCNTRL_SEL | To set humidity control setting.
* BME680_RUN_GAS_SEL | To set run gas setting.
* BME680_NBCONV_SEL | To set NB conversion setting.
* BME680_GAS_SENSOR_SEL | To set all gas sensor related settings
*
* @note : Below are the macros to be used by the user for selecting the
* desired settings. User can do OR operation of these macros for configuring
* multiple settings.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev);
/*!
* @brief This API is used to get the oversampling, filter and T,P,H, gas selection
* settings in the sensor.
*
* @param[in] dev : Structure instance of bme680_dev.
* @param[in] desired_settings : Variable used to select the settings which
* are to be get from the sensor.
*
* @return Result of API execution status
* @retval zero -> Success / +ve value -> Warning / -ve value -> Error.
*/
int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev);
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* BME680_H_ */
/** @}*/

@ -1,512 +0,0 @@
/**
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
*
* @file bme680_defs.h
* @date 30 Oct 2017
* @version 3.5.3
* @brief
*
*/
/*! @file bme680_defs.h
@brief Sensor driver for BME680 sensor */
/*!
* @defgroup BME680 SENSOR API
* @brief
* @{*/
#ifndef BME680_DEFS_H_
#define BME680_DEFS_H_
/********************************************************/
/* header includes */
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/kernel.h>
#else
#include <stdint.h>
#include <stddef.h>
#endif
/******************************************************************************/
/*! @name Common macros */
/******************************************************************************/
#if !defined(UINT8_C) && !defined(INT8_C)
#define INT8_C(x) S8_C(x)
#define UINT8_C(x) U8_C(x)
#endif
#if !defined(UINT16_C) && !defined(INT16_C)
#define INT16_C(x) S16_C(x)
#define UINT16_C(x) U16_C(x)
#endif
#if !defined(INT32_C) && !defined(UINT32_C)
#define INT32_C(x) S32_C(x)
#define UINT32_C(x) U32_C(x)
#endif
#if !defined(INT64_C) && !defined(UINT64_C)
#define INT64_C(x) S64_C(x)
#define UINT64_C(x) U64_C(x)
#endif
/**@}*/
/**\name C standard macros */
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *) 0)
#endif
#endif
/** BME680 General config */
#define BME680_POLL_PERIOD_MS UINT8_C(10)
/** BME680 I2C addresses */
#define BME680_I2C_ADDR_PRIMARY UINT8_C(0x76)
#define BME680_I2C_ADDR_SECONDARY UINT8_C(0x77)
/** BME680 unique chip identifier */
#define BME680_CHIP_ID UINT8_C(0x61)
/** BME680 coefficients related defines */
#define BME680_COEFF_SIZE UINT8_C(0x41)
#define BME680_COEFF_ADDR1_LEN UINT8_C(25)
#define BME680_COEFF_ADDR2_LEN UINT8_C(16)
/** BME680 field_x related defines */
#define BME680_FIELD_LENGTH UINT8_C(15)
#define BME680_FIELD_ADDR_OFFSET UINT8_C(17)
/** Soft reset command */
#define BME680_SOFT_RESET_CMD UINT8_C(0xb6)
/** Error code definitions */
#define BME680_OK INT8_C(0)
/* Errors */
#define BME680_E_NULL_PTR INT8_C(-1)
#define BME680_E_COM_FAIL INT8_C(-2)
#define BME680_E_DEV_NOT_FOUND INT8_C(-3)
#define BME680_E_INVALID_LENGTH INT8_C(-4)
/* Warnings */
#define BME680_W_DEFINE_PWR_MODE INT8_C(1)
#define BME680_W_NO_NEW_DATA INT8_C(2)
/* Info's */
#define BME680_I_MIN_CORRECTION UINT8_C(1)
#define BME680_I_MAX_CORRECTION UINT8_C(2)
/** Register map */
/** Other coefficient's address */
#define BME680_ADDR_RES_HEAT_VAL_ADDR UINT8_C(0x00)
#define BME680_ADDR_RES_HEAT_RANGE_ADDR UINT8_C(0x02)
#define BME680_ADDR_RANGE_SW_ERR_ADDR UINT8_C(0x04)
#define BME680_ADDR_SENS_CONF_START UINT8_C(0x5A)
#define BME680_ADDR_GAS_CONF_START UINT8_C(0x64)
/** Field settings */
#define BME680_FIELD0_ADDR UINT8_C(0x1d)
/** Heater settings */
#define BME680_RES_HEAT0_ADDR UINT8_C(0x5a)
#define BME680_GAS_WAIT0_ADDR UINT8_C(0x64)
/** Sensor configuration registers */
#define BME680_CONF_HEAT_CTRL_ADDR UINT8_C(0x70)
#define BME680_CONF_ODR_RUN_GAS_NBC_ADDR UINT8_C(0x71)
#define BME680_CONF_OS_H_ADDR UINT8_C(0x72)
#define BME680_MEM_PAGE_ADDR UINT8_C(0xf3)
#define BME680_CONF_T_P_MODE_ADDR UINT8_C(0x74)
#define BME680_CONF_ODR_FILT_ADDR UINT8_C(0x75)
/** Coefficient's address */
#define BME680_COEFF_ADDR1 UINT8_C(0x89)
#define BME680_COEFF_ADDR2 UINT8_C(0xe1)
/** Chip identifier */
#define BME680_CHIP_ID_ADDR UINT8_C(0xd0)
/** Soft reset register */
#define BME680_SOFT_RESET_ADDR UINT8_C(0xe0)
/** Heater control settings */
#define BME680_ENABLE_HEATER UINT8_C(0x00)
#define BME680_DISABLE_HEATER UINT8_C(0x08)
/** Gas measurement settings */
#define BME680_DISABLE_GAS_MEAS UINT8_C(0x00)
#define BME680_ENABLE_GAS_MEAS UINT8_C(0x01)
/** Over-sampling settings */
#define BME680_OS_NONE UINT8_C(0)
#define BME680_OS_1X UINT8_C(1)
#define BME680_OS_2X UINT8_C(2)
#define BME680_OS_4X UINT8_C(3)
#define BME680_OS_8X UINT8_C(4)
#define BME680_OS_16X UINT8_C(5)
/** IIR filter settings */
#define BME680_FILTER_SIZE_0 UINT8_C(0)
#define BME680_FILTER_SIZE_1 UINT8_C(1)
#define BME680_FILTER_SIZE_3 UINT8_C(2)
#define BME680_FILTER_SIZE_7 UINT8_C(3)
#define BME680_FILTER_SIZE_15 UINT8_C(4)
#define BME680_FILTER_SIZE_31 UINT8_C(5)
#define BME680_FILTER_SIZE_63 UINT8_C(6)
#define BME680_FILTER_SIZE_127 UINT8_C(7)
/** Power mode settings */
#define BME680_SLEEP_MODE UINT8_C(0)
#define BME680_FORCED_MODE UINT8_C(1)
/** Delay related macro declaration */
#define BME680_RESET_PERIOD UINT32_C(10)
/** SPI memory page settings */
#define BME680_MEM_PAGE0 UINT8_C(0x10)
#define BME680_MEM_PAGE1 UINT8_C(0x00)
/** Ambient humidity shift value for compensation */
#define BME680_HUM_REG_SHIFT_VAL UINT8_C(4)
/** Run gas enable and disable settings */
#define BME680_RUN_GAS_DISABLE UINT8_C(0)
#define BME680_RUN_GAS_ENABLE UINT8_C(1)
/** Buffer length macro declaration */
#define BME680_TMP_BUFFER_LENGTH UINT8_C(40)
#define BME680_REG_BUFFER_LENGTH UINT8_C(6)
#define BME680_FIELD_DATA_LENGTH UINT8_C(3)
#define BME680_GAS_REG_BUF_LENGTH UINT8_C(20)
#define BME680_GAS_HEATER_PROF_LEN_MAX UINT8_C(10)
/** Settings selector */
#define BME680_OST_SEL UINT16_C(1)
#define BME680_OSP_SEL UINT16_C(2)
#define BME680_OSH_SEL UINT16_C(4)
#define BME680_GAS_MEAS_SEL UINT16_C(8)
#define BME680_FILTER_SEL UINT16_C(16)
#define BME680_HCNTRL_SEL UINT16_C(32)
#define BME680_RUN_GAS_SEL UINT16_C(64)
#define BME680_NBCONV_SEL UINT16_C(128)
#define BME680_GAS_SENSOR_SEL (BME680_GAS_MEAS_SEL | BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)
/** Number of conversion settings*/
#define BME680_NBCONV_MIN UINT8_C(0)
#define BME680_NBCONV_MAX UINT8_C(10)
/** Mask definitions */
#define BME680_GAS_MEAS_MSK UINT8_C(0x30)
#define BME680_NBCONV_MSK UINT8_C(0X0F)
#define BME680_FILTER_MSK UINT8_C(0X1C)
#define BME680_OST_MSK UINT8_C(0XE0)
#define BME680_OSP_MSK UINT8_C(0X1C)
#define BME680_OSH_MSK UINT8_C(0X07)
#define BME680_HCTRL_MSK UINT8_C(0x08)
#define BME680_RUN_GAS_MSK UINT8_C(0x10)
#define BME680_MODE_MSK UINT8_C(0x03)
#define BME680_RHRANGE_MSK UINT8_C(0x30)
#define BME680_RSERROR_MSK UINT8_C(0xf0)
#define BME680_NEW_DATA_MSK UINT8_C(0x80)
#define BME680_GAS_INDEX_MSK UINT8_C(0x0f)
#define BME680_GAS_RANGE_MSK UINT8_C(0x0f)
#define BME680_GASM_VALID_MSK UINT8_C(0x20)
#define BME680_HEAT_STAB_MSK UINT8_C(0x10)
#define BME680_MEM_PAGE_MSK UINT8_C(0x10)
#define BME680_SPI_RD_MSK UINT8_C(0x80)
#define BME680_SPI_WR_MSK UINT8_C(0x7f)
#define BME680_BIT_H1_DATA_MSK UINT8_C(0x0F)
/** Bit position definitions for sensor settings */
#define BME680_GAS_MEAS_POS UINT8_C(4)
#define BME680_FILTER_POS UINT8_C(2)
#define BME680_OST_POS UINT8_C(5)
#define BME680_OSP_POS UINT8_C(2)
#define BME680_RUN_GAS_POS UINT8_C(4)
/** Array Index to Field data mapping for Calibration Data*/
#define BME680_T2_LSB_REG (1)
#define BME680_T2_MSB_REG (2)
#define BME680_T3_REG (3)
#define BME680_P1_LSB_REG (5)
#define BME680_P1_MSB_REG (6)
#define BME680_P2_LSB_REG (7)
#define BME680_P2_MSB_REG (8)
#define BME680_P3_REG (9)
#define BME680_P4_LSB_REG (11)
#define BME680_P4_MSB_REG (12)
#define BME680_P5_LSB_REG (13)
#define BME680_P5_MSB_REG (14)
#define BME680_P7_REG (15)
#define BME680_P6_REG (16)
#define BME680_P8_LSB_REG (19)
#define BME680_P8_MSB_REG (20)
#define BME680_P9_LSB_REG (21)
#define BME680_P9_MSB_REG (22)
#define BME680_P10_REG (23)
#define BME680_H2_MSB_REG (25)
#define BME680_H2_LSB_REG (26)
#define BME680_H1_LSB_REG (26)
#define BME680_H1_MSB_REG (27)
#define BME680_H3_REG (28)
#define BME680_H4_REG (29)
#define BME680_H5_REG (30)
#define BME680_H6_REG (31)
#define BME680_H7_REG (32)
#define BME680_T1_LSB_REG (33)
#define BME680_T1_MSB_REG (34)
#define BME680_GH2_LSB_REG (35)
#define BME680_GH2_MSB_REG (36)
#define BME680_GH1_REG (37)
#define BME680_GH3_REG (38)
/** BME680 register buffer index settings*/
#define BME680_REG_FILTER_INDEX UINT8_C(5)
#define BME680_REG_TEMP_INDEX UINT8_C(4)
#define BME680_REG_PRES_INDEX UINT8_C(4)
#define BME680_REG_HUM_INDEX UINT8_C(2)
#define BME680_REG_NBCONV_INDEX UINT8_C(1)
#define BME680_REG_RUN_GAS_INDEX UINT8_C(1)
#define BME680_REG_HCTRL_INDEX UINT8_C(0)
/** Macro to combine two 8 bit data's to form a 16 bit data */
#define BME680_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb)
/** Macro to SET and GET BITS of a register */
#define BME680_SET_BITS(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
((data << bitname##_POS) & bitname##_MSK))
#define BME680_GET_BITS(reg_data, bitname) ((reg_data & (bitname##_MSK)) >> \
(bitname##_POS))
/** Macro variant to handle the bitname position if it is zero */
#define BME680_SET_BITS_POS_0(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
(data & bitname##_MSK))
#define BME680_GET_BITS_POS_0(reg_data, bitname) (reg_data & (bitname##_MSK))
/** Type definitions */
/*
* Generic communication function pointer
* @param[in] dev_id: Place holder to store the id of the device structure
* Can be used to store the index of the Chip select or
* I2C address of the device.
* @param[in] reg_addr: Used to select the register the where data needs to
* be read from or written to.
* @param[in/out] reg_data: Data array to read/write
* @param[in] len: Length of the data array
*/
typedef int8_t (*bme680_com_fptr_t)(uint8_t dev_id, uint8_t reg_addr, uint8_t *data, uint16_t len);
/*
* Delay function pointer
* @param[in] period: Time period in milliseconds
*/
typedef void (*bme680_delay_fptr_t)(uint32_t period);
/*!
* @brief Interface selection Enumerations
*/
enum bme680_intf {
/*! SPI interface */
BME680_SPI_INTF,
/*! I2C interface */
BME680_I2C_INTF
};
/* structure definitions */
/*!
* @brief Sensor field data structure
*/
struct bme680_field_data {
/*! Contains new_data, gasm_valid & heat_stab */
uint8_t status;
/*! The index of the heater profile used */
uint8_t gas_index;
/*! Measurement index to track order */
uint8_t meas_index;
/*! Temperature in degree celsius x100 */
int16_t temperature;
/*! Pressure in Pascal */
uint32_t pressure;
/*! Humidity in % relative humidity x1000 */
uint32_t humidity;
/*! Gas resistance in Ohms */
uint32_t gas_resistance;
};
/*!
* @brief Structure to hold the Calibration data
*/
struct bme680_calib_data {
/*! Variable to store calibrated humidity data */
uint16_t par_h1;
/*! Variable to store calibrated humidity data */
uint16_t par_h2;
/*! Variable to store calibrated humidity data */
int8_t par_h3;
/*! Variable to store calibrated humidity data */
int8_t par_h4;
/*! Variable to store calibrated humidity data */
int8_t par_h5;
/*! Variable to store calibrated humidity data */
uint8_t par_h6;
/*! Variable to store calibrated humidity data */
int8_t par_h7;
/*! Variable to store calibrated gas data */
int8_t par_gh1;
/*! Variable to store calibrated gas data */
int16_t par_gh2;
/*! Variable to store calibrated gas data */
int8_t par_gh3;
/*! Variable to store calibrated temperature data */
uint16_t par_t1;
/*! Variable to store calibrated temperature data */
int16_t par_t2;
/*! Variable to store calibrated temperature data */
int8_t par_t3;
/*! Variable to store calibrated pressure data */
uint16_t par_p1;
/*! Variable to store calibrated pressure data */
int16_t par_p2;
/*! Variable to store calibrated pressure data */
int8_t par_p3;
/*! Variable to store calibrated pressure data */
int16_t par_p4;
/*! Variable to store calibrated pressure data */
int16_t par_p5;
/*! Variable to store calibrated pressure data */
int8_t par_p6;
/*! Variable to store calibrated pressure data */
int8_t par_p7;
/*! Variable to store calibrated pressure data */
int16_t par_p8;
/*! Variable to store calibrated pressure data */
int16_t par_p9;
/*! Variable to store calibrated pressure data */
uint8_t par_p10;
/*! Variable to store t_fine size */
int32_t t_fine;
/*! Variable to store heater resistance range */
uint8_t res_heat_range;
/*! Variable to store heater resistance value */
int8_t res_heat_val;
/*! Variable to store error range */
int8_t range_sw_err;
};
/*!
* @brief BME680 sensor settings structure which comprises of ODR,
* over-sampling and filter settings.
*/
struct bme680_tph_sett {
/*! Humidity oversampling */
uint8_t os_hum;
/*! Temperature oversampling */
uint8_t os_temp;
/*! Pressure oversampling */
uint8_t os_pres;
/*! Filter coefficient */
uint8_t filter;
};
/*!
* @brief BME680 gas sensor which comprises of gas settings
* and status parameters
*/
struct bme680_gas_sett {
/*! Variable to store nb conversion */
uint8_t nb_conv;
/*! Variable to store heater control */
uint8_t heatr_ctrl;
/*! Run gas enable value */
uint8_t run_gas;
/*! Pointer to store heater temperature */
uint16_t heatr_temp;
/*! Pointer to store duration profile */
uint16_t heatr_dur;
};
/*!
* @brief BME680 device structure
*/
struct bme680_dev {
/*! Chip Id */
uint8_t chip_id;
/*! Device Id */
uint8_t dev_id;
/*! SPI/I2C interface */
enum bme680_intf intf;
/*! Memory page used */
uint8_t mem_page;
/*! Ambient temperature in Degree C*/
int8_t amb_temp;
/*! Sensor calibration data */
struct bme680_calib_data calib;
/*! Sensor settings */
struct bme680_tph_sett tph_sett;
/*! Gas Sensor settings */
struct bme680_gas_sett gas_sett;
/*! Sensor power modes */
uint8_t power_mode;
/*! New sensor fields */
uint8_t new_fields;
/*! Store the info messages */
uint8_t info_msg;
/*! Burst read structure */
bme680_com_fptr_t read;
/*! Burst write structure */
bme680_com_fptr_t write;
/*! Delay in ms */
bme680_delay_fptr_t delay_ms;
/*! Communication function result */
int8_t com_rslt;
};
#endif /* BME680_DEFS_H_ */
/** @}*/
/** @}*/

@ -0,0 +1,323 @@
/**
* Copyright (c) 2021 Bosch Sensortec GmbH. All rights reserved.
*
* BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @file bme68x.h
* @date 2021-11-09
* @version v4.4.7
*
*/
/*!
* @defgroup bme68x BME68X
* @brief <a href="https://www.bosch-sensortec.com/bst/products/all_products/bme680">Product Overview</a>
* and <a href="https://github.com/BoschSensortec/BME68x-Sensor-API">Sensor API Source Code</a>
*/
#ifndef BME68X_H_
#define BME68X_H_
#include "bme68x_defs.h"
/* CPP guard */
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup bme68x
* \defgroup bme68xApiInit Initialization
* @brief Initialize the sensor and device structure
*/
/*!
* \ingroup bme68xApiInit
* \page bme68x_api_bme68x_init bme68x_init
* \code
* int8_t bme68x_init(struct bme68x_dev *dev);
* \endcode
* @details This API reads the chip-id of the sensor which is the first step to
* verify the sensor and also calibrates the sensor
* As this API is the entry point, call this API before using other APIs.
*
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_init(struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiRegister Registers
* @brief Generic API for accessing sensor registers
*/
/*!
* \ingroup bme68xApiRegister
* \page bme68x_api_bme68x_set_regs bme68x_set_regs
* \code
* int8_t bme68x_set_regs(const uint8_t reg_addr, const uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev)
* \endcode
* @details This API writes the given data to the register address of the sensor
*
* @param[in] reg_addr : Register addresses to where the data is to be written
* @param[in] reg_data : Pointer to data buffer which is to be written
* in the reg_addr of sensor.
* @param[in] len : No of bytes of data to write
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiRegister
* \page bme68x_api_bme68x_get_regs bme68x_get_regs
* \code
* int8_t bme68x_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev)
* \endcode
* @details This API reads the data from the given register address of sensor.
*
* @param[in] reg_addr : Register address from where the data to be read
* @param[out] reg_data : Pointer to data buffer to store the read data.
* @param[in] len : No of bytes of data to be read.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiSystem System
* @brief API that performs system-level operations
*/
/*!
* \ingroup bme68xApiSystem
* \page bme68x_api_bme68x_soft_reset bme68x_soft_reset
* \code
* int8_t bme68x_soft_reset(struct bme68x_dev *dev);
* \endcode
* @details This API soft-resets the sensor.
*
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_soft_reset(struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiOm Operation mode
* @brief API to configure operation mode
*/
/*!
* \ingroup bme68xApiOm
* \page bme68x_api_bme68x_set_op_mode bme68x_set_op_mode
* \code
* int8_t bme68x_set_op_mode(const uint8_t op_mode, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the operation mode of the sensor
* @param[in] op_mode : Desired operation mode.
* @param[in] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_op_mode(const uint8_t op_mode, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiOm
* \page bme68x_api_bme68x_get_op_mode bme68x_get_op_mode
* \code
* int8_t bme68x_get_op_mode(uint8_t *op_mode, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the operation mode of the sensor.
*
* @param[out] op_mode : Desired operation mode.
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_op_mode(uint8_t *op_mode, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_meas_dur bme68x_get_meas_dur
* \code
* uint32_t bme68x_get_meas_dur(const uint8_t op_mode, struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the remaining duration that can be used for heating.
*
* @param[in] op_mode : Desired operation mode.
* @param[in] conf : Desired sensor configuration.
* @param[in] dev : Structure instance of bme68x_dev
*
* @return Measurement duration calculated in microseconds
*/
uint32_t bme68x_get_meas_dur(const uint8_t op_mode, struct bme68x_conf *conf, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiData Data Read out
* @brief Read our data from the sensor
*/
/*!
* \ingroup bme68xApiData
* \page bme68x_api_bme68x_get_data bme68x_get_data
* \code
* int8_t bme68x_get_data(uint8_t op_mode, struct bme68x_data *data, uint8_t *n_data, struct bme68x_dev *dev);
* \endcode
* @details This API reads the pressure, temperature and humidity and gas data
* from the sensor, compensates the data and store it in the bme68x_data
* structure instance passed by the user.
*
* @param[in] op_mode : Expected operation mode.
* @param[out] data : Structure instance to hold the data.
* @param[out] n_data : Number of data instances available.
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_data(uint8_t op_mode, struct bme68x_data *data, uint8_t *n_data, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiConfig Configuration
* @brief Configuration API of sensor
*/
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_set_conf bme68x_set_conf
* \code
* int8_t bme68x_set_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the oversampling, filter and odr configuration
*
* @param[in] conf : Desired sensor configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_conf bme68x_get_conf
* \code
* int8_t bme68x_get_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the oversampling, filter and odr
* configuration
*
* @param[out] conf : Present sensor configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_set_heatr_conf bme68x_set_heatr_conf
* \code
* int8_t bme68x_set_heatr_conf(uint8_t op_mode, const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the gas configuration of the sensor.
*
* @param[in] op_mode : Expected operation mode of the sensor.
* @param[in] conf : Desired heating configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_heatr_conf(uint8_t op_mode, const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_heatr_conf bme68x_get_heatr_conf
* \code
* int8_t bme68x_get_heatr_conf(const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the gas configuration of the sensor.
*
* @param[out] conf : Current configurations of the gas sensor.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_heatr_conf(const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiSystem
* \page bme68x_api_bme68x_selftest_check bme68x_selftest_check
* \code
* int8_t bme68x_selftest_check(const struct bme68x_dev *dev);
* \endcode
* @details This API performs Self-test of low gas variant of BME68X
*
* @param[in, out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_selftest_check(const struct bme68x_dev *dev);
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* BME68X_H_ */

@ -0,0 +1,972 @@
/**
* Copyright (c) 2021 Bosch Sensortec GmbH. All rights reserved.
*
* BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @file bme68x_defs.h
* @date 2021-11-09
* @version v4.4.7
*
*/
/*! @cond DOXYGEN_SUPRESS */
#ifndef BME68X_DEFS_H_
#define BME68X_DEFS_H_
/********************************************************* */
/*! Header includes */
/********************************************************* */
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/kernel.h>
#else
#include <stdint.h>
#include <stddef.h>
#endif
/********************************************************* */
/*! Common Macros */
/********************************************************* */
#ifdef __KERNEL__
#if !defined(UINT8_C) && !defined(INT8_C)
#define INT8_C(x) S8_C(x)
#define UINT8_C(x) U8_C(x)
#endif
#if !defined(UINT16_C) && !defined(INT16_C)
#define INT16_C(x) S16_C(x)
#define UINT16_C(x) U16_C(x)
#endif
#if !defined(INT32_C) && !defined(UINT32_C)
#define INT32_C(x) S32_C(x)
#define UINT32_C(x) U32_C(x)
#endif
#if !defined(INT64_C) && !defined(UINT64_C)
#define INT64_C(x) S64_C(x)
#define UINT64_C(x) U64_C(x)
#endif
#endif
/*! C standard macros */
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *) 0)
#endif
#endif
#ifndef BME68X_DO_NOT_USE_FPU
/* Comment or un-comment the macro to provide floating point data output */
#define BME68X_USE_FPU
#endif
/* Period between two polls (value can be given by user) */
#ifndef BME68X_PERIOD_POLL
#define BME68X_PERIOD_POLL UINT32_C(10000)
#endif
/* BME68X unique chip identifier */
#define BME68X_CHIP_ID UINT8_C(0x61)
/* Period for a soft reset */
#define BME68X_PERIOD_RESET UINT32_C(10000)
/* BME68X lower I2C address */
#define BME68X_I2C_ADDR_LOW UINT8_C(0x76)
/* BME68X higher I2C address */
#define BME68X_I2C_ADDR_HIGH UINT8_C(0x77)
/* Soft reset command */
#define BME68X_SOFT_RESET_CMD UINT8_C(0xb6)
/* Return code definitions */
/* Success */
#define BME68X_OK INT8_C(0)
/* Errors */
/* Null pointer passed */
#define BME68X_E_NULL_PTR INT8_C(-1)
/* Communication failure */
#define BME68X_E_COM_FAIL INT8_C(-2)
/* Sensor not found */
#define BME68X_E_DEV_NOT_FOUND INT8_C(-3)
/* Incorrect length parameter */
#define BME68X_E_INVALID_LENGTH INT8_C(-4)
/* Self test fail error */
#define BME68X_E_SELF_TEST INT8_C(-5)
/* Warnings */
/* Define a valid operation mode */
#define BME68X_W_DEFINE_OP_MODE INT8_C(1)
/* No new data was found */
#define BME68X_W_NO_NEW_DATA INT8_C(2)
/* Define the shared heating duration */
#define BME68X_W_DEFINE_SHD_HEATR_DUR INT8_C(3)
/* Information - only available via bme68x_dev.info_msg */
#define BME68X_I_PARAM_CORR UINT8_C(1)
/* Register map addresses in I2C */
/* Register for 3rd group of coefficients */
#define BME68X_REG_COEFF3 UINT8_C(0x00)
/* 0th Field address*/
#define BME68X_REG_FIELD0 UINT8_C(0x1d)
/* 0th Current DAC address*/
#define BME68X_REG_IDAC_HEAT0 UINT8_C(0x50)
/* 0th Res heat address */
#define BME68X_REG_RES_HEAT0 UINT8_C(0x5a)
/* 0th Gas wait address */
#define BME68X_REG_GAS_WAIT0 UINT8_C(0x64)
/* Shared heating duration address */
#define BME68X_REG_SHD_HEATR_DUR UINT8_C(0x6E)
/* CTRL_GAS_0 address */
#define BME68X_REG_CTRL_GAS_0 UINT8_C(0x70)
/* CTRL_GAS_1 address */
#define BME68X_REG_CTRL_GAS_1 UINT8_C(0x71)
/* CTRL_HUM address */
#define BME68X_REG_CTRL_HUM UINT8_C(0x72)
/* CTRL_MEAS address */
#define BME68X_REG_CTRL_MEAS UINT8_C(0x74)
/* CONFIG address */
#define BME68X_REG_CONFIG UINT8_C(0x75)
/* MEM_PAGE address */
#define BME68X_REG_MEM_PAGE UINT8_C(0xf3)
/* Unique ID address */
#define BME68X_REG_UNIQUE_ID UINT8_C(0x83)
/* Register for 1st group of coefficients */
#define BME68X_REG_COEFF1 UINT8_C(0x8a)
/* Chip ID address */
#define BME68X_REG_CHIP_ID UINT8_C(0xd0)
/* Soft reset address */
#define BME68X_REG_SOFT_RESET UINT8_C(0xe0)
/* Register for 2nd group of coefficients */
#define BME68X_REG_COEFF2 UINT8_C(0xe1)
/* Variant ID Register */
#define BME68X_REG_VARIANT_ID UINT8_C(0xF0)
/* Enable/Disable macros */
/* Enable */
#define BME68X_ENABLE UINT8_C(0x01)
/* Disable */
#define BME68X_DISABLE UINT8_C(0x00)
/* Variant ID macros */
/* Low Gas variant */
#define BME68X_VARIANT_GAS_LOW UINT8_C(0x00)
/* High Gas variant */
#define BME68X_VARIANT_GAS_HIGH UINT8_C(0x01)
/* Oversampling setting macros */
/* Switch off measurement */
#define BME68X_OS_NONE UINT8_C(0)
/* Perform 1 measurement */
#define BME68X_OS_1X UINT8_C(1)
/* Perform 2 measurements */
#define BME68X_OS_2X UINT8_C(2)
/* Perform 4 measurements */
#define BME68X_OS_4X UINT8_C(3)
/* Perform 8 measurements */
#define BME68X_OS_8X UINT8_C(4)
/* Perform 16 measurements */
#define BME68X_OS_16X UINT8_C(5)
/* IIR Filter settings */
/* Switch off the filter */
#define BME68X_FILTER_OFF UINT8_C(0)
/* Filter coefficient of 2 */
#define BME68X_FILTER_SIZE_1 UINT8_C(1)
/* Filter coefficient of 4 */
#define BME68X_FILTER_SIZE_3 UINT8_C(2)
/* Filter coefficient of 8 */
#define BME68X_FILTER_SIZE_7 UINT8_C(3)
/* Filter coefficient of 16 */
#define BME68X_FILTER_SIZE_15 UINT8_C(4)
/* Filter coefficient of 32 */
#define BME68X_FILTER_SIZE_31 UINT8_C(5)
/* Filter coefficient of 64 */
#define BME68X_FILTER_SIZE_63 UINT8_C(6)
/* Filter coefficient of 128 */
#define BME68X_FILTER_SIZE_127 UINT8_C(7)
/* ODR/Standby time macros */
/* Standby time of 0.59ms */
#define BME68X_ODR_0_59_MS UINT8_C(0)
/* Standby time of 62.5ms */
#define BME68X_ODR_62_5_MS UINT8_C(1)
/* Standby time of 125ms */
#define BME68X_ODR_125_MS UINT8_C(2)
/* Standby time of 250ms */
#define BME68X_ODR_250_MS UINT8_C(3)
/* Standby time of 500ms */
#define BME68X_ODR_500_MS UINT8_C(4)
/* Standby time of 1s */
#define BME68X_ODR_1000_MS UINT8_C(5)
/* Standby time of 10ms */
#define BME68X_ODR_10_MS UINT8_C(6)
/* Standby time of 20ms */
#define BME68X_ODR_20_MS UINT8_C(7)
/* No standby time */
#define BME68X_ODR_NONE UINT8_C(8)
/* Operating mode macros */
/* Sleep operation mode */
#define BME68X_SLEEP_MODE UINT8_C(0)
/* Forced operation mode */
#define BME68X_FORCED_MODE UINT8_C(1)
/* Parallel operation mode */
#define BME68X_PARALLEL_MODE UINT8_C(2)
/* Sequential operation mode */
#define BME68X_SEQUENTIAL_MODE UINT8_C(3)
/* SPI page macros */
/* SPI memory page 0 */
#define BME68X_MEM_PAGE0 UINT8_C(0x10)
/* SPI memory page 1 */
#define BME68X_MEM_PAGE1 UINT8_C(0x00)
/* Coefficient index macros */
/* Length for all coefficients */
#define BME68X_LEN_COEFF_ALL UINT8_C(42)
/* Length for 1st group of coefficients */
#define BME68X_LEN_COEFF1 UINT8_C(23)
/* Length for 2nd group of coefficients */
#define BME68X_LEN_COEFF2 UINT8_C(14)
/* Length for 3rd group of coefficients */
#define BME68X_LEN_COEFF3 UINT8_C(5)
/* Length of the field */
#define BME68X_LEN_FIELD UINT8_C(17)
/* Length between two fields */
#define BME68X_LEN_FIELD_OFFSET UINT8_C(17)
/* Length of the configuration register */
#define BME68X_LEN_CONFIG UINT8_C(5)
/* Length of the interleaved buffer */
#define BME68X_LEN_INTERLEAVE_BUFF UINT8_C(20)
/* Coefficient index macros */
/* Coefficient T2 LSB position */
#define BME68X_IDX_T2_LSB (0)
/* Coefficient T2 MSB position */
#define BME68X_IDX_T2_MSB (1)
/* Coefficient T3 position */
#define BME68X_IDX_T3 (2)
/* Coefficient P1 LSB position */
#define BME68X_IDX_P1_LSB (4)
/* Coefficient P1 MSB position */
#define BME68X_IDX_P1_MSB (5)
/* Coefficient P2 LSB position */
#define BME68X_IDX_P2_LSB (6)
/* Coefficient P2 MSB position */
#define BME68X_IDX_P2_MSB (7)
/* Coefficient P3 position */
#define BME68X_IDX_P3 (8)
/* Coefficient P4 LSB position */
#define BME68X_IDX_P4_LSB (10)
/* Coefficient P4 MSB position */
#define BME68X_IDX_P4_MSB (11)
/* Coefficient P5 LSB position */
#define BME68X_IDX_P5_LSB (12)
/* Coefficient P5 MSB position */
#define BME68X_IDX_P5_MSB (13)
/* Coefficient P7 position */
#define BME68X_IDX_P7 (14)
/* Coefficient P6 position */
#define BME68X_IDX_P6 (15)
/* Coefficient P8 LSB position */
#define BME68X_IDX_P8_LSB (18)
/* Coefficient P8 MSB position */
#define BME68X_IDX_P8_MSB (19)
/* Coefficient P9 LSB position */
#define BME68X_IDX_P9_LSB (20)
/* Coefficient P9 MSB position */
#define BME68X_IDX_P9_MSB (21)
/* Coefficient P10 position */
#define BME68X_IDX_P10 (22)
/* Coefficient H2 MSB position */
#define BME68X_IDX_H2_MSB (23)
/* Coefficient H2 LSB position */
#define BME68X_IDX_H2_LSB (24)
/* Coefficient H1 LSB position */
#define BME68X_IDX_H1_LSB (24)
/* Coefficient H1 MSB position */
#define BME68X_IDX_H1_MSB (25)
/* Coefficient H3 position */
#define BME68X_IDX_H3 (26)
/* Coefficient H4 position */
#define BME68X_IDX_H4 (27)
/* Coefficient H5 position */
#define BME68X_IDX_H5 (28)
/* Coefficient H6 position */
#define BME68X_IDX_H6 (29)
/* Coefficient H7 position */
#define BME68X_IDX_H7 (30)
/* Coefficient T1 LSB position */
#define BME68X_IDX_T1_LSB (31)
/* Coefficient T1 MSB position */
#define BME68X_IDX_T1_MSB (32)
/* Coefficient GH2 LSB position */
#define BME68X_IDX_GH2_LSB (33)
/* Coefficient GH2 MSB position */
#define BME68X_IDX_GH2_MSB (34)
/* Coefficient GH1 position */
#define BME68X_IDX_GH1 (35)
/* Coefficient GH3 position */
#define BME68X_IDX_GH3 (36)
/* Coefficient res heat value position */
#define BME68X_IDX_RES_HEAT_VAL (37)
/* Coefficient res heat range position */
#define BME68X_IDX_RES_HEAT_RANGE (39)
/* Coefficient range switching error position */
#define BME68X_IDX_RANGE_SW_ERR (41)
/* Gas measurement macros */
/* Disable gas measurement */
#define BME68X_DISABLE_GAS_MEAS UINT8_C(0x00)
/* Enable gas measurement low */
#define BME68X_ENABLE_GAS_MEAS_L UINT8_C(0x01)
/* Enable gas measurement high */
#define BME68X_ENABLE_GAS_MEAS_H UINT8_C(0x02)
/* Heater control macros */
/* Enable heater */
#define BME68X_ENABLE_HEATER UINT8_C(0x00)
/* Disable heater */
#define BME68X_DISABLE_HEATER UINT8_C(0x01)
#ifdef BME68X_USE_FPU
/* 0 degree Celsius */
#define BME68X_MIN_TEMPERATURE INT16_C(0)
/* 60 degree Celsius */
#define BME68X_MAX_TEMPERATURE INT16_C(60)
/* 900 hecto Pascals */
#define BME68X_MIN_PRESSURE UINT32_C(90000)
/* 1100 hecto Pascals */
#define BME68X_MAX_PRESSURE UINT32_C(110000)
/* 20% relative humidity */
#define BME68X_MIN_HUMIDITY UINT32_C(20)
/* 80% relative humidity*/
#define BME68X_MAX_HUMIDITY UINT32_C(80)
#else
/* 0 degree Celsius */
#define BME68X_MIN_TEMPERATURE INT16_C(0)
/* 60 degree Celsius */
#define BME68X_MAX_TEMPERATURE INT16_C(6000)
/* 900 hecto Pascals */
#define BME68X_MIN_PRESSURE UINT32_C(90000)
/* 1100 hecto Pascals */
#define BME68X_MAX_PRESSURE UINT32_C(110000)
/* 20% relative humidity */
#define BME68X_MIN_HUMIDITY UINT32_C(20000)
/* 80% relative humidity*/
#define BME68X_MAX_HUMIDITY UINT32_C(80000)
#endif
#define BME68X_HEATR_DUR1 UINT16_C(1000)
#define BME68X_HEATR_DUR2 UINT16_C(2000)
#define BME68X_HEATR_DUR1_DELAY UINT32_C(1000000)
#define BME68X_HEATR_DUR2_DELAY UINT32_C(2000000)
#define BME68X_N_MEAS UINT8_C(6)
#define BME68X_LOW_TEMP UINT8_C(150)
#define BME68X_HIGH_TEMP UINT16_C(350)
/* Mask macros */
/* Mask for number of conversions */
#define BME68X_NBCONV_MSK UINT8_C(0X0f)
/* Mask for IIR filter */
#define BME68X_FILTER_MSK UINT8_C(0X1c)
/* Mask for ODR[3] */
#define BME68X_ODR3_MSK UINT8_C(0x80)
/* Mask for ODR[2:0] */
#define BME68X_ODR20_MSK UINT8_C(0xe0)
/* Mask for temperature oversampling */
#define BME68X_OST_MSK UINT8_C(0Xe0)
/* Mask for pressure oversampling */
#define BME68X_OSP_MSK UINT8_C(0X1c)
/* Mask for humidity oversampling */
#define BME68X_OSH_MSK UINT8_C(0X07)
/* Mask for heater control */
#define BME68X_HCTRL_MSK UINT8_C(0x08)
/* Mask for run gas */
#define BME68X_RUN_GAS_MSK UINT8_C(0x30)
/* Mask for operation mode */
#define BME68X_MODE_MSK UINT8_C(0x03)
/* Mask for res heat range */
#define BME68X_RHRANGE_MSK UINT8_C(0x30)
/* Mask for range switching error */
#define BME68X_RSERROR_MSK UINT8_C(0xf0)
/* Mask for new data */
#define BME68X_NEW_DATA_MSK UINT8_C(0x80)
/* Mask for gas index */
#define BME68X_GAS_INDEX_MSK UINT8_C(0x0f)
/* Mask for gas range */
#define BME68X_GAS_RANGE_MSK UINT8_C(0x0f)
/* Mask for gas measurement valid */
#define BME68X_GASM_VALID_MSK UINT8_C(0x20)
/* Mask for heater stability */
#define BME68X_HEAT_STAB_MSK UINT8_C(0x10)
/* Mask for SPI memory page */
#define BME68X_MEM_PAGE_MSK UINT8_C(0x10)
/* Mask for reading a register in SPI */
#define BME68X_SPI_RD_MSK UINT8_C(0x80)
/* Mask for writing a register in SPI */
#define BME68X_SPI_WR_MSK UINT8_C(0x7f)
/* Mask for the H1 calibration coefficient */
#define BME68X_BIT_H1_DATA_MSK UINT8_C(0x0f)
/* Position macros */
/* Filter bit position */
#define BME68X_FILTER_POS UINT8_C(2)
/* Temperature oversampling bit position */
#define BME68X_OST_POS UINT8_C(5)
/* Pressure oversampling bit position */
#define BME68X_OSP_POS UINT8_C(2)
/* ODR[3] bit position */
#define BME68X_ODR3_POS UINT8_C(7)
/* ODR[2:0] bit position */
#define BME68X_ODR20_POS UINT8_C(5)
/* Run gas bit position */
#define BME68X_RUN_GAS_POS UINT8_C(4)
/* Heater control bit position */
#define BME68X_HCTRL_POS UINT8_C(3)
/* Macro to combine two 8 bit data's to form a 16 bit data */
#define BME68X_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb)
/* Macro to set bits */
#define BME68X_SET_BITS(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
((data << bitname##_POS) & bitname##_MSK))
/* Macro to get bits */
#define BME68X_GET_BITS(reg_data, bitname) ((reg_data & (bitname##_MSK)) >> \
(bitname##_POS))
/* Macro to set bits starting from position 0 */
#define BME68X_SET_BITS_POS_0(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
(data & bitname##_MSK))
/* Macro to get bits starting from position 0 */
#define BME68X_GET_BITS_POS_0(reg_data, bitname) (reg_data & (bitname##_MSK))
/**
* BME68X_INTF_RET_TYPE is the read/write interface return type which can be overwritten by the build system.
* The default is set to int8_t.
*/
#ifndef BME68X_INTF_RET_TYPE
#define BME68X_INTF_RET_TYPE int8_t
#endif
/**
* BME68X_INTF_RET_SUCCESS is the success return value read/write interface return type which can be
* overwritten by the build system. The default is set to 0. It is used to check for a successful
* execution of the read/write functions
*/
#ifndef BME68X_INTF_RET_SUCCESS
#define BME68X_INTF_RET_SUCCESS INT8_C(0)
#endif
/********************************************************* */
/*! Function Pointers */
/********************************************************* */
/*!
* @brief Bus communication function pointer which should be mapped to
* the platform specific read functions of the user
*
* @param[in] reg_addr : 8bit register address of the sensor
* @param[out] reg_data : Data from the specified address
* @param[in] length : Length of the reg_data array
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
* @retval 0 for Success
* @retval Non-zero for Failure
*/
typedef BME68X_INTF_RET_TYPE (*bme68x_read_fptr_t)(uint8_t reg_addr, uint8_t *reg_data, uint32_t length,
void *intf_ptr);
/*!
* @brief Bus communication function pointer which should be mapped to
* the platform specific write functions of the user
*
* @param[in] reg_addr : 8bit register address of the sensor
* @param[out] reg_data : Data to the specified address
* @param[in] length : Length of the reg_data array
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
* @retval 0 for Success
* @retval Non-zero for Failure
*
*/
typedef BME68X_INTF_RET_TYPE (*bme68x_write_fptr_t)(uint8_t reg_addr, const uint8_t *reg_data, uint32_t length,
void *intf_ptr);
/*!
* @brief Delay function pointer which should be mapped to
* delay function of the user
*
* @param period - The time period in microseconds
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
*/
typedef void (*bme68x_delay_us_fptr_t)(uint32_t period, void *intf_ptr);
/*
* @brief Generic communication function pointer
* @param[in] dev_id: Place holder to store the id of the device structure
* Can be used to store the index of the Chip select or
* I2C address of the device.
* @param[in] reg_addr: Used to select the register the where data needs to
* be read from or written to.
* @param[in,out] reg_data: Data array to read/write
* @param[in] len: Length of the data array
*/
/*
* @brief Interface selection Enumerations
*/
enum bme68x_intf {
/*! SPI interface */
BME68X_SPI_INTF,
/*! I2C interface */
BME68X_I2C_INTF
};
/* Structure definitions */
/*
* @brief Sensor field data structure
*/
struct bme68x_data
{
/*! Contains new_data, gasm_valid & heat_stab */
uint8_t status;
/*! The index of the heater profile used */
uint8_t gas_index;
/*! Measurement index to track order */
uint8_t meas_index;
/*! Heater resistance */
uint8_t res_heat;
/*! Current DAC */
uint8_t idac;
/*! Gas wait period */
uint8_t gas_wait;
#ifndef BME68X_USE_FPU
/*! Temperature in degree celsius x100 */
int16_t temperature;
/*! Pressure in Pascal */
uint32_t pressure;
/*! Humidity in % relative humidity x1000 */
uint32_t humidity;
/*! Gas resistance in Ohms */
uint32_t gas_resistance;
#else
/*! Temperature in degree celsius */
float temperature;
/*! Pressure in Pascal */
float pressure;
/*! Humidity in % relative humidity x1000 */
float humidity;
/*! Gas resistance in Ohms */
float gas_resistance;
#endif
};
/*
* @brief Structure to hold the calibration coefficients
*/
struct bme68x_calib_data
{
/*! Calibration coefficient for the humidity sensor */
uint16_t par_h1;
/*! Calibration coefficient for the humidity sensor */
uint16_t par_h2;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h3;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h4;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h5;
/*! Calibration coefficient for the humidity sensor */
uint8_t par_h6;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h7;
/*! Calibration coefficient for the gas sensor */
int8_t par_gh1;
/*! Calibration coefficient for the gas sensor */
int16_t par_gh2;
/*! Calibration coefficient for the gas sensor */
int8_t par_gh3;
/*! Calibration coefficient for the temperature sensor */
uint16_t par_t1;
/*! Calibration coefficient for the temperature sensor */
int16_t par_t2;
/*! Calibration coefficient for the temperature sensor */
int8_t par_t3;
/*! Calibration coefficient for the pressure sensor */
uint16_t par_p1;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p2;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p3;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p4;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p5;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p6;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p7;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p8;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p9;
/*! Calibration coefficient for the pressure sensor */
uint8_t par_p10;
#ifndef BME68X_USE_FPU
/*! Variable to store the intermediate temperature coefficient */
int32_t t_fine;
#else
/*! Variable to store the intermediate temperature coefficient */
float t_fine;
#endif
/*! Heater resistance range coefficient */
uint8_t res_heat_range;
/*! Heater resistance value coefficient */
int8_t res_heat_val;
/*! Gas resistance range switching error coefficient */
int8_t range_sw_err;
};
/*
* @brief BME68X sensor settings structure which comprises of ODR,
* over-sampling and filter settings.
*/
struct bme68x_conf
{
/*! Humidity oversampling. Refer @ref osx*/
uint8_t os_hum;
/*! Temperature oversampling. Refer @ref osx */
uint8_t os_temp;
/*! Pressure oversampling. Refer @ref osx */
uint8_t os_pres;
/*! Filter coefficient. Refer @ref filter*/
uint8_t filter;
/*!
* Standby time between sequential mode measurement profiles.
* Refer @ref odr
*/
uint8_t odr;
};
/*
* @brief BME68X gas heater configuration
*/
struct bme68x_heatr_conf
{
/*! Enable gas measurement. Refer @ref en_dis */
uint8_t enable;
/*! Store the heater temperature for forced mode degree Celsius */
uint16_t heatr_temp;
/*! Store the heating duration for forced mode in milliseconds */
uint16_t heatr_dur;
/*! Store the heater temperature profile in degree Celsius */
uint16_t *heatr_temp_prof;
/*! Store the heating duration profile in milliseconds */
uint16_t *heatr_dur_prof;
/*! Variable to store the length of the heating profile */
uint8_t profile_len;
/*!
* Variable to store heating duration for parallel mode
* in milliseconds
*/
uint16_t shared_heatr_dur;
};
/*
* @brief BME68X device structure
*/
struct bme68x_dev
{
/*! Chip Id */
uint8_t chip_id;
/*!
* The interface pointer is used to enable the user
* to link their interface descriptors for reference during the
* implementation of the read and write interfaces to the
* hardware.
*/
void *intf_ptr;
/*!
* Variant id
* ----------------------------------------
* Value | Variant
* ----------------------------------------
* 0 | BME68X_VARIANT_GAS_LOW
* 1 | BME68X_VARIANT_GAS_HIGH
* ----------------------------------------
*/
uint32_t variant_id;
/*! SPI/I2C interface */
enum bme68x_intf intf;
/*! Memory page used */
uint8_t mem_page;
/*! Ambient temperature in Degree C*/
int8_t amb_temp;
/*! Sensor calibration data */
struct bme68x_calib_data calib;
/*! Read function pointer */
bme68x_read_fptr_t read;
/*! Write function pointer */
bme68x_write_fptr_t write;
/*! Delay function pointer */
bme68x_delay_us_fptr_t delay_us;
/*! To store interface pointer error */
BME68X_INTF_RET_TYPE intf_rslt;
/*! Store the info messages */
uint8_t info_msg;
};
#endif /* BME68X_DEFS_H_ */
/*! @endcond */

@ -0,0 +1,135 @@
/**
* bsec2 but rewritten in C
*
* Created on 2021/12/12.
*/
#ifndef ESPNODE_BSEC2_H
#define ESPNODE_BSEC2_H
// BSEC
#include "bme68x.h"
#include "bsec_datatypes.h"
#include "bsec_interface.h"
#include <stdint.h>
#include <stdbool.h>
#define ARRAY_LEN(array) (sizeof(array)/sizeof((array)[0]))
#define BSEC_CHECK_INPUT(x, shift) ((x) & (1 << ((shift)-1)))
#define BSEC_TOTAL_HEAT_DUR UINT16_C(140)
typedef bsec_output_t bsecData;
typedef bsec_virtual_sensor_t bsecSensor;
typedef struct
{
bsecData output[BSEC_NUMBER_OUTPUTS];
uint8_t nOutputs;
} bsecOutputs;
struct bsec2;
typedef void (*bsecCallback)(const struct bme68x_data *data, const bsecOutputs *outputs, const struct bsec2 * bsec);
struct bsec2 {
// "public"
struct bme68x_dev *sensor;
bsec_version_t version;
bsec_library_return_t status;
// "private"
int8_t sensor_status;
bsec_bme_settings_t bmeConf;
bsecCallback newDataCallback;
bsecOutputs outputs;
uint8_t opMode;
float extTempOffset;
uint32_t ovfCounter;
uint32_t lastMillis;
uint8_t workBuffer[BSEC_MAX_WORKBUFFER_SIZE];
};
int bsec2_init(struct bsec2 *self, struct bme68x_dev *dev);
/**
* @brief Function that sets the desired sensors and the sample rates
* @param sensorList : The list of output sensors
* @param nSensors : Number of outputs requested
* @param sampleRate : The sample rate of requested sensors, def BSEC_SAMPLE_RATE_ULP
* @return true for success, false otherwise
*/
bool bsec2_updateSubscription(struct bsec2 *self, const bsecSensor *sensorList, uint8_t nSensors, float sampleRate);
/**
* @brief Callback from the user to read data from the BME68x using parallel/forced mode, process and store outputs
* @return true for success, false otherwise
*/
bool bsec2_run(struct bsec2 *self);
static inline void bsec2_attachCallback(struct bsec2 *self, bsecCallback callback)
{
self->newDataCallback = callback;
}
/**
* @brief Function to get the BSEC outputs
* @return pointer to BSEC outputs if available else nullptr
*/
static inline const bsecOutputs* bsec2_getOutputs(struct bsec2 *self)
{
if (self->outputs.nOutputs)
return &self->outputs;
return NULL;
}
/**
* @brief Function to get the BSEC output by sensor id
* @return pointer to BSEC output, nullptr otherwise
*/
bsecData bsec2_getData(struct bsec2 *self, bsecSensor id);
/**
* @brief Function to get the state of the algorithm to save to non-volatile memory
* @param state : Pointer to a memory location, to hold the state
* @return true for success, false otherwise
*/
bool bsec2_getState(struct bsec2 *self, uint8_t *state);
/**
* @brief Function to set the state of the algorithm from non-volatile memory
* @param state : Pointer to a memory location that contains the state
* @return true for success, false otherwise
*/
bool bsec2_setState(struct bsec2 *self, uint8_t *state);
/**
* @brief Function to retrieve the current library configuration
* @param config : Pointer to a memory location, to hold the serialized config blob
* @return true for success, false otherwise
*/
bool bsec2_getConfig(struct bsec2 *self, uint8_t *config);
/**
* @brief Function to set the configuration of the algorithm from memory
* @param state : Pointer to a memory location that contains the configuration
* @return true for success, false otherwise
*/
bool bsec2_setConfig(struct bsec2 *self, const uint8_t *config);
/**
* @brief Function to set the temperature offset
* @param tempOffset : Temperature offset in degree Celsius
*/
static inline void bsec2_setTemperatureOffset(struct bsec2 *self, float tempOffset)
{
self->extTempOffset = tempOffset;
}
/**
* @brief Function to calculate an int64_t timestamp in milliseconds
*/
int64_t bsec2_getTimeMs(struct bsec2 *self);
extern void bsec2_errormsg(const char *msg);
extern uint32_t bsec2_timestamp_millis();
#endif //ESPNODE_BSEC2_H

@ -0,0 +1,506 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
* @file bsec_datatypes.h
*
* @brief
* Contains the data types used by BSEC
*
*/
#ifndef __BSEC_DATATYPES_H__
#define __BSEC_DATATYPES_H__
#ifdef __cplusplus
extern "C"
{
#endif
/*!
* @addtogroup bsec_interface BSEC C Interface
* @{*/
#ifdef __KERNEL__
#include <linux/types.h>
#endif
#include <stdint.h>
#include <stddef.h>
#define BSEC_MAX_WORKBUFFER_SIZE (4096) /*!< Maximum size (in bytes) of the work buffer */
#define BSEC_MAX_PHYSICAL_SENSOR (8) /*!< Number of physical sensors that need allocated space before calling bsec_update_subscription() */
#define BSEC_MAX_PROPERTY_BLOB_SIZE (2277) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_configuration() */
#define BSEC_MAX_STATE_BLOB_SIZE (197) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_state()*/
#define BSEC_SAMPLE_RATE_DISABLED (65535.0f) /*!< Sample rate of a disabled sensor */
#define BSEC_SAMPLE_RATE_ULP (0.0033333f) /*!< Sample rate in case of Ultra Low Power Mode */
#define BSEC_SAMPLE_RATE_LP (0.33333f) /*!< Sample rate in case of Low Power Mode */
#define BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND (0.0f) /*!< Input value used to trigger an extra measurment (ULP plus) */
#define BSEC_SAMPLE_RATE_HIGH_PERFORMANCE (0.055556f) /*!< Sample rate in case of high performance */
#define BSEC_PROCESS_PRESSURE (1 << (BSEC_INPUT_PRESSURE-1)) /*!< process_data bitfield constant for pressure @sa bsec_bme_settings_t */
#define BSEC_PROCESS_TEMPERATURE (1 << (BSEC_INPUT_TEMPERATURE-1)) /*!< process_data bitfield constant for temperature @sa bsec_bme_settings_t */
#define BSEC_PROCESS_HUMIDITY (1 << (BSEC_INPUT_HUMIDITY-1)) /*!< process_data bitfield constant for humidity @sa bsec_bme_settings_t */
#define BSEC_PROCESS_GAS (1 << (BSEC_INPUT_GASRESISTOR-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */
#define BSEC_NUMBER_OUTPUTS (19) /*!< Number of outputs, depending on solution */
#define BSEC_OUTPUT_INCLUDED (66222575) /*!< bitfield that indicates which outputs are included in the solution */
/*!
* @brief Enumeration for input (physical) sensors.
*
* Used to populate bsec_input_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* returned in the parameter required_sensor_settings of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_input_t
*/
typedef enum
{
/**
* @brief Pressure sensor output of BMExxx [Pa]
*/
BSEC_INPUT_PRESSURE = 1,
/**
* @brief Humidity sensor output of BMExxx [%]
*
* @note Relative humidity strongly depends on the temperature (it is measured at). It may require a conversion to
* the temperature outside of the device.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HUMIDITY = 2,
/**
* @brief Temperature sensor output of BMExxx [degrees Celsius]
*
* @note The BME680 is factory trimmed, thus the temperature sensor of the BME680 is very accurate.
* The temperature value is a very local measurement value and can be influenced by external heat sources.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_TEMPERATURE = 3,
/**
* @brief Gas sensor resistance output of BMExxx [Ohm]
*
* The resistance value changes due to varying VOC concentrations (the higher the concentration of reducing VOCs,
* the lower the resistance and vice versa).
*/
BSEC_INPUT_GASRESISTOR = 4, /*!< */
/**
* @brief Additional input for device heat compensation
*
* IAQ solution: The value is subtracted from ::BSEC_INPUT_TEMPERATURE to compute
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* ALL solution: Generic heat source 1
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HEATSOURCE = 14,
/**
* @brief Additional input for device heat compensation 8
*
* Generic heat source 8
*/
/**
* @brief Additional input that disables baseline tracker
*
* 0 - Normal
* 1 - Event 1
* 2 - Event 2
*/
BSEC_INPUT_DISABLE_BASELINE_TRACKER = 23,
/**
* @brief Additional input that provides information about the state of the profile (1-9)
*
*/
BSEC_INPUT_PROFILE_PART = 24
} bsec_physical_sensor_t;
/*!
* @brief Enumeration for output (virtual) sensors
*
* Used to populate bsec_output_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* passed in the parameter requested_virtual_sensors of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_output_t
*/
typedef enum
{
/**
* @brief Indoor-air-quality estimate [0-500]
*
* Indoor-air-quality (IAQ) gives an indication of the relative change in ambient TVOCs detected by BME680.
*
* @note The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air). During operation, algorithms
* automatically calibrate and adapt themselves to the typical environments where the sensor is operated
* (e.g., home, workplace, inside a car, etc.).This automatic background calibration ensures that users experience
* consistent IAQ performance. The calibration process considers the recent measurement history (typ. up to four
* days) to ensure that IAQ=25 corresponds to typical good air and IAQ=250 indicates typical polluted air.
*/
BSEC_OUTPUT_IAQ = 1,
BSEC_OUTPUT_STATIC_IAQ = 2, /*!< Unscaled indoor-air-quality estimate */
BSEC_OUTPUT_CO2_EQUIVALENT = 3, /*!< co2 equivalent estimate [ppm] */
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT = 4, /*!< breath VOC concentration estimate [ppm] */
/**
* @brief Temperature sensor signal [degrees Celsius]
*
* Temperature directly measured by BME680 in degree Celsius.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_TEMPERATURE = 6,
/**
* @brief Pressure sensor signal [Pa]
*
* Pressure directly measured by the BME680 in Pa.
*/
BSEC_OUTPUT_RAW_PRESSURE = 7,
/**
* @brief Relative humidity sensor signal [%]
*
* Relative humidity directly measured by the BME680 in %.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_HUMIDITY = 8,
/**
* @brief Gas sensor signal [Ohm]
*
* Gas resistance measured directly by the BME680 in Ohm.The resistance value changes due to varying VOC
* concentrations (the higher the concentration of reducing VOCs, the lower the resistance and vice versa).
*/
BSEC_OUTPUT_RAW_GAS = 9,
/**
* @brief Gas sensor stabilization status [boolean]
*
* Indicates initial stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1).
*/
BSEC_OUTPUT_STABILIZATION_STATUS = 12,
/**
* @brief Gas sensor run-in status [boolean]
*
* Indicates power-on stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1).
*/
BSEC_OUTPUT_RUN_IN_STATUS = 13,
/**
* @brief Sensor heat compensated temperature [degrees Celsius]
*
* Temperature measured by BME680 which is compensated for the influence of sensor (heater) in degree Celsius.
* The self heating introduced by the heater is depending on the sensor operation mode and the sensor supply voltage.
*
*
* @note IAQ solution: In addition, the temperature output can be compensated by an user defined value
* (::BSEC_INPUT_HEATSOURCE in degrees Celsius), which represents the device specific self-heating.
*
* Thus, the value is calculated as follows:
* * IAQ solution: ```BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage) - ::BSEC_INPUT_HEATSOURCE```
* * other solutions: ```::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage)```
*
* The self-heating in operation mode BSEC_SAMPLE_RATE_ULP is negligible.
* The self-heating in operation mode BSEC_SAMPLE_RATE_LP is supported for 1.8V by default (no config file required). If the BME680 sensor supply voltage is 3.3V, the IoT_LP_3_3V.config shall be used.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = 14,
/**
* @brief Sensor heat compensated humidity [%]
*
* Relative measured by BME680 which is compensated for the influence of sensor (heater) in %.
*
* It converts the ::BSEC_INPUT_HUMIDITY from temperature ::BSEC_INPUT_TEMPERATURE to temperature
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* @note IAQ solution: If ::BSEC_INPUT_HEATSOURCE is used for device specific temperature compensation, it will be
* effective for ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY too.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY = 15,
BSEC_OUTPUT_COMPENSATED_GAS = 18, /*!< Reserved internal debug output */
BSEC_OUTPUT_GAS_PERCENTAGE = 21, /*!< percentage of min and max filtered gas value [%] */
BSEC_OUTPUT_GAS_ESTIMATE_1 = 22, /*!< Gas estimate output channel 1 */
BSEC_OUTPUT_GAS_ESTIMATE_2 = 23, /*!< Gas estimate output channel 2 */
BSEC_OUTPUT_GAS_ESTIMATE_3 = 24, /*!< Gas estimate output channel 3 */
BSEC_OUTPUT_GAS_ESTIMATE_4 = 25, /*!< Gas estimate output channel 4 */
BSEC_OUTPUT_RAW_GAS_INDEX = 26 /* Gas index cyclically running from 0 to heater_profile_length-1 */
} bsec_virtual_sensor_t;
/*!
* @brief Enumeration for function return codes
*/
typedef enum
{
BSEC_OK = 0, /*!< Function execution successful */
BSEC_E_DOSTEPS_INVALIDINPUT = -1, /*!< Input (physical) sensor id passed to bsec_do_steps() is not in the valid range or not valid for requested virtual sensor */
BSEC_E_DOSTEPS_VALUELIMITS = -2, /*!< Value of input (physical) sensor signal passed to bsec_do_steps() is not in the valid range */
BSEC_E_DOSTEPS_TSINTRADIFFOUTOFRANGE = -4, /*!< Past timestamps passed to bsec_do_steps() */
BSEC_E_DOSTEPS_DUPLICATEINPUT = -6, /*!< Duplicate input (physical) sensor ids passed as input to bsec_do_steps() */
BSEC_I_DOSTEPS_NOOUTPUTSRETURNABLE = 2, /*!< No memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs == 0 */
BSEC_W_DOSTEPS_EXCESSOUTPUTS = 3, /*!< Not enough memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs < maximum number of requested output (virtual) sensors */
BSEC_W_DOSTEPS_GASINDEXMISS = 5, /*!< Gas index not provided to bsec_do_steps() */
BSEC_E_SU_WRONGDATARATE = -10, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is zero */
BSEC_E_SU_SAMPLERATELIMITS = -12, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not match with the sampling rate allowed for that sensor */
BSEC_E_SU_DUPLICATEGATE = -13, /*!< Duplicate output (virtual) sensor ids requested through bsec_update_subscription() */
BSEC_E_SU_INVALIDSAMPLERATE = -14, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not fall within the global minimum and maximum sampling rates */
BSEC_E_SU_GATECOUNTEXCEEDSARRAY = -15, /*!< Not enough memory allocated to hold returned input (physical) sensor data from bsec_update_subscription(), i.e., n_required_sensor_settings < #BSEC_MAX_PHYSICAL_SENSOR */
BSEC_E_SU_SAMPLINTVLINTEGERMULT = -16, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is not correct */
BSEC_E_SU_MULTGASSAMPLINTVL = -17, /*!< The sample_rate of the requested output (virtual), which requires the gas sensor, is not equal to the sample_rate that the gas sensor is being operated */
BSEC_E_SU_HIGHHEATERONDURATION = -18, /*!< The duration of one measurement is longer than the requested sampling interval */
BSEC_W_SU_UNKNOWNOUTPUTGATE = 10, /*!< Output (virtual) sensor id passed to bsec_update_subscription() is not in the valid range; e.g., n_requested_virtual_sensors > actual number of output (virtual) sensors requested */
BSEC_W_SU_MODINNOULP = 11, /*!< ULP plus can not be requested in non-ulp mode */ /*MOD_ONLY*/
BSEC_I_SU_SUBSCRIBEDOUTPUTGATES = 12, /*!< No output (virtual) sensor data were requested via bsec_update_subscription() */
BSEC_I_SU_GASESTIMATEPRECEDENCE = 13, /*!< GAS_ESTIMATE is suscribed and take precedence over other requested outputs */
BSEC_E_PARSE_SECTIONEXCEEDSWORKBUFFER = -32, /*!< n_work_buffer_size passed to bsec_set_[configuration/state]() not sufficient */
BSEC_E_CONFIG_FAIL = -33, /*!< Configuration failed */
BSEC_E_CONFIG_VERSIONMISMATCH = -34, /*!< Version encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current version */
BSEC_E_CONFIG_FEATUREMISMATCH = -35, /*!< Enabled features encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current library implementation */
BSEC_E_CONFIG_CRCMISMATCH = -36, /*!< serialized_[settings/state] passed to bsec_set_[configuration/state]() is corrupted */
BSEC_E_CONFIG_EMPTY = -37, /*!< n_serialized_[settings/state] passed to bsec_set_[configuration/state]() is to short to be valid */
BSEC_E_CONFIG_INSUFFICIENTWORKBUFFER = -38, /*!< Provided work_buffer is not large enough to hold the desired string */
BSEC_E_CONFIG_INVALIDSTRINGSIZE = -40, /*!< String size encoded in configuration/state strings passed to bsec_set_[configuration/state]() does not match with the actual string size n_serialized_[settings/state] passed to these functions */
BSEC_E_CONFIG_INSUFFICIENTBUFFER = -41, /*!< String buffer insufficient to hold serialized data from BSEC library */
BSEC_E_SET_INVALIDCHANNELIDENTIFIER = -100, /*!< Internal error code, size of work buffer in setConfig must be set to BSEC_MAX_WORKBUFFER_SIZE */
BSEC_E_SET_INVALIDLENGTH = -104, /*!< Internal error code */
BSEC_W_SC_CALL_TIMING_VIOLATION = 100, /*!< Difference between actual and defined sampling intervals of bsec_sensor_control() greater than allowed */
BSEC_W_SC_MODEXCEEDULPTIMELIMIT = 101, /*!< ULP plus is not allowed because an ULP measurement just took or will take place */ /*MOD_ONLY*/
BSEC_W_SC_MODINSUFFICIENTWAITTIME = 102 /*!< ULP plus is not allowed because not sufficient time passed since last ULP plus */ /*MOD_ONLY*/
} bsec_library_return_t;
/*!
* @brief Structure containing the version information
*
* Please note that configuration and state strings are coded to a specific version and will not be accepted by other
* versions of BSEC.
*
*/
typedef struct
{
uint8_t major; /**< @brief Major version */
uint8_t minor; /**< @brief Minor version */
uint8_t major_bugfix; /**< @brief Major bug fix version */
uint8_t minor_bugfix; /**< @brief Minor bug fix version */
} bsec_version_t;
/*!
* @brief Structure describing an input sample to the library
*
* Each input sample is provided to BSEC as an element in a struct array of this type. Timestamps must be provided
* in nanosecond resolution. Moreover, duplicate timestamps for subsequent samples are not allowed and will results in
* an error code being returned from bsec_do_steps().
*
* The meaning unit of the signal field are determined by the bsec_input_t::sensor_id field content. Possible
* bsec_input_t::sensor_id values and and their meaning are described in ::bsec_physical_sensor_t.
*
* @sa bsec_physical_sensor_t
*
*/
typedef struct
{
/**
* @brief Time stamp in nanosecond resolution [ns]
*
* Timestamps must be provided as non-repeating and increasing values. They can have their 0-points at system start or
* at a defined wall-clock time (e.g., 01-Jan-1970 00:00:00)
*/
int64_t time_stamp;
float signal; /*!< @brief Signal sample in the unit defined for the respective sensor_id @sa bsec_physical_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of physical sensor @sa bsec_physical_sensor_t */
} bsec_input_t;
/*!
* @brief Structure describing an output sample of the library
*
* Each output sample is returned from BSEC by populating the element of a struct array of this type. The contents of
* the signal field is defined by the supplied bsec_output_t::sensor_id. Possible output
* bsec_output_t::sensor_id values are defined in ::bsec_virtual_sensor_t.
*
* @sa bsec_virtual_sensor_t
*/
typedef struct
{
int64_t time_stamp; /*!< @brief Time stamp in nanosecond resolution as provided as input [ns] */
float signal; /*!< @brief Signal sample in the unit defined for the respective bsec_output_t::sensor_id @sa bsec_virtual_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of virtual sensor @sa bsec_virtual_sensor_t */
/**
* @brief Accuracy status 0-3
*
* Some virtual sensors provide a value in the accuracy field. If this is the case, the meaning of the field is as
* follows:
*
* | Name | Value | Accuracy description |
* |----------------------------|-------|-------------------------------------------------------------|
* | UNRELIABLE | 0 | Sensor data is unreliable, the sensor must be calibrated |
* | LOW_ACCURACY | 1 | Low accuracy, sensor should be calibrated |
* | MEDIUM_ACCURACY | 2 | Medium accuracy, sensor calibration may improve performance |
* | HIGH_ACCURACY | 3 | High accuracy |
*
* For example:
*
* - Ambient temperature accuracy is derived from change in the temperature in 1 minute.
*
* | Virtual sensor | Value | Accuracy description |
* |--------------------- |-------|------------------------------------------------------------------------------|
* | Ambient temperature | 0 | The difference in ambient temperature is greater than 4 degree in one minute |
* | | 1 | The difference in ambient temperature is less than 4 degree in one minute |
* | | 2 | The difference in ambient temperature is less than 3 degree in one minute |
* | | 3 | The difference in ambient temperature is less than 2 degree in one minute |
*
* - IAQ accuracy indicator will notify the user when she/he should initiate a calibration process. Calibration is
* performed automatically in the background if the sensor is exposed to clean and polluted air for approximately
* 30 minutes each.
*
* | Virtual sensor | Value | Accuracy description |
* |----------------------------|-------|-----------------------------------------------------------------|
* | IAQ | 0 | The sensor is not yet stabilized or in a run-in status |
* | | 1 | Calibration required |
* | | 2 | Calibration on-going |
* | | 3 | Calibration is done, now IAQ estimate achieves best performance |
*/
uint8_t accuracy;
} bsec_output_t;
/*!
* @brief Structure describing sample rate of physical/virtual sensors
*
* This structure is used together with bsec_update_subscription() to enable BSEC outputs and to retrieve information
* about the sample rates used for BSEC inputs.
*/
typedef struct
{
/**
* @brief Sample rate of the virtual or physical sensor in Hertz [Hz]
*
* Only supported sample rates are allowed.
*/
float sample_rate;
/**
* @brief Identifier of the virtual or physical sensor
*
* The meaning of this field changes depending on whether the structs are as the requested_virtual_sensors argument
* to bsec_update_subscription() or as the required_sensor_settings argument.
*
* | bsec_update_subscription() argument | sensor_id field interpretation |
* |-------------------------------------|--------------------------------|
* | requested_virtual_sensors | ::bsec_virtual_sensor_t |
* | required_sensor_settings | ::bsec_physical_sensor_t |
*
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*/
uint8_t sensor_id;
} bsec_sensor_configuration_t;
/*!
* @brief Structure returned by bsec_sensor_control() to configure BMExxx sensor
*
* This structure contains settings that must be used to configure the BMExxx to perform a forced-mode measurement.
* A measurement should only be executed if bsec_bme_settings_t::trigger_measurement is 1. If so, the oversampling
* settings for temperature, humidity, and pressure should be set to the provided settings provided in
* bsec_bme_settings_t::temperature_oversampling, bsec_bme_settings_t::humidity_oversampling, and
* bsec_bme_settings_t::pressure_oversampling, respectively.
*
* In case of bsec_bme_settings_t::run_gas = 1, the gas sensor must be enabled with the provided
* bsec_bme_settings_t::heater_temperature and bsec_bme_settings_t::heating_duration settings.
*/
typedef struct
{
int64_t next_call; /*!< @brief Time stamp of the next call of the sensor_control*/
uint32_t process_data; /*!< @brief Bit field describing which data is to be passed to bsec_do_steps() @sa BSEC_PROCESS_* */
uint16_t heater_temperature; /*!< @brief Heater temperature [degrees Celsius] */
uint16_t heater_duration; /*!< @brief Heater duration [ms] */
uint16_t heater_temperature_profile[10]; /*!< @brief Heater temperature profile [degrees Celsius] */
uint16_t heater_duration_profile[10]; /*!< @brief Heater duration profile [ms] */
uint8_t heater_profile_len; /*!< @brief Heater profile length [0-10] */
uint8_t run_gas; /*!< @brief Enable gas measurements [0/1] */
uint8_t pressure_oversampling; /*!< @brief Pressure oversampling settings [0-5] */
uint8_t temperature_oversampling; /*!< @brief Temperature oversampling settings [0-5] */
uint8_t humidity_oversampling; /*!< @brief Humidity oversampling settings [0-5] */
uint8_t trigger_measurement; /*!< @brief Trigger a forced measurement with these settings now [0/1] */
uint8_t op_mode; /*!< @brief Sensor operation mode [0/1] */
} bsec_bme_settings_t;
/* internal defines and backward compatibility */
#define BSEC_STRUCT_NAME Bsec /*!< Internal struct name */
/*@}*/
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,562 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
* @file bsec_interface.h
*
* @brief
* Contains the API for BSEC
*
*/
#ifndef __BSEC_INTERFACE_H__
#define __BSEC_INTERFACE_H__
#include "bsec_datatypes.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! @addtogroup bsec_interface BSEC C Interface
* @brief Interfaces of BSEC signal processing library
*
* ### Interface usage
*
* The following provides a short overview on the typical operation sequence for BSEC.
*
* - Initialization of the library
*
* | Steps | Function |
* |---------------------------------------------------------------------|--------------------------|
* | Initialization of library | bsec_init() |
* | Update configuration settings (optional) | bsec_set_configuration() |
* | Restore the state of the library (optional) | bsec_set_state() |
*
*
* - The following function is called to enable output signals and define their sampling rate / operation mode.
*
* | Steps | Function |
* |---------------------------------------------|----------------------------|
* | Enable library outputs with specified mode | bsec_update_subscription() |
*
*
* - This table describes the main processing loop.
*
* | Steps | Function |
* |-------------------------------------------|----------------------------------|
* | Retrieve sensor settings to be used | bsec_sensor_control() |
* | Configure sensor and trigger measurement | See BME68x API and example codes |
* | Read results from sensor | See BME68x API and example codes |
* | Perform signal processing | bsec_do_steps() |
*
*
* - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during
* re-initialization to continue processing.
*
* | Steps | Function |
* |----------------------------------------|-------------------|
* | To retrieve the current library state | bsec_get_state() |
*
*
*
* ### Configuration and state
*
* Values of variables belonging to a BSEC instance are divided into two groups:
* - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be
* configured before use with a customer specific configuration string.
* - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC
* is necessary to maintain previously estimated sensor models and baseline information which is important for best
* performance of the gas sensor outputs.
*
* @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over
* the time. These will be lost if library is initialized due to system reset. In order to avoid this situation
* library state shall be stored in non volatile memory so that it can be loaded after system reset.
*
*
* @{
*/
/*!
* @brief Return the version information of BSEC library
*
* @param [out] bsec_version_p pointer to struct which is to be populated with the version information
*
* @return Zero if successful, otherwise an error code
*
* See also: bsec_version_t
*
\code{.c}
// Example //
bsec_version_t version;
bsec_get_version(&version);
printf("BSEC version: %d.%d.%d.%d",version.major, version.minor, version.major_bugfix, version.minor_bugfix);
\endcode
*/
bsec_library_return_t bsec_get_version(bsec_version_t * bsec_version_p);
/*!
* @brief Initialize the library
*
* Initialization and reset of BSEC is performed by calling bsec_init(). Calling this function sets up the relation
* among all internal modules, initializes run-time dependent library states and resets the configuration and state
* of all BSEC signal processing modules to defaults.
*
* Before any further use, the library must be initialized. This ensure that all memory and states are in defined
* conditions prior to processing any data.
*
* @return Zero if successful, otherwise an error code
*
\code{.c}
// Initialize BSEC library before further use
bsec_init();
\endcode
*/
bsec_library_return_t bsec_init(void);
/*!
* @brief Subscribe to library virtual sensors outputs
*
* Use bsec_update_subscription() to instruct BSEC which of the processed output signals are requested at which sample rates.
* See ::bsec_virtual_sensor_t for available library outputs.
*
* Based on the requested virtual sensors outputs, BSEC will provide information about the required physical sensor input signals
* (see ::bsec_physical_sensor_t) with corresponding sample rates. This information is purely informational as bsec_sensor_control()
* will ensure the sensor is operated in the required manner. To disable a virtual sensor, set the sample rate to BSEC_SAMPLE_RATE_DISABLED.
*
* The subscription update using bsec_update_subscription() is apart from the signal processing one of the the most
* important functions. It allows to enable the desired library outputs. The function determines which physical input
* sensor signals are required at which sample rate to produce the virtual output sensor signals requested by the user.
* When this function returns with success, the requested outputs are called subscribed. A very important feature is the
* retaining of already subscribed outputs. Further outputs can be requested or disabled both individually and
* group-wise in addition to already subscribed outputs without changing them unless a change of already subscribed
* outputs is requested.
*
* @note The state of the library concerning the subscribed outputs cannot be retained among reboots.
*
* The interface of bsec_update_subscription() requires the usage of arrays of sensor configuration structures.
* Such a structure has the fields sensor identifier and sample rate. These fields have the properties:
* - Output signals of virtual sensors must be requested using unique identifiers (Member of ::bsec_virtual_sensor_t)
* - Different sets of identifiers are available for inputs of physical sensors and outputs of virtual sensors
* - Identifiers are unique values defined by the library, not from external
* - Sample rates must be provided as value of
* - An allowed sample rate for continuously sampled signals
* - 65535.0f (BSEC_SAMPLE_RATE_DISABLED) to turn off outputs and identify disabled inputs
*
* @note The same sensor identifiers are also used within the functions bsec_do_steps().
*
* The usage principles of bsec_update_subscription() are:
* - Differential updates (i.e., only asking for outputs that the user would like to change) is supported.
* - Invalid requests of outputs are ignored. Also if one of the requested outputs is unavailable, all the requests
* are ignored. At the same time, a warning is returned.
* - To disable BSEC, all outputs shall be turned off. Only enabled (subscribed) outputs have to be disabled while
* already disabled outputs do not have to be disabled explicitly.
*
* @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library
* @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors
* @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library
* @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned
*
* @return Zero when successful, otherwise an error code
*
* @sa bsec_sensor_configuration_t
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*
\code{.c}
// Example //
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off)
bsec_sensor_configuration_t requested_virtual_sensors[3];
uint8_t n_requested_virtual_sensors = 3;
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
requested_virtual_sensors[1].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
requested_virtual_sensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED;
// Allocate a struct for the returned physical sensor settings
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
// Call bsec_update_subscription() to enable/disable the requested virtual sensors
bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings, &n_required_sensor_settings);
\endcode
*
*/
bsec_library_return_t bsec_update_subscription(const bsec_sensor_configuration_t * requested_virtual_sensors,
uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t * required_sensor_settings,
uint8_t * n_required_sensor_settings);
/*!
* @brief Main signal processing function of BSEC
*
*
* Processing of the input signals and returning of output samples is performed by bsec_do_steps().
* - The samples of all library inputs must be passed with unique identifiers representing the input signals from
* physical sensors where the order of these inputs can be chosen arbitrary. However, all input have to be provided
* within the same time period as they are read. A sequential provision to the library might result in undefined
* behavior.
* - The samples of all library outputs are returned with unique identifiers corresponding to the output signals of
* virtual sensors where the order of the returned outputs may be arbitrary.
* - The samples of all input as well as output signals of physical as well as virtual sensors use the same
* representation in memory with the following fields:
* - Sensor identifier:
* - For inputs: required to identify the input signal from a physical sensor
* - For output: overwritten by bsec_do_steps() to identify the returned signal from a virtual sensor
* - Time stamp of the sample
*
* Calling bsec_do_steps() requires the samples of the input signals to be provided along with their time stamp when
* they are recorded and only when they are acquired. Repetition of samples with the same time stamp are ignored and
* result in a warning. Repetition of values of samples which are not acquired anew by a sensor result in deviations
* of the computed output signals. Concerning the returned output samples, an important feature is, that a value is
* returned for an output only when a new occurrence has been computed. A sample of an output signal is returned only
* once.
*
*
* @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor.
* @param[in] n_inputs Number of passed input data structs.
* @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor.
* @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate input and output memory
bsec_input_t input[3];
uint8_t n_input = 3;
bsec_output_t output[2];
uint8_t n_output=2;
bsec_library_return_t status;
// Populate the input structs, assuming the we have timestamp (ts),
// gas sensor resistance (R), temperature (T), and humidity (rH) available
// as input variables
input[0].sensor_id = BSEC_INPUT_GASRESISTOR;
input[0].signal = R;
input[0].time_stamp= ts;
input[1].sensor_id = BSEC_INPUT_TEMPERATURE;
input[1].signal = T;
input[1].time_stamp= ts;
input[2].sensor_id = BSEC_INPUT_HUMIDITY;
input[2].signal = rH;
input[2].time_stamp= ts;
// Invoke main processing BSEC function
status = bsec_do_steps( input, n_input, output, &n_output );
// Iterate through the BSEC output data, if the call succeeded
if(status == BSEC_OK)
{
for(int i = 0; i < n_output; i++)
{
switch(output[i].sensor_id)
{
case BSEC_OUTPUT_IAQ:
// Retrieve the IAQ results from output[i].signal
// and do something with the data
break;
case BSEC_OUTPUT_AMBIENT_TEMPERATURE:
// Retrieve the ambient temperature results from output[i].signal
// and do something with the data
break;
}
}
}
\endcode
*/
bsec_library_return_t bsec_do_steps(const bsec_input_t * inputs, uint8_t n_inputs, bsec_output_t * outputs, uint8_t * n_outputs);
/*!
* @brief Reset a particular virtual sensor output
*
* This function allows specific virtual sensor outputs to be reset. The meaning of "reset" depends on the specific
* output. In case of the IAQ output, reset means zeroing the output to the current ambient conditions.
*
* @param[in] sensor_id Virtual sensor to be reset
*
* @return Zero when successful, otherwise an error code
*
*
\code{.c}
// Example //
bsec_reset_output(BSEC_OUTPUT_IAQ);
\endcode
*/
bsec_library_return_t bsec_reset_output(uint8_t sensor_id);
/*!
* @brief Update algorithm configuration parameters
*
* BSEC uses a default configuration for the modules and common settings. The initial configuration can be customized
* by bsec_set_configuration(). This is an optional step.
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose
* the serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in] serialized_settings Settings serialized to a binary blob
* @param[in] n_serialized_settings Size of the settings blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer = BSEC_MAX_WORKBUFFER_SIZE;
// Here we will load a provided config string into serialized_settings
// Apply the configuration
bsec_set_configuration(serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer);
\endcode
*/
bsec_library_return_t bsec_set_configuration(const uint8_t * serialized_settings,
uint32_t n_serialized_settings, uint8_t * work_buffer,
uint32_t n_work_buffer_size);
/*!
* @brief Restore the internal state of the library
*
* BSEC uses a default state for all signal processing modules and the BSEC module. To ensure optimal performance,
* especially of the gas sensor functionality, it is recommended to retrieve the state using bsec_get_state()
* before unloading the library, storing it in some form of non-volatile memory, and setting it using bsec_set_state()
* before resuming further operation of the library.
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in] serialized_state States serialized to a binary blob
* @param[in] n_serialized_state Size of the state blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_state[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_state = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer_state[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer_size = BSEC_MAX_WORKBUFFER_SIZE;
// Here we will load a state string from a previous use of BSEC
// Apply the previous state to the current BSEC session
bsec_set_state(serialized_state, n_serialized_state, work_buffer_state, n_work_buffer_size);
\endcode
*/
bsec_library_return_t bsec_set_state(const uint8_t * serialized_state, uint32_t n_serialized_state,
uint8_t * work_buffer, uint32_t n_work_buffer_size);
/*!
* @brief Retrieve the current library configuration
*
* BSEC allows to retrieve the current configuration using bsec_get_configuration(). Returns a binary blob encoding
* the current configuration parameters of the library in a format compatible with bsec_set_configuration().
*
* @note The function bsec_get_configuration() is required to be used for debugging purposes only.
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in] config_id Identifier for a specific set of configuration settings to be returned;
* shall be zero to retrieve all configuration settings.
* @param[out] serialized_settings Buffer to hold the serialized config blob
* @param[in] n_serialized_settings_max Maximum available size for the serialized settings
* @param[in,out] work_buffer Work buffer used to parse the binary blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_settings Actual size of the returned serialized configuration blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer = BSEC_MAX_WORKBUFFER_SIZE;
uint32_t n_serialized_settings = 0;
// Configuration of BSEC algorithm is stored in 'serialized_settings'
bsec_get_configuration(0, serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer, &n_serialized_settings);
\endcode
*/
bsec_library_return_t bsec_get_configuration(uint8_t config_id, uint8_t * serialized_settings, uint32_t n_serialized_settings_max,
uint8_t * work_buffer, uint32_t n_work_buffer, uint32_t * n_serialized_settings);
/*!
*@brief Retrieve the current internal library state
*
* BSEC allows to retrieve the current states of all signal processing modules and the BSEC module using
* bsec_get_state(). This allows a restart of the processing after a reboot of the system by calling bsec_set_state().
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in] state_set_id Identifier for a specific set of states to be returned; shall be
* zero to retrieve all states.
* @param[out] serialized_state Buffer to hold the serialized config blob
* @param[in] n_serialized_state_max Maximum available size for the serialized states
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_state Actual size of the returned serialized blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_state[BSEC_MAX_STATE_BLOB_SIZE];
uint32_t n_serialized_state_max = BSEC_MAX_STATE_BLOB_SIZE;
uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
uint8_t work_buffer_state[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer_size = BSEC_MAX_WORKBUFFER_SIZE;
// Algorithm state is stored in 'serialized_state'
bsec_get_state(0, serialized_state, n_serialized_state_max, work_buffer_state, n_work_buffer_size, &n_serialized_state);
\endcode
*/
bsec_library_return_t bsec_get_state(uint8_t state_set_id, uint8_t * serialized_state,
uint32_t n_serialized_state_max, uint8_t * work_buffer, uint32_t n_work_buffer,
uint32_t * n_serialized_state);
/*!
* @brief Retrieve BMExxx sensor instructions
*
* The bsec_sensor_control() interface is a key feature of BSEC, as it allows an easy way for the signal processing
* library to control the operation of the BME sensor. This is important since gas sensor behaviour is mainly
* determined by how the integrated heater is configured. To ensure an easy integration of BSEC into any system,
* bsec_sensor_control() will provide the caller with information about the current sensor configuration that is
* necessary to fulfill the input requirements derived from the current outputs requested via
* bsec_update_subscription().
*
* In practice the use of this function shall be as follows:
* - Call bsec_sensor_control() which returns a bsec_bme_settings_t struct.
* - Based on the information contained in this struct, the sensor is configured and a forced-mode measurement is
* triggered if requested by bsec_sensor_control().
* - Once this forced-mode measurement is complete, the signals specified in this struct shall be passed to
* bsec_do_steps() to perform the signal processing.
* - After processing, the process should sleep until the bsec_bme_settings_t::next_call timestamp is reached.
*
*
* @param [in] time_stamp Current timestamp in [ns]
* @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance
*
* @return Zero when successful, otherwise an error code
*/
bsec_library_return_t bsec_sensor_control(int64_t time_stamp, bsec_bme_settings_t *sensor_settings);
/*@}*/ //BSEC Interface
#ifdef __cplusplus
}
#endif
#endif /* __BSEC_INTERFACE_H__ */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,403 @@
#include <string.h>
#include "bsec2.h"
/* Private funcs - prototypes */
/**
* @brief Reads the data from the BME68x sensor and process it
* @param currTimeNs: Current time in ns
* @return true if there are new outputs. false otherwise
*/
static bool bsec2_processData(struct bsec2 *self, int64_t currTimeNs, const struct bme68x_data *data);
/**
* @brief Set the BME68x sensor configuration to forced mode
*/
static void bsec2_setBme68xConfigForced(struct bsec2 *self);
/**
* @brief Set the BME68x sensor configuration to parallel mode
*/
static void bsec2_setBme68xConfigParallel(struct bsec2 *self);
/* Public funcs impl */
int bsec2_init(struct bsec2 *self, struct bme68x_dev *dev) {
self->ovfCounter = 0;
self->lastMillis = 0;
self->status = BSEC_OK;
self->extTempOffset = 0.0f;
self->opMode = BME68X_SLEEP_MODE;
self->newDataCallback = NULL;
self->sensor = dev;
memset(&self->version, 0, sizeof(self->version));
memset(&self->bmeConf, 0, sizeof(self->bmeConf));
memset(&self->outputs, 0, sizeof(self->outputs));
// The sensor must be inited and OK by the time this func is called!
// Begin
self->status = bsec_init();
if (self->status != BSEC_OK) {
return -1;
}
self->status = bsec_get_version(&self->version);
if (self->status != BSEC_OK) {
return -2;
}
memset(&self->bmeConf, 0, sizeof(self->bmeConf));
memset(&self->outputs, 0, sizeof(self->outputs));
return 0;
}
bool bsec2_updateSubscription(struct bsec2 *self, const bsecSensor *sensorList, uint8_t nSensors, float sampleRate) {
bsec_sensor_configuration_t virtualSensors[BSEC_NUMBER_OUTPUTS], sensorSettings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t nSensorSettings = BSEC_MAX_PHYSICAL_SENSOR;
for (uint8_t i = 0; i < nSensors; i++) {
virtualSensors[i].sensor_id = sensorList[i];
virtualSensors[i].sample_rate = sampleRate;
}
/* Subscribe to library virtual sensors outputs */
self->status = bsec_update_subscription(virtualSensors, nSensors, sensorSettings, &nSensorSettings);
if (self->status != BSEC_OK) {
return false;
}
return true;
}
bool bsec2_run(struct bsec2 *self) {
int64_t currTimeNs = bsec2_getTimeMs(self) * INT64_C(1000000);
uint8_t lastOpMode = self->opMode;
// set new opmode to what bsec wants
self->opMode = self->bmeConf.op_mode;
if (currTimeNs >= self->bmeConf.next_call) {
/* Provides the information about the current sensor configuration that is
necessary to fulfill the input requirements, eg: operation mode, timestamp
at which the sensor data shall be fetched etc */
self->status = bsec_sensor_control(currTimeNs, &self->bmeConf);
if (self->status != BSEC_OK) {
return false;
}
switch (self->bmeConf.op_mode) {
case BME68X_FORCED_MODE:
bsec2_setBme68xConfigForced(self);
break;
case BME68X_PARALLEL_MODE:
if (self->opMode != self->bmeConf.op_mode) {
bsec2_setBme68xConfigParallel(self);
}
break;
case BME68X_SLEEP_MODE:
if (self->opMode != self->bmeConf.op_mode) {
self->sensor_status = bme68x_set_op_mode(BME68X_SLEEP_MODE, self->sensor);
self->opMode = BME68X_SLEEP_MODE;
}
break;
}
if (self->sensor_status < BME68X_OK) {
bsec2_errormsg("bsec2 sensor error");
return false;
}
struct bme68x_data sensorData[3];
struct bme68x_data *pdata;
if (self->bmeConf.trigger_measurement && self->bmeConf.op_mode != BME68X_SLEEP_MODE) {
uint8_t nfields;
self->sensor_status = bme68x_get_data(self->opMode, sensorData, &nfields, self->sensor);
if (self->sensor_status == BME68X_OK && nfields > 0) {
if (lastOpMode == BME68X_FORCED_MODE) {
pdata = &sensorData[0];
if (pdata->status & BME68X_GASM_VALID_MSK) {
if (!bsec2_processData(self, currTimeNs, pdata)) {
return false;
}
}
} else {
for (int i = 0; i < nfields; i++) {
pdata = &sensorData[i];
if (pdata->status & BME68X_GASM_VALID_MSK) {
if (!bsec2_processData(self, currTimeNs, pdata)) {
return false;
}
}
}
}
}
}
}
return true;
}
bsecData bsec2_getData(struct bsec2 *self, bsecSensor id) {
bsecData emp =
{0};
for (uint8_t i = 0; i < self->outputs.nOutputs; i++)
if (id == self->outputs.output[i].sensor_id)
return self->outputs.output[i];
return emp;
}
/**
* @brief Function to get the state of the algorithm to save to non-volatile memory
* @param state : Pointer to a memory location, to hold the state
* @return true for success, false otherwise
*/
bool bsec2_getState(struct bsec2 *self, uint8_t *state) {
uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
self->status = bsec_get_state(0, state, BSEC_MAX_STATE_BLOB_SIZE, self->workBuffer, BSEC_MAX_WORKBUFFER_SIZE,
&n_serialized_state);
if (self->status != BSEC_OK) {
bsec2_errormsg("bsec2_getState: error from bsec_get_state");
return false;
}
return true;
}
/**
* @brief Function to set the state of the algorithm from non-volatile memory
* @param state : Pointer to a memory location that contains the state
* @return true for success, false otherwise
*/
bool bsec2_setState(struct bsec2 *self, uint8_t *state) {
self->status = bsec_set_state(state, BSEC_MAX_STATE_BLOB_SIZE, self->workBuffer, BSEC_MAX_WORKBUFFER_SIZE);
if (self->status != BSEC_OK) {
bsec2_errormsg("bsec2_setState: error from bsec_set_state");
return false;
}
memset(&self->bmeConf, 0, sizeof(self->bmeConf));
return true;
}
/**
* @brief Function to retrieve the current library configuration
* @param config : Pointer to a memory location, to hold the serialized config blob, must hold BSEC_MAX_PROPERTY_BLOB_SIZE
* @return true for success, false otherwise
*/
bool bsec2_getConfig(struct bsec2 *self, uint8_t *config) {
uint32_t n_serialized_settings = 0;
self->status = bsec_get_configuration(0, config, BSEC_MAX_PROPERTY_BLOB_SIZE, self->workBuffer, BSEC_MAX_WORKBUFFER_SIZE, &n_serialized_settings);
if (self->status != BSEC_OK) {
bsec2_errormsg("bsec2_getConfig: error from bsec_get_configuration");
return false;
}
return true;
}
/**
* @brief Function to set the configuration of the algorithm from memory
* @param state : Pointer to a memory location that contains the configuration
* @return true for success, false otherwise
*/
bool bsec2_setConfig(struct bsec2 *self, const uint8_t *config) {
self->status = bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, self->workBuffer, BSEC_MAX_WORKBUFFER_SIZE);
if (self->status != BSEC_OK) {
bsec2_errormsg("bsec2_setConfig: error from bsec_set_configuration");
return false;
}
// copied from arduino lib, but why?
memset(&self->bmeConf, 0, sizeof(self->bmeConf));
return true;
}
/**
* @brief Function to calculate an int64_t timestamp in milliseconds
*/
int64_t bsec2_getTimeMs(struct bsec2 *self) {
int64_t timeMs = bsec2_timestamp_millis();
if (self->lastMillis > timeMs) /* An overflow occurred */
{
self->lastMillis = timeMs;
self->ovfCounter++;
}
return timeMs + (self->ovfCounter * INT64_C(0xFFFFFFFF));
}
/* Private funcs impl */
static bool bsec2_processData(struct bsec2 *self, int64_t currTimeNs, const struct bme68x_data *data) {
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; /* Temp, Pres, Hum & Gas */
uint8_t nInputs = 0;
/* Checks all the required sensor inputs, required for the BSEC library for the requested outputs */
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_HEATSOURCE)) {
inputs[nInputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[nInputs].signal = self->extTempOffset;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_TEMPERATURE)) {
#ifdef BME68X_USE_FPU
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE;
#else
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE / 100.0f;
#endif
inputs[nInputs].signal = data->temperature;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_HUMIDITY)) {
#ifdef BME68X_USE_FPU
inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY;
#else
inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY / 1000.0f;
#endif
inputs[nInputs].signal = data->humidity;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_PRESSURE)) {
inputs[nInputs].sensor_id = BSEC_INPUT_PRESSURE;
inputs[nInputs].signal = data->pressure;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_GASRESISTOR) &&
(data->status & BME68X_GASM_VALID_MSK)) {
inputs[nInputs].sensor_id = BSEC_INPUT_GASRESISTOR;
inputs[nInputs].signal = data->gas_resistance;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(self->bmeConf.process_data, BSEC_INPUT_PROFILE_PART) &&
(data->status & BME68X_GASM_VALID_MSK)) {
inputs[nInputs].sensor_id = BSEC_INPUT_PROFILE_PART;
inputs[nInputs].signal = (self->opMode == BME68X_FORCED_MODE) ? 0 : (float) data->gas_index;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (nInputs > 0) {
self->outputs.nOutputs = BSEC_NUMBER_OUTPUTS;
memset(self->outputs.output, 0, sizeof(self->outputs.output));
/* Processing of the input signals and returning of output samples is performed by bsec_do_steps() */
self->status = bsec_do_steps(inputs, nInputs, self->outputs.output, &self->outputs.nOutputs);
if (self->status != BSEC_OK) {
bsec2_errormsg("bsec2_processData: error from bsec_do_steps");
return false;
}
if (self->newDataCallback) {
self->newDataCallback(data, &self->outputs, self);
}
}
return true;
}
static void bsec2_setBme68xConfigForced(struct bsec2 *self) {
struct bme68x_conf conf;
struct bme68x_heatr_conf hconf;
self->sensor_status = bme68x_get_conf(&conf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigForced: error from bme68x_get_conf");
return;
}
self->sensor_status = bme68x_get_heatr_conf(&hconf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigForced: error from bme68x_get_heatr_conf");
return;
}
conf.os_hum = self->bmeConf.humidity_oversampling;
conf.os_pres = self->bmeConf.pressure_oversampling;
conf.os_temp = self->bmeConf.temperature_oversampling;
self->sensor_status = bme68x_set_conf(&conf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigForced: error from bme68x_set_conf");
return;
}
hconf.enable = BME68X_ENABLE;
hconf.heatr_dur = self->bmeConf.heater_duration;
hconf.heatr_temp = self->bmeConf.heater_temperature;
self->sensor_status = bme68x_set_heatr_conf(BME68X_FORCED_MODE, &hconf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigForced: error from bme68x_set_heatr_conf");
return;
}
self->sensor_status = bme68x_set_op_mode(BME68X_FORCED_MODE, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigForced: error from bme68x_set_op_mode");
return;
}
self->opMode = BME68X_FORCED_MODE;
}
static void bsec2_setBme68xConfigParallel(struct bsec2 *self) {
uint16_t sharedHeaterDur = 0;
struct bme68x_conf conf;
struct bme68x_heatr_conf hconf;
self->sensor_status = bme68x_get_conf(&conf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigParallel: error from bme68x_get_conf");
return;
}
self->sensor_status = bme68x_get_heatr_conf(&hconf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigParallel: error from bme68x_get_heatr_conf");
return;
}
conf.os_hum = self->bmeConf.humidity_oversampling;
conf.os_pres = self->bmeConf.pressure_oversampling;
conf.os_temp = self->bmeConf.temperature_oversampling;
self->sensor_status = bme68x_set_conf(&conf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigParallel: error from bme68x_set_conf");
return;
}
sharedHeaterDur = BSEC_TOTAL_HEAT_DUR - (bme68x_get_meas_dur(BME68X_PARALLEL_MODE, &conf, self->sensor) / INT64_C(1000));
hconf.enable = BME68X_ENABLE;
hconf.heatr_dur = self->bmeConf.heater_duration;
hconf.heatr_temp = self->bmeConf.heater_temperature;
hconf.shared_heatr_dur = sharedHeaterDur;
hconf.heatr_dur_prof = self->bmeConf.heater_duration_profile;
hconf.profile_len = self->bmeConf.heater_profile_len;
self->sensor_status = bme68x_set_heatr_conf(BME68X_PARALLEL_MODE, &hconf, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigParallel: error from bme68x_set_heatr_conf");
return;
}
self->sensor_status = bme68x_set_op_mode(BME68X_PARALLEL_MODE, self->sensor);
if (BME68X_OK != self->sensor_status) {
bsec2_errormsg("bsec2_setBme68xConfigParallel: error from bme68x_set_op_mode");
return;
}
self->opMode = BME68X_PARALLEL_MODE;
}

@ -5,264 +5,234 @@
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include <esp_log.h> #include <esp_log.h>
#include <time.h>
#include <esp_err.h> #include <esp_err.h>
#include <freertos/FreeRTOS.h> #include <freertos/FreeRTOS.h>
#include <freertos/task.h> #include <freertos/task.h>
#include <driver/i2c.h> #include <driver/i2c.h>
#include <sys/time.h>
#include "voc_sensor.h" #include "voc_sensor.h"
#include "i2c_utils.h"
struct bme680_dev gas_sensor;
static const char *TAG = "vocsensor"; static const char *TAG = "vocsensor";
#define i2c_num I2C_NUM_0 #define VOC_I2C_NUM I2C_NUM_0
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */ #define VOC_I2C_TO_MS 250
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/ // Config overrides for BSEC
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */ #define BME68X_PERIOD_POLL UINT32_C(5000)
#define ACK_VAL 0x0 /*!< I2C ack value */
#define NACK_VAL 0x1 /*!< I2C nack value */ #include "bme68x.h"
#include "bme68x_defs.h"
static void user_delay_ms(uint32_t period) { #include "bsec2.h"
/*
* Return control or wait, struct sensor_itf {
* for a period amount of milliseconds uint8_t dev_addr;
*/ };
vTaskDelay(pdMS_TO_TICKS(period));
static struct sensor_itf gas_sensor_intf = {};
static struct bme68x_dev gas_sensor = {};
static struct bsec2 gas_sensor_bsec = {};
void bsec2_errormsg(const char *msg) {
ESP_LOGE("BSEC", "%s", msg);
} }
uint32_t bsec2_timestamp_millis() {
#if 0 #if 0
static int8_t user_spi_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) struct timeval tv;
{ gettimeofday(&tv, NULL);
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */ return tv.tv_sec*1000 + (tv.tv_usec / 1000000);
#else
/* return pdTICKS_TO_MS(xTaskGetTickCount()); // This is no-op when using 1ms tick
* The parameter dev_id can be used as a variable to select which Chip Select pin has #endif
* to be set low to activate the relevant device on the SPI bus
*/
/*
* Data on the bus should be like
* |----------------+---------------------+-------------|
* | MOSI | MISO | Chip Select |
* |----------------+---------------------|-------------|
* | (don't care) | (don't care) | HIGH |
* | (reg_addr) | (don't care) | LOW |
* | (don't care) | (reg_data[0]) | LOW |
* | (....) | (....) | LOW |
* | (don't care) | (reg_data[len - 1]) | LOW |
* | (don't care) | (don't care) | HIGH |
* |----------------+---------------------|-------------|
*/
return rslt;
} }
static int8_t user_spi_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) static void user_delay_us(uint32_t period, void *intf_ptr) {
{ (void) intf_ptr;
int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */
uint32_t millis = period / 1000;
/* uint32_t usec = period % 1000;
* The parameter dev_id can be used as a variable to select which Chip Select pin has
* to be set low to activate the relevant device on the SPI bus #if configTICK_RATE_HZ != 1000
*/ uint32_t remainder = millis % pdTICKS_TO_MS(1);
millis -= remainder;
/* usec += remainder * 1000;
* Data on the bus should be like
* |---------------------+--------------+-------------|
* | MOSI | MISO | Chip Select |
* |---------------------+--------------|-------------|
* | (don't care) | (don't care) | HIGH |
* | (reg_addr) | (don't care) | LOW |
* | (reg_data[0]) | (don't care) | LOW |
* | (....) | (....) | LOW |
* | (reg_data[len - 1]) | (don't care) | LOW |
* | (don't care) | (don't care) | HIGH |
* |---------------------+--------------|-------------|
*/
return rslt;
}
#endif #endif
static int8_t user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *data_rd, uint16_t size) { if (millis) {
ESP_LOGD(TAG, "BME680 i2c read"); vTaskDelay(pdMS_TO_TICKS(millis));
}
if (usec) {
ets_delay_us(usec);
}
}
/* static BME68X_INTF_RET_TYPE user_i2c_read(uint8_t reg_addr, uint8_t *reg_data, uint32_t length, void *intf_ptr) {
* The parameter dev_id can be used as a variable to store the I2C address of the device ESP_LOGD(TAG, "BME680 i2c read");
*/ if (length == 0) {
return BME68X_OK;
/*
* Data on the bus should be like
* |------------+---------------------|
* | I2C action | Data |
* |------------+---------------------|
* | Start | - |
* | Write | (reg_addr) |
* | Stop | - |
* | Start | - |
* | Read | (reg_data[0]) |
* | Read | (....) |
* | Read | (reg_data[len - 1]) |
* | Stop | - |
* |------------+---------------------|
*/
if (size == 0) {
return 0;
} }
struct sensor_itf *itf = intf_ptr;
i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd); i2c_reg_read(cmd, itf->dev_addr, reg_addr, reg_data, length);
i2c_master_write_byte(cmd, (dev_id << 1) | I2C_MASTER_WRITE, ACK_CHECK_EN); esp_err_t ret = i2c_master_cmd_begin(VOC_I2C_NUM, cmd, pdMS_TO_TICKS(VOC_I2C_TO_MS));
i2c_master_write_byte(cmd, reg_addr, ACK_CHECK_EN);
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev_id << 1) | I2C_MASTER_READ, ACK_CHECK_EN);
i2c_master_read(cmd, data_rd, size, I2C_MASTER_LAST_NACK);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(i2c_num, cmd, pdMS_TO_TICKS(1000));
i2c_cmd_link_delete(cmd); i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? BME68X_OK : BME68X_E_COM_FAIL;
// HAL_I2C_Master_Transmit(&hi2c1, dev_id<<1, &reg_addr, 1, 100);
// HAL_I2C_Master_Receive(&hi2c1, dev_id<<1, reg_data, len, 100);
return ret == ESP_OK ? BME680_OK : BME680_E_COM_FAIL;
} }
static int8_t user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { static BME68X_INTF_RET_TYPE user_i2c_write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t length, void *intf_ptr) {
ESP_LOGD(TAG, "BME680 i2c write"); ESP_LOGD(TAG, "BME680 i2c write");
/* if (length == 0) {
* The parameter dev_id can be used as a variable to store the I2C address of the device return BME68X_OK;
*/ }
struct sensor_itf *itf = intf_ptr;
/*
* Data on the bus should be like
* |------------+---------------------|
* | I2C action | Data |
* |------------+---------------------|
* | Start | - |
* | Write | (reg_addr) |
* | Write | (reg_data[0]) |
* | Write | (....) |
* | Write | (reg_data[len - 1]) |
* | Stop | - |
* |------------+---------------------|
*/
//HAL_I2C_Master_Transmit(&hi2c1, dev_id<<1, &data[0], (uint16_t) (len + 1), 100);
i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd); i2c_reg_write(cmd, itf->dev_addr, reg_addr, reg_data, length);
i2c_master_write_byte(cmd, (dev_id << 1) | I2C_MASTER_WRITE, ACK_CHECK_EN); esp_err_t ret = i2c_master_cmd_begin(VOC_I2C_NUM, cmd, pdMS_TO_TICKS(VOC_I2C_TO_MS));
i2c_master_write_byte(cmd, reg_addr, ACK_CHECK_EN);
i2c_master_write(cmd, reg_data, len, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(i2c_num, cmd, pdMS_TO_TICKS(1000));
i2c_cmd_link_delete(cmd); i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? BME68X_OK : BME68X_E_COM_FAIL;
return ret == ESP_OK ? BME680_OK : BME680_E_COM_FAIL;
} }
static esp_err_t voc_init(void) {
esp_err_t voc_init(void) {
int8_t rslt; int8_t rslt;
gas_sensor.dev_id = BME680_I2C_ADDR_PRIMARY; gas_sensor_intf.dev_addr = BME68X_I2C_ADDR_LOW;
gas_sensor.intf = BME680_I2C_INTF; gas_sensor.intf_ptr = &gas_sensor_intf;
gas_sensor.amb_temp = 25; // TODO set this from senseair!
gas_sensor.intf = BME68X_I2C_INTF;
gas_sensor.read = user_i2c_read; gas_sensor.read = user_i2c_read;
gas_sensor.write = user_i2c_write; gas_sensor.write = user_i2c_write;
gas_sensor.delay_ms = user_delay_ms; gas_sensor.delay_us = user_delay_us;
gas_sensor.intf_ptr = &gas_sensor;
ESP_LOGD(TAG, "BME680 initializing");
rslt = bme680_init(&gas_sensor); for (int retry = 0; retry < 3; retry++) {
if (rslt != BME680_OK) { ESP_LOGD(TAG, "BME680 initializing");
rslt = bme68x_init(&gas_sensor);
if (rslt == BME68X_OK) {
break;
}
}
if (rslt != BME68X_OK) {
ESP_LOGE(TAG, "Error from bme680_init: %d", rslt); ESP_LOGE(TAG, "Error from bme680_init: %d", rslt);
return ESP_FAIL; return ESP_FAIL;
} }
ESP_LOGD(TAG, "BME680 configuring");
/* Set the temperature, pressure and humidity settings */
gas_sensor.tph_sett.os_hum = BME680_OS_2X;
gas_sensor.tph_sett.os_pres = BME680_OS_4X;
gas_sensor.tph_sett.os_temp = BME680_OS_8X;
gas_sensor.tph_sett.filter = BME680_FILTER_SIZE_3;
/* Set the remaining gas sensor settings and link the heating profile */
gas_sensor.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
/* Create a ramp heat waveform in 3 steps */
gas_sensor.gas_sett.heatr_temp = 320; /* degree Celsius */
gas_sensor.gas_sett.heatr_dur = 150; /* milliseconds */
/* Select the power mode */
/* Must be set before writing the sensor configuration */
gas_sensor.power_mode = BME680_FORCED_MODE;
/* Set the required sensor settings needed */
uint8_t set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL;
/* Set the desired sensor configuration */
rslt = bme680_set_sensor_settings(set_required_settings, &gas_sensor);
if (rslt != BME680_OK) {
ESP_LOGE(TAG, "Error from bme680_set_sensor_settings: %d", rslt);
return ESP_FAIL;
}
return ESP_OK; return ESP_OK;
} }
uint32_t voc_start_measure(void) { static void new_data_callback(
/* Set the power mode */ const struct bme68x_data *data,
int8_t rslt; const bsecOutputs *outputs,
const struct bsec2 *bsec
rslt = bme680_set_sensor_mode(&gas_sensor); ) {
if (rslt != BME680_OK) { if (!outputs->nOutputs) {
ESP_LOGE(TAG, "Error from bme680_set_sensor_mode: %d", rslt); return;
return 0;
} }
/* Get the total measurement duration so as to sleep or wait till the ESP_LOGI(TAG, "BSEC outputs: timestamp = %d", (int) (outputs->output[0].time_stamp / INT64_C(1000000)));
* measurement is complete */ for (uint8_t i = 0; i < outputs->nOutputs; i++) {
uint16_t meas_period; const bsecData output = outputs->output[i];
bme680_get_profile_dur(&meas_period, &gas_sensor); switch (output.sensor_id) {
meas_period += 10; // add some extra safety margin case BSEC_OUTPUT_IAQ:
ESP_LOGI(TAG, "\tIAQ = %f, accuracy %d", output.signal, (int) output.accuracy);
ESP_LOGD(TAG, "Measurement will take %d ms\r\n", meas_period); break;
case BSEC_OUTPUT_STATIC_IAQ:
return meas_period; ESP_LOGI(TAG, "\tSTATIC_IAQ = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
ESP_LOGI(TAG, "\tCO2_EQUIVALENT = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
ESP_LOGI(TAG, "\tBREATH_VOC_EQUIVALENT = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_RAW_TEMPERATURE:
ESP_LOGI(TAG, "\tRAW_TEMPERATURE = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_RAW_PRESSURE:
ESP_LOGI(TAG, "\tRAW_PRESSURE = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_RAW_HUMIDITY:
ESP_LOGI(TAG, "\tRAW_HUMIDITY = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_RAW_GAS:
ESP_LOGI(TAG, "\tRAW_GAS = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
ESP_LOGI(TAG, "\tSENSOR_HEAT_COMPENSATED_TEMPERATURE = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
ESP_LOGI(TAG, "\tSENSOR_HEAT_COMPENSATED_HUMIDITY = %f, accuracy %d", output.signal, (int) output.accuracy);
break;
case BSEC_OUTPUT_STABILIZATION_STATUS:
ESP_LOGI(TAG, "\tSTABILIZATION_STATUS status = %d", (int) output.signal);
break;
case BSEC_OUTPUT_RUN_IN_STATUS:
ESP_LOGI(TAG, "\tRUN_IN_STATUS = %d", (int) output.signal);
break;
default:
break;
}
}
} }
esp_err_t voc_read(struct bme680_field_data *data) { void voc_read_task(void *param) {
/* Set the power mode */ ESP_LOGI(TAG, "VOC sensor init");
int8_t rslt;
rslt = bme680_get_sensor_data(data, &gas_sensor); if (ESP_OK != voc_init()) {
if (rslt != BME680_OK) { ESP_LOGE(TAG, "Fail to init sensor!");
ESP_LOGE(TAG, "Error from bme680_get_sensor_data: %d", rslt); return;
return ESP_FAIL;
} }
ESP_LOGI(TAG, "T: %d/100 degC, P: %d/100 hPa, H %d/1000 %%rH ", data->temperature, data->pressure, data->humidity); int rv = bsec2_init(&gas_sensor_bsec, &gas_sensor);
/* Avoid using measurements from an unstable heating setup */ if (rv != 0) {
if (data->status & BME680_GASM_VALID_MSK) { ESP_LOGE(TAG, "Error in bsec init: %d", rv);
ESP_LOGI(TAG, "G: %d ohms", data->gas_resistance); return;
} }
return ESP_OK;
}
void voc_read_task(void *param) { bsecSensor sensorList[] = {
ESP_LOGI(TAG, "VOC sensor init"); BSEC_OUTPUT_IAQ,
voc_init(); BSEC_OUTPUT_STATIC_IAQ,
BSEC_OUTPUT_CO2_EQUIVALENT,
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT,
struct bme680_field_data data; BSEC_OUTPUT_RAW_TEMPERATURE, // XXX probably useless, we can get these directly from the data struct
BSEC_OUTPUT_RAW_PRESSURE,
BSEC_OUTPUT_RAW_HUMIDITY,
BSEC_OUTPUT_RAW_GAS,
while (1) { BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE,
ESP_LOGI(TAG, "VOC sensor meas"); BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY,
uint32_t mswait = voc_start_measure();
vTaskDelay(pdMS_TO_TICKS(mswait));
ESP_LOGI(TAG, "VOC sensor read"); BSEC_OUTPUT_STABILIZATION_STATUS,
voc_read(&data); BSEC_OUTPUT_RUN_IN_STATUS,
};
// TODO do something with it rv = bsec2_updateSubscription(&gas_sensor_bsec,
sensorList,
sizeof(sensorList) / sizeof(bsecSensor),
BSEC_SAMPLE_RATE_LP);
vTaskDelay(pdMS_TO_TICKS(1000)); if (false == rv) {
ESP_LOGE(TAG, "Fail to update bsec subscriptions!");
return;
}
bsec2_attachCallback(&gas_sensor_bsec, new_data_callback);
ESP_LOGI(TAG, "BSEC library version %d.%d.%d.%d",
gas_sensor_bsec.version.major,
gas_sensor_bsec.version.minor,
gas_sensor_bsec.version.major_bugfix,
gas_sensor_bsec.version.minor_bugfix);
// TODO add bsec state persistence to NVS at some landmark intervals, e.g. 1 day
// TODO periodic updating of sensor ambient temp
while (1) {
rv = bsec2_run(&gas_sensor_bsec);
if (false == rv) {
ESP_LOGE(TAG, "Error in bsec run!");
}
vTaskDelay(pdMS_TO_TICKS(100));
} }
} }

@ -5,14 +5,6 @@
#ifndef PROJ_VOC_SENSOR_H #ifndef PROJ_VOC_SENSOR_H
#define PROJ_VOC_SENSOR_H #define PROJ_VOC_SENSOR_H
#include <bme680.h>
#include <esp_err.h>
extern struct bme680_dev gas_sensor;
esp_err_t voc_init(void);
uint32_t voc_start_measure(void);
esp_err_t voc_read(struct bme680_field_data *data);
void voc_read_task(void *param); void voc_read_task(void *param);
#endif //PROJ_VOC_SENSOR_H #endif //PROJ_VOC_SENSOR_H

Loading…
Cancel
Save