parent
36fd117508
commit
d960940a6d
@ -0,0 +1,139 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
#include <stdint.h> |
||||
#include <stdlib.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
#include "lib/colors.h" |
||||
#include "lib/adc.h" |
||||
|
||||
#define WS_T_1H 800 |
||||
#define WS_T_1L 400 |
||||
#define WS_T_0H 120 |
||||
#define WS_T_0L 900 |
||||
|
||||
#include "lib/ws_rgb.h" |
||||
|
||||
#define WS1 D2 |
||||
|
||||
|
||||
typedef struct { |
||||
uint8_t h; |
||||
uint8_t s; |
||||
uint8_t l; |
||||
} hsl_t; |
||||
|
||||
|
||||
// based on: https://github.com/lewisd32/avr-hsl2rgb
|
||||
xrgb_t hsl2rgb(const hsl_t cc) |
||||
{ |
||||
// 0 .. 256*3
|
||||
const uint16_t hh = (uint16_t) cc.h * 3; |
||||
const uint8_t hue_mod = hh % 256; |
||||
|
||||
uint8_t r_temp, g_temp, b_temp; |
||||
if (hh < 256) { |
||||
r_temp = hue_mod ^ 255; |
||||
g_temp = hue_mod; |
||||
b_temp = 0; |
||||
} else if (hh < 512) { |
||||
r_temp = 0; |
||||
g_temp = hue_mod ^ 255; |
||||
b_temp = hue_mod; |
||||
} else if (hh < 768) { |
||||
r_temp = hue_mod; |
||||
g_temp = 0; |
||||
b_temp = hue_mod ^ 255; |
||||
} else { |
||||
r_temp = 0; |
||||
g_temp = 0; |
||||
b_temp = 0; |
||||
} |
||||
|
||||
const uint8_t inverse_sat = (cc.s ^ 255); |
||||
|
||||
xrgb_t rgb; |
||||
|
||||
uint8_t t8; |
||||
uint16_t t16; |
||||
|
||||
t8 = r_temp; |
||||
t16 = t8 * cc.s + t8; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * cc.l; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.r = t8; |
||||
|
||||
t8 = g_temp; |
||||
t16 = t8 * cc.s; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * cc.l; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.g = t8; |
||||
|
||||
t8 = b_temp; |
||||
t16 = t8 * cc.s; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * cc.l; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.b = t8; |
||||
|
||||
return rgb; |
||||
} |
||||
|
||||
|
||||
void SECTION(".init8") init() |
||||
{ |
||||
adc_init(); |
||||
srand(adc_read_word(0)); |
||||
|
||||
as_output(WS1); |
||||
} |
||||
|
||||
|
||||
void main() |
||||
{ |
||||
#define SIZE 7 |
||||
hsl_t board[SIZE]; |
||||
xrgb_t screen[SIZE]; |
||||
|
||||
for (uint8_t i = 0; i < SIZE; i++) { |
||||
board[i] = (hsl_t) {.h=0, .s=255, .l=0}; |
||||
screen[i] = (xrgb_t) {.r=0, .g=0, .b=0}; |
||||
} |
||||
|
||||
while(1) { |
||||
for(uint8_t i = 0; i < SIZE; i++) { |
||||
if (board[i].l > 0) { |
||||
board[i].l--; |
||||
} |
||||
|
||||
screen[i] = hsl2rgb(board[i]); |
||||
} |
||||
|
||||
if (rand() % 200 == 0) { |
||||
uint8_t i = rand() % SIZE; |
||||
|
||||
if (board[i].l == 0) { |
||||
board[i].h = rand() % 256; |
||||
board[i].s = 200 + rand() % 56; |
||||
board[i].l = 255; |
||||
} |
||||
} |
||||
|
||||
ws_send_xrgb_array(WS1, screen, SIZE); |
||||
_delay_ms(10); |
||||
} |
||||
} |
@ -1,389 +0,0 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
// #include <stdbool.h>
|
||||
#include <stdint.h> |
||||
#include <stdlib.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
#include "lib/colors.h" |
||||
#include "lib/ws2812.h" |
||||
#include "lib/adc.h" |
||||
|
||||
#define DEBO_CHANNELS 6 |
||||
#define DEBO_TICKS 1 // in 0.01s
|
||||
|
||||
#include "lib/debounce.h" |
||||
|
||||
|
||||
// #define BOARD_WIDTH 6
|
||||
// #define BOARD_HEIGHT 5
|
||||
#define BOARD_WIDTH 4 |
||||
#define BOARD_HEIGHT 4 |
||||
|
||||
// number of cards
|
||||
#define CARD_COUNT (BOARD_WIDTH * BOARD_HEIGHT) |
||||
|
||||
// number of pairs
|
||||
#define PAIR_COUNT (CARD_COUNT / 2) |
||||
|
||||
// color palette
|
||||
const xrgb_t COLORS[] = { |
||||
rgb24_xrgbc(0x00FF99), // emerald
|
||||
rgb24_xrgbc(0x0000CC), // full blue
|
||||
rgb24_xrgbc(0xFF00FF), // magenta
|
||||
rgb24_xrgbc(0xFF0000), // red
|
||||
rgb24_xrgbc(0xFF2B00), // orange
|
||||
rgb24_xrgbc(0xFFFF00), // yellow
|
||||
rgb24_xrgbc(0x0BEE00), // green
|
||||
rgb24_xrgbc(0xFF6D00), // tangerine yellow/orange
|
||||
rgb24_xrgbc(0x00CCCC), // cyan
|
||||
rgb24_xrgbc(0x4400FF), // blue-purple
|
||||
rgb24_xrgbc(0x5FBA00), // yellow-green
|
||||
rgb24_xrgbc(0xD70053), // wine
|
||||
rgb24_xrgbc(0xCD2B64), // brick
|
||||
rgb24_xrgbc(0xED1B24), // firetruck red
|
||||
rgb24_xrgbc(0xFF6D55), // salmon?
|
||||
}; |
||||
|
||||
|
||||
// assert valid board size
|
||||
#if CARD_COUNT % 2 == 1 |
||||
# error "Board size is not even!" |
||||
#endif |
||||
|
||||
|
||||
#define WS1 D10 |
||||
|
||||
#define BTN_LEFT D2 |
||||
#define BTN_RIGHT D3 |
||||
#define BTN_UP D4 |
||||
#define BTN_DOWN D5 |
||||
#define BTN_SELECT D6 |
||||
#define BTN_RESTART D7 |
||||
|
||||
// Debouncer channels for buttons
|
||||
// (Must be added in this order to debouncer)
|
||||
#define D_LEFT 0 |
||||
#define D_RIGHT 1 |
||||
#define D_UP 2 |
||||
#define D_DOWN 3 |
||||
#define D_SELECT 4 |
||||
#define D_RESTART 5 |
||||
|
||||
// Pin A0 not connected to anything, used to get
|
||||
// entropy for random number generator
|
||||
|
||||
// Prototypes
|
||||
void render(); |
||||
void update(); |
||||
void deal_cards(); |
||||
|
||||
|
||||
void SECTION(".init8") init() |
||||
{ |
||||
adc_init(); // Initialize ADC
|
||||
srand(adc_read_word(0)); // Randomize RNG
|
||||
|
||||
// led strip data
|
||||
as_output(WS1); |
||||
|
||||
// gamepad buttons
|
||||
as_input_pu(BTN_LEFT); |
||||
as_input_pu(BTN_RIGHT); |
||||
as_input_pu(BTN_UP); |
||||
as_input_pu(BTN_DOWN); |
||||
as_input_pu(BTN_SELECT); |
||||
as_input_pu(BTN_RESTART); |
||||
|
||||
// add buttons to debouncer
|
||||
debo_add_rev(BTN_LEFT); |
||||
debo_add_rev(BTN_RIGHT); |
||||
debo_add_rev(BTN_UP); |
||||
debo_add_rev(BTN_DOWN); |
||||
debo_add_rev(BTN_SELECT); |
||||
debo_add_rev(BTN_RESTART); |
||||
|
||||
// setup timer
|
||||
TCCR0A = _BV(WGM01); // CTC
|
||||
TCCR0B = _BV(CS02) | _BV(CS00); // prescaler 1024
|
||||
OCR0A = 156; // interrupt every 10 ms
|
||||
sbi(TIMSK0, OCIE0A); |
||||
|
||||
deal_cards(); |
||||
|
||||
sei(); |
||||
} |
||||
|
||||
|
||||
|
||||
/** Tile state enum */ |
||||
typedef enum { |
||||
SECRET, |
||||
REVEALED, |
||||
GONE |
||||
} tilestate_t; |
||||
|
||||
|
||||
/** Tile struct */ |
||||
typedef struct { |
||||
uint8_t color; // color index from COLORS[]
|
||||
tilestate_t state; // state of the tile (used for render)
|
||||
} tile_t; |
||||
|
||||
|
||||
// board tiles
|
||||
tile_t board[CARD_COUNT]; |
||||
|
||||
|
||||
void deal_cards() |
||||
{ |
||||
// clear the board
|
||||
for (uint8_t i = 0; i < CARD_COUNT; ++i) { |
||||
board[i] = (tile_t) { .color = 0, .state = GONE }; |
||||
} |
||||
|
||||
// for all pair_COUNT
|
||||
for (uint8_t i = 0; i < PAIR_COUNT; ++i) { |
||||
// for both cards in pair
|
||||
for (uint8_t j = 0; j < 2; j++) { |
||||
// loop until empty slot is found
|
||||
while(1) { |
||||
uint8_t pos = rand() % CARD_COUNT; |
||||
|
||||
if (board[pos].state == GONE) { |
||||
board[pos] = (tile_t) { .color = i, .state = SECRET }; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/** timer 0 interrupt vector */ |
||||
ISR(TIMER0_COMPA_vect) |
||||
{ |
||||
debo_tick(); // poll debouncer
|
||||
update(); // update game state
|
||||
render(); |
||||
} |
||||
|
||||
|
||||
// player cursor position
|
||||
uint8_t cursor = 0; |
||||
uint8_t animframe = 0; |
||||
|
||||
bool hide_timeout_match; |
||||
uint8_t hide_timeout = 0; |
||||
|
||||
// Game state
|
||||
uint8_t tiles_revealed = 0; |
||||
uint8_t tile1; |
||||
uint8_t tile2; |
||||
|
||||
// length of pulse animation (in 10ms)
|
||||
#define F_ANIM_LEN 20 |
||||
#define HIDE_TIME 100 |
||||
|
||||
// length of button holding before it's repeated (in 10ms)
|
||||
#define BTNHOLD_REPEAT 20 |
||||
|
||||
uint8_t btn_hold_cnt[DEBO_CHANNELS]; |
||||
|
||||
void button_click(uint8_t n) |
||||
{ |
||||
switch (n) { |
||||
case D_UP: |
||||
if (cursor < BOARD_WIDTH) // first row
|
||||
cursor += (CARD_COUNT - BOARD_WIDTH); |
||||
else |
||||
cursor -= BOARD_WIDTH; |
||||
break; |
||||
|
||||
case D_DOWN: |
||||
if (cursor >= (CARD_COUNT - BOARD_WIDTH)) // last row
|
||||
cursor -= (CARD_COUNT - BOARD_WIDTH); |
||||
else |
||||
cursor += BOARD_WIDTH; |
||||
break; |
||||
|
||||
case D_LEFT: |
||||
if (cursor > 0) // last row
|
||||
cursor--; |
||||
else |
||||
cursor = (CARD_COUNT - 1); |
||||
break; |
||||
|
||||
case D_RIGHT: |
||||
if (cursor < (CARD_COUNT - 1)) // last row
|
||||
cursor++; |
||||
else |
||||
cursor = 0; |
||||
break; |
||||
|
||||
case D_SELECT: |
||||
if (tiles_revealed == 2) break; // two already shown
|
||||
if (board[cursor].state != SECRET) break; // selected tile not secret
|
||||
|
||||
// reveal a tile
|
||||
if (tiles_revealed < 2) { |
||||
board[cursor].state = REVEALED; |
||||
tiles_revealed++; |
||||
|
||||
if(tiles_revealed == 1) { |
||||
tile1 = cursor; |
||||
} else { |
||||
tile2 = cursor; |
||||
} |
||||
} |
||||
|
||||
// Check equality if it's the second
|
||||
if (tiles_revealed == 2) { |
||||
hide_timeout_match = (board[tile1].color == board[tile2].color); |
||||
hide_timeout = HIDE_TIME; |
||||
} |
||||
|
||||
break; |
||||
|
||||
case D_RESTART: |
||||
deal_cards(); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Press arrow key, skip empty tiles */ |
||||
void safe_press_arrow_key(uint8_t n) |
||||
{ |
||||
// attempt to arrive at some secret tile
|
||||
for (uint8_t j = 0; j < BOARD_HEIGHT; j++) { |
||||
|
||||
for (uint8_t k = 0; k < BOARD_WIDTH; k++) { |
||||
button_click(n); |
||||
if (board[cursor].state != GONE) break; |
||||
} |
||||
|
||||
if (board[cursor].state != GONE) break; |
||||
|
||||
// traverse right since current column is empty
|
||||
//
|
||||
button_click(D_RIGHT); |
||||
} |
||||
} |
||||
|
||||
|
||||
#define is_arrow_key(id) ((id) == D_LEFT || (id) == D_RIGHT || (id) == D_UP || (id) == D_DOWN) |
||||
|
||||
|
||||
/** Update game (every 10 ms) */ |
||||
void update() |
||||
{ |
||||
// handle buttons (repeating)
|
||||
for (uint8_t i = 0; i < DEBO_CHANNELS; i++) { |
||||
if (debo_get_pin(i)) { |
||||
if (btn_hold_cnt[i] == 0) { |
||||
if (is_arrow_key(i)) { |
||||
safe_press_arrow_key(i); |
||||
} else { |
||||
button_click(i); |
||||
} |
||||
} |
||||
|
||||
// non-arrows wrap to 1 -> do not generate repeated clicks
|
||||
inc_wrap(btn_hold_cnt[i], is_arrow_key(i) ? 1 : 0, BTNHOLD_REPEAT); |
||||
|
||||
} else { |
||||
btn_hold_cnt[i] = 0; |
||||
} |
||||
} |
||||
|
||||
// handle game logic
|
||||
if (hide_timeout > 0) { |
||||
if (--hide_timeout == 0) { |
||||
if (hide_timeout_match) { |
||||
// Tiles removed from board
|
||||
board[tile1].state = GONE; |
||||
board[tile2].state = GONE; |
||||
|
||||
if (board[cursor].state == GONE) { |
||||
// move to some other tile
|
||||
// try not to change row if possible
|
||||
if ((cursor % BOARD_WIDTH) == (BOARD_WIDTH-1)) |
||||
safe_press_arrow_key(D_LEFT); |
||||
else |
||||
safe_press_arrow_key(D_RIGHT); |
||||
} |
||||
} else { |
||||
// Tiles made secret again
|
||||
board[tile1].state = SECRET; |
||||
board[tile2].state = SECRET; |
||||
} |
||||
|
||||
tiles_revealed = 0; // no revealed
|
||||
} |
||||
} |
||||
|
||||
|
||||
inc_wrap(animframe, 0, F_ANIM_LEN * 2); |
||||
} |
||||
|
||||
// LED off
|
||||
#define BLACK rgb24_xrgb(0x000000) |
||||
// LED on - secret tile
|
||||
#define WHITE rgb24_xrgb(0x555555) |
||||
|
||||
// colors to be displayed
|
||||
xrgb_t screen[CARD_COUNT]; |
||||
|
||||
|
||||
/** Update screen[] and send to display */ |
||||
void render() |
||||
{ |
||||
for (uint8_t i = 0; i < CARD_COUNT; i++) { |
||||
switch (board[i].state) { |
||||
case SECRET: |
||||
screen[i] = WHITE; |
||||
break; |
||||
|
||||
case REVEALED: |
||||
screen[i] = COLORS[board[i].color]; |
||||
break; |
||||
|
||||
default: |
||||
case GONE: |
||||
screen[i] = BLACK; |
||||
break; |
||||
} |
||||
|
||||
if (i == cursor) { |
||||
// flashy animation state
|
||||
uint16_t mult; |
||||
|
||||
if (animframe < F_ANIM_LEN) { |
||||
mult = animframe; |
||||
} else { |
||||
mult = (F_ANIM_LEN * 2) - animframe; |
||||
} |
||||
|
||||
screen[i] = (xrgb_t) { |
||||
.r = (uint8_t) ((((uint16_t) screen[i].r) * mult) / F_ANIM_LEN), |
||||
.g = (uint8_t) ((((uint16_t) screen[i].g) * mult) / F_ANIM_LEN), |
||||
.b = (uint8_t) ((((uint16_t) screen[i].b) * mult) / F_ANIM_LEN), |
||||
}; |
||||
} |
||||
} |
||||
|
||||
// debo_get_pin(BTN_LEFT_D) ? PINK : BLACK;
|
||||
|
||||
ws_send_xrgb_array(WS1, screen, CARD_COUNT); |
||||
ws_show(); |
||||
} |
||||
|
||||
|
||||
void main() |
||||
{ |
||||
while(1); // Timer does everything
|
||||
} |
@ -0,0 +1,166 @@ |
||||
|
||||
MCU = atmega328p
|
||||
|
||||
F_CPU = 16000000
|
||||
|
||||
LFUSE = 0xFF
|
||||
HFUSE = 0xDE
|
||||
EFUSE = 0x05
|
||||
|
||||
MAIN = main.c
|
||||
|
||||
## If you've split your program into multiple files,
|
||||
## include the additional .c source (in same directory) here
|
||||
## (and include the .h files in your foo.c)
|
||||
LOCAL_SOURCE =
|
||||
|
||||
## Here you can link to one more directory (and multiple .c files)
|
||||
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
|
||||
EXTRA_SOURCE_DIR =
|
||||
EXTRA_SOURCE_FILES =
|
||||
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer Defaults ##########
|
||||
########## Set up once, then forget about it ##########
|
||||
########## (Can override. See bottom of file.) ##########
|
||||
##########------------------------------------------------------##########
|
||||
#19200
|
||||
PROGRAMMER_TYPE = arduino
|
||||
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Makefile Magic! ##########
|
||||
########## Summary: ##########
|
||||
########## We want a .hex file ##########
|
||||
########## Compile source files into .elf ##########
|
||||
########## Convert .elf file into .hex ##########
|
||||
########## You shouldn't need to edit below. ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Defined programs / locations
|
||||
CC = avr-gcc
|
||||
OBJCOPY = avr-objcopy
|
||||
OBJDUMP = avr-objdump
|
||||
AVRSIZE = avr-size
|
||||
AVRDUDE = avrdude
|
||||
|
||||
## Compilation options, type man avr-gcc if you're curious.
|
||||
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
|
||||
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
|
||||
CFLAGS += -g2 -Wextra -pedantic -Wfatal-errors
|
||||
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
|
||||
|
||||
CFLAGS_BUILD = $(CFLAGS) -Os
|
||||
|
||||
# CFLAGS += -lm
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
|
||||
|
||||
## Lump target and extra source files together
|
||||
TARGET = $(strip $(basename $(MAIN)))
|
||||
SRC1 = $(TARGET).c
|
||||
SRC = $(SRC1)
|
||||
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
|
||||
SRC += $(EXTRA_SOURCE)
|
||||
SRC += $(LOCAL_SOURCE)
|
||||
|
||||
## List of all header files
|
||||
HEADERS = $(SRC:.c=.h)
|
||||
|
||||
## For every .c file, compile an .o object file
|
||||
OBJ = $(SRC:.c=.o)
|
||||
|
||||
## Generic Makefile targets. (Only .hex file is necessary)
|
||||
all: $(TARGET).hex size |
||||
pre: $(TARGET).pre |
||||
|
||||
%.hex: %.elf |
||||
$(OBJCOPY) -R .eeprom -O ihex $< $@
|
||||
|
||||
%.elf: $(SRC) |
||||
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
|
||||
|
||||
%.pre: $(SRC1) |
||||
$(CC) $(CFLAGS) -E $(SRC1) --output $@
|
||||
|
||||
%.eeprom: %.elf |
||||
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
|
||||
|
||||
debug: |
||||
@echo
|
||||
@echo "Source files:" $(SRC)
|
||||
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
|
||||
@echo
|
||||
|
||||
# Optionally create listing file from .elf
|
||||
# This creates approximate assembly-language equivalent of your code.
|
||||
# Useful for debugging time-sensitive bits,
|
||||
# or making sure the compiler does what you want.
|
||||
disassemble: $(TARGET).lst |
||||
|
||||
dis: disassemble |
||||
lst: disassemble |
||||
|
||||
eeprom: $(TARGET).eeprom |
||||
|
||||
%.lst: %.elf |
||||
$(OBJDUMP) -S $< > $@
|
||||
|
||||
# Optionally show how big the resulting program is
|
||||
size: $(TARGET).elf |
||||
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
|
||||
|
||||
clean: |
||||
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
|
||||
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
|
||||
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
|
||||
$(TARGET).eeprom
|
||||
|
||||
squeaky_clean: |
||||
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer-specific details ##########
|
||||
########## Flashing code to AVR using avrdude ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
flash: $(TARGET).hex |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
|
||||
|
||||
flash_eeprom: $(TARGET).eeprom |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
|
||||
|
||||
terminal: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
|
||||
|
||||
|
||||
flash_arduino: PROGRAMMER_TYPE = arduino |
||||
flash_arduino: PROGRAMMER_ARGS = |
||||
flash_arduino: flash |
||||
|
||||
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp |
||||
flash_dragon_isp: PROGRAMMER_ARGS = |
||||
flash_dragon_isp: flash |
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Fuse settings and suitable defaults ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Generic
|
||||
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
|
||||
fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
|
||||
$(PROGRAMMER_ARGS) $(FUSE_STRING)
|
||||
show_fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
|
||||
|
||||
## Called with no extra definitions, sets to defaults
|
||||
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m |
||||
set_default_fuses: fuses |
@ -0,0 +1 @@ |
||||
/home/ondra/devel/avr/avr-projects/devel/lib |
@ -0,0 +1,86 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
// #include <stdbool.h>
|
||||
#include <stdint.h> |
||||
#include <stdlib.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
#include "lib/colors.h" |
||||
#include "lib/adc.h" |
||||
|
||||
#define WS_T_1H 800 |
||||
#define WS_T_1L 400 |
||||
#define WS_T_0H 120 |
||||
#define WS_T_0L 900 |
||||
|
||||
#include "lib/ws_rgb.h" |
||||
|
||||
#define WS1 D2 |
||||
|
||||
|
||||
void SECTION(".init8") init() |
||||
{ |
||||
as_output(WS1); |
||||
} |
||||
|
||||
void main() |
||||
{ |
||||
const uint8_t anim_step = 50; |
||||
const uint8_t anim_max = 250; |
||||
const uint8_t pixel_count = 7; |
||||
|
||||
xrgb_t color = xrgb(anim_max, 0, 0); |
||||
uint8_t step = 0; |
||||
|
||||
xrgb_t color2 = xrgb(anim_max, 0, 0); |
||||
uint8_t step2 = 0; |
||||
|
||||
while (1) { |
||||
|
||||
color = color2; |
||||
step = step2; |
||||
|
||||
for (uint8_t i = 0; i < pixel_count; i++) { |
||||
ws_send_xrgb(WS1, color); |
||||
|
||||
if (i == 1) { |
||||
color2 = color; |
||||
step2 = step; |
||||
} |
||||
|
||||
switch (step) { |
||||
case 0: |
||||
color.g += anim_step; |
||||
if (color.g >= anim_max) step++; |
||||
break; |
||||
case 1: |
||||
color.r -= anim_step; |
||||
if (color.r == 0) step++; |
||||
break; |
||||
case 2: |
||||
color.b += anim_step; |
||||
if (color.b >= anim_max) step++; |
||||
break; |
||||
case 3: |
||||
color.g -= anim_step; |
||||
if (color.g == 0) step++; |
||||
break; |
||||
case 4: |
||||
color.r += anim_step; |
||||
if (color.r >= anim_max) step++; |
||||
break; |
||||
default: |
||||
color.b -= anim_step; |
||||
if (color.b == 0) step = 0; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
ws_show(); |
||||
|
||||
_delay_ms(100); |
||||
} |
||||
} |
@ -0,0 +1,166 @@ |
||||
|
||||
MCU = atmega328p
|
||||
|
||||
F_CPU = 16000000
|
||||
|
||||
LFUSE = 0xFF
|
||||
HFUSE = 0xDE
|
||||
EFUSE = 0x05
|
||||
|
||||
MAIN = main.c
|
||||
|
||||
## If you've split your program into multiple files,
|
||||
## include the additional .c source (in same directory) here
|
||||
## (and include the .h files in your foo.c)
|
||||
LOCAL_SOURCE =
|
||||
|
||||
## Here you can link to one more directory (and multiple .c files)
|
||||
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
|
||||
EXTRA_SOURCE_DIR =
|
||||
EXTRA_SOURCE_FILES =
|
||||
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer Defaults ##########
|
||||
########## Set up once, then forget about it ##########
|
||||
########## (Can override. See bottom of file.) ##########
|
||||
##########------------------------------------------------------##########
|
||||
#19200
|
||||
PROGRAMMER_TYPE = arduino
|
||||
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Makefile Magic! ##########
|
||||
########## Summary: ##########
|
||||
########## We want a .hex file ##########
|
||||
########## Compile source files into .elf ##########
|
||||
########## Convert .elf file into .hex ##########
|
||||
########## You shouldn't need to edit below. ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Defined programs / locations
|
||||
CC = avr-gcc
|
||||
OBJCOPY = avr-objcopy
|
||||
OBJDUMP = avr-objdump
|
||||
AVRSIZE = avr-size
|
||||
AVRDUDE = avrdude
|
||||
|
||||
## Compilation options, type man avr-gcc if you're curious.
|
||||
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
|
||||
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
|
||||
CFLAGS += -g2 -Wextra -pedantic -Wfatal-errors
|
||||
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
|
||||
|
||||
CFLAGS_BUILD = $(CFLAGS) -Os
|
||||
|
||||
# CFLAGS += -lm
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
|
||||
|
||||
## Lump target and extra source files together
|
||||
TARGET = $(strip $(basename $(MAIN)))
|
||||
SRC1 = $(TARGET).c
|
||||
SRC = $(SRC1)
|
||||
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
|
||||
SRC += $(EXTRA_SOURCE)
|
||||
SRC += $(LOCAL_SOURCE)
|
||||
|
||||
## List of all header files
|
||||
HEADERS = $(SRC:.c=.h)
|
||||
|
||||
## For every .c file, compile an .o object file
|
||||
OBJ = $(SRC:.c=.o)
|
||||
|
||||
## Generic Makefile targets. (Only .hex file is necessary)
|
||||
all: $(TARGET).hex size |
||||
pre: $(TARGET).pre |
||||
|
||||
%.hex: %.elf |
||||
$(OBJCOPY) -R .eeprom -O ihex $< $@
|
||||
|
||||
%.elf: $(SRC) |
||||
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
|
||||
|
||||
%.pre: $(SRC1) |
||||
$(CC) $(CFLAGS) -E $(SRC1) --output $@
|
||||
|
||||
%.eeprom: %.elf |
||||
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
|
||||
|
||||
debug: |
||||
@echo
|
||||
@echo "Source files:" $(SRC)
|
||||
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
|
||||
@echo
|
||||
|
||||
# Optionally create listing file from .elf
|
||||
# This creates approximate assembly-language equivalent of your code.
|
||||
# Useful for debugging time-sensitive bits,
|
||||
# or making sure the compiler does what you want.
|
||||
disassemble: $(TARGET).lst |
||||
|
||||
dis: disassemble |
||||
lst: disassemble |
||||
|
||||
eeprom: $(TARGET).eeprom |
||||
|
||||
%.lst: %.elf |
||||
$(OBJDUMP) -S $< > $@
|
||||
|
||||
# Optionally show how big the resulting program is
|
||||
size: $(TARGET).elf |
||||
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
|
||||
|
||||
clean: |
||||
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
|
||||
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
|
||||
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
|
||||
$(TARGET).eeprom
|
||||
|
||||
squeaky_clean: |
||||
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer-specific details ##########
|
||||
########## Flashing code to AVR using avrdude ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
flash: $(TARGET).hex |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
|
||||
|
||||
flash_eeprom: $(TARGET).eeprom |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
|
||||
|
||||
terminal: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
|
||||
|
||||
|
||||
flash_arduino: PROGRAMMER_TYPE = arduino |
||||
flash_arduino: PROGRAMMER_ARGS = |
||||
flash_arduino: flash |
||||
|
||||
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp |
||||
flash_dragon_isp: PROGRAMMER_ARGS = |
||||
flash_dragon_isp: flash |
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Fuse settings and suitable defaults ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Generic
|
||||
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
|
||||
fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
|
||||
$(PROGRAMMER_ARGS) $(FUSE_STRING)
|
||||
show_fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
|
||||
|
||||
## Called with no extra definitions, sets to defaults
|
||||
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m |
||||
set_default_fuses: fuses |
@ -0,0 +1,8 @@ |
||||
AVR utils library |
||||
================= |
||||
|
||||
This is my ever-evolving library (not only) for AVR programming. |
||||
|
||||
When I'm done with a project, I copy the current library to the project, so it doesn't break when I do further improvements. |
||||
|
||||
Each library file contains a large comment block explaining it's function. |
@ -0,0 +1,39 @@ |
||||
#pragma once |
||||
|
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
#include "calc.h" |
||||
|
||||
/** Initialize the ADC */ |
||||
void adc_init() |
||||
{ |
||||
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
|
||||
ADMUX |= _BV(REFS0); // Voltage reference
|
||||
sbi(ADCSRA, ADEN); // Enable ADC
|
||||
} |
||||
|
||||
|
||||
/** Sample analog pin with 8-bit precision */ |
||||
uint8_t adc_read_byte(uint8_t channel) |
||||
{ |
||||
write_low_nibble(ADMUX, channel); // Select channel to sample
|
||||
sbi(ADMUX, ADLAR); // Align result to left
|
||||
sbi(ADCSRA, ADSC); // Start conversion
|
||||
|
||||
while(bit_is_high(ADCSRA, ADSC)); // Wait for it...
|
||||
|
||||
return ADCH; // The upper 8 bits of ADC result
|
||||
} |
||||
|
||||
|
||||
/** Sample analog pin with 10-bit precision */ |
||||
uint16_t adc_read_word(uint8_t channel) |
||||
{ |
||||
write_low_nibble(ADMUX, channel); // Select channel to sample
|
||||
cbi(ADMUX, ADLAR); // Align result to right
|
||||
sbi(ADCSRA, ADSC); // Start conversion
|
||||
|
||||
while(get_bit(ADCSRA, ADSC)); // Wait for it...
|
||||
|
||||
return ADCW; // The whole ADC word (10 bits)
|
||||
} |
@ -0,0 +1,42 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Pin definitions for Arduino (Pro Mini with ATmega328P) |
||||
*/ |
||||
|
||||
#include "pins.h" |
||||
|
||||
#define D0 D,0 |
||||
#define D1 D,1 |
||||
#define D2 D,2 |
||||
#define D3 D,3 |
||||
#define D4 D,4 |
||||
#define D5 D,5 |
||||
#define D6 D,6 |
||||
#define D7 D,7 |
||||
#define D8 B,0 |
||||
#define D9 B,1 |
||||
#define D10 B,2 |
||||
|
||||
// MOSI MISO SCK - not good for input
|
||||
#define D11 B,3 |
||||
#define D12 B,4 |
||||
#define D13 B,5 |
||||
|
||||
#define D14 C,0 |
||||
#define D15 C,1 |
||||
#define D16 C,2 |
||||
#define D17 C,3 |
||||
#define D18 C,4 |
||||
#define D19 C,5 |
||||
#define D20 C,6 |
||||
#define D21 C,7 |
||||
|
||||
#define A0 C,0 |
||||
#define A1 C,1 |
||||
#define A2 C,2 |
||||
#define A3 C,3 |
||||
#define A4 C,4 |
||||
#define A5 C,5 |
||||
#define A6 C,6 |
||||
#define A7 C,7 |
@ -0,0 +1,89 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Bit and byte manipulation utilities |
||||
*/ |
||||
|
||||
|
||||
// --- Increment in range ---
|
||||
// when overflown, wraps within range. Lower bound < upper bound.
|
||||
// ..., upper bound excluded
|
||||
#define inc_wrap(var, min, max) do { if ((var) >= (max - 1)) { (var) = (min); } else { (var)++; } } while(0) |
||||
// ..., upper bound included
|
||||
#define inc_wrapi(var, min, max) inc_wrap((var), (min), (max) + 1) |
||||
|
||||
|
||||
// --- Decrement in range ---
|
||||
// when underflown, wraps within range. Lower bound < upper bound.
|
||||
// ..., upper bound excluded
|
||||
#define dec_wrap(var, min, max) do { if ((var) <= (min)) { (var) = (max) - 1; } else { (var)--; } } while(0) |
||||
// ..., upper bound included
|
||||
#define dec_wrapi(var, min, max) dec_wrap((var), (min), (max) + 1) |
||||
|
||||
|
||||
// --- Bit manipulation --
|
||||
|
||||
// Set bit
|
||||
#define sbi(reg, bit) do { (reg) |= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Clear bit
|
||||
#define cbi(reg, bit) do { (reg) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Get n-th bit
|
||||
#define read_bit(reg, bit) (((reg) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit(reg, bit) read_bit(reg, bit) |
||||
|
||||
// Test n-th bit (Can't use bit_is_set, as it's redefined in sfr_def.h)
|
||||
#define bit_is_high(reg, bit) read_bit(reg, bit) |
||||
#define bit_is_low(reg, bit) (!read_bit(reg, bit)) |
||||
|
||||
// Write value to n-th bit
|
||||
#define write_bit(reg, bit, value) do { (reg) = ((reg) & ~(1 << (uint8_t)(bit))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit(reg, bit, value) write_bit(reg, bit, value) |
||||
|
||||
// Invert n-th bit
|
||||
#define toggle_bit(reg, bit) do { (reg) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
|
||||
// --- Bit manipulation with pointer to variable ---
|
||||
|
||||
// Set n-th bit in pointee
|
||||
#define sbi_p(reg_p, bit) do { (*(reg_p)) |= (1 << (uint8_t)(bit)); } while(0) |
||||
// Clear n-th bit in pointee
|
||||
#define cbi_p(reg_p, bit) do { (*(reg_p)) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Get n-th bit in pointee
|
||||
#define read_bit_p(reg_p, bit) ((*(reg_p) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit_p(reg_p, bit) read_bit_p(reg_p, bit) |
||||
|
||||
// Test n-th bit in pointee (Can't use bit_is_set, as it's redefined in sfr_def.h)
|
||||
#define bit_is_high_p(reg_p, bit) read_bit_p(reg_p, bit) |
||||
#define bit_is_low_p(reg_p, bit) (!read_bit_p(reg_p, bit)) |
||||
|
||||
// Write value to a bit in pointee
|
||||
#define write_bit_p(reg_p, bit, value) do { *(reg_p) = (*(reg_p) & ~(1 << ((uint8_t)(bit) & 0x1))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit_p(reg_p, bit, value) write_bit_p(reg_p, bit, value) |
||||
#define toggle_bit_p(reg_p, bit) do { *(reg_p) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
|
||||
// --- Nibble manipulation ---
|
||||
|
||||
// Replace nibble in a byte
|
||||
#define write_low_nibble(reg, value) do { (reg) = ((reg) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0) |
||||
#define write_high_nibble(reg, value) do { (reg) = ((reg) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0) |
||||
|
||||
#define write_low_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0) |
||||
#define write_high_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0) |
||||
|
||||
|
||||
// --- Range tests ---
|
||||
|
||||
// Test if X is within low..high, regardless of bounds order
|
||||
#define in_range(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (high) && (x) < (low)))) |
||||
// ..., include greater bound
|
||||
#define in_rangei(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (high) && (x) <= (low)))) |
||||
|
||||
// Test if X in low..high, wrap around ends if needed.
|
||||
#define in_range_wrap(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (low) || (x) < (high)))) |
||||
// ..., include upper bound
|
||||
#define in_range_wrapi(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (low) || (x) <= (high)))) |
@ -0,0 +1,83 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
Some useful utilities for RGB color manipulation |
||||
|
||||
The XXXc macros don't use cast, so they can be used in array initializers. |
||||
|
||||
xrgb ... 3-byte true-color RGB (8 bits per component) |
||||
rgbXX ... XX-bit color value, with equal nr of bits per component |
||||
|
||||
XX_r (_g, _b) ... extract component from the color, and convert it to 0..255 |
||||
*/ |
||||
|
||||
typedef struct { |
||||
uint8_t r; |
||||
uint8_t g; |
||||
uint8_t b; |
||||
} xrgb_t; |
||||
|
||||
typedef uint32_t rgb24_t; |
||||
typedef uint16_t rgb16_t; |
||||
typedef uint16_t rgb12_t; |
||||
typedef uint8_t rgb6_t; |
||||
|
||||
|
||||
#define xrgb(rr, gg, bb) ((xrgb_t)xrgbc(rr, gg, bb)) |
||||
// xrgb for constant array declarations
|
||||
#define xrgbc(rr, gg, bb) { .r = ((uint8_t)(rr)), .g = ((uint8_t)(gg)), .b = ((uint8_t)(bb)) } |
||||
#define xrgb_r(c) ((uint8_t)(c.r)) |
||||
#define xrgb_g(c) ((uint8_t)(c.g)) |
||||
#define xrgb_b(c) ((uint8_t)(c.b)) |
||||
#define xrgb_rgb24(c) ((((rgb24_t)c.r) << 16) | (((rgb24_t)c.g) << 8) | (((rgb24_t)c.b))) |
||||
#define xrgb_rgb15(c) (((((rgb15_t)c.r) & 0xF8) << 7) | ((((rgb15_t)c.g) & 0xF8) << 2) | ((((rgb15_t)c.b) & 0xF8) >> 3)) |
||||
#define xrgb_rgb12(c) (((((rgb12_t)c.r) & 0xF0) << 4) | ((((rgb12_t)c.g) & 0xF0)) | ((((rgb12_t)c.b) & 0xF0) >> 4)) |
||||
#define xrgb_rgb6(c) (((((rgb6_t)c.r) & 0xC0) >> 2) | ((((rgb6_t)c.g) & 0xC0) >> 4) | ((((rgb6_t)c.b) & 0xC0) >> 6)) |
||||
|
||||
|
||||
#define rgb24c(r,g,b) (((((rgb24_t)r) & 0xFF) << 16) | ((((rgb24_t)g) & 0xFF) << 8) | (((rgb24_t)b) & 0xFF)) |
||||
#define rgb24(r,g,b) ((rgb24_t) rgb24(r,g,b)) |
||||
|
||||
#define rgb24_r(c) ((((rgb24_t) (c)) >> 16) & 0xFF) |
||||
#define rgb24_g(c) ((((rgb24_t) (c)) >> 8) & 0xFF) |
||||
#define rgb24_b(c) ((((rgb24_t) (c)) >> 0) & 0xFF) |
||||
#define rgb24_xrgb(c) xrgb(rgb24_r(c), rgb24_g(c), rgb24_b(c)) |
||||
#define rgb24_xrgbc(c) xrgbc(rgb24_r(c), rgb24_g(c), rgb24_b(c)) |
||||
|
||||
|
||||
#define rgb15(r,g,b) ((rgb16_t) rgb15c(r,g,b)) |
||||
#define rgb15c(r,g,b) (((r & 0x1F) << 10) | ((g & 0x1F) << 5) | (b & 0x1F)) |
||||
|
||||
#define rgb15_r(c) ((((rgb15_t) (c)) & 0x7C00) >> 7) |
||||
#define rgb15_g(c) ((((rgb15_t) (c)) & 0x3E0) >> 2) |
||||
#define rgb15_b(c) ((((rgb15_t) (c)) & 0x1F) << 3) |
||||
#define rgb15_xrgb(c) xrgb(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
#define rgb15_rgb24(c) rgb24(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
#define rgb15_rgb24c(c) rgb24c(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
|
||||
|
||||
#define rgb12(r,g,b) ((rgb12_t) rgb12c(r,g,b)) |
||||
#define rgb12c(r,g,b) (((r & 0xF) << 8) | ((g & 0xF) << 4) | (b & 0xF)) |
||||
|
||||
#define rgb12_r(c) ((((rgb12_t) (c)) & 0xF00) >> 4) |
||||
#define rgb12_g(c) (((rgb12_t) (c)) & 0xF0) |
||||
#define rgb12_b(c) (((r(rgb12_t) (c)gb) & 0x0F) << 4) |
||||
#define rgb12_xrgb(c) xrgb(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_xrgbc(c) xrgbc(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_rgb24(c) rgb24(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_rgb24c(c) rgb24c(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
|
||||
|
||||
#define rgb6(r,g,b) ((rgb6_t) rgb6c(r,g,b)) |
||||
#define rgb6c(r,g,b) (((r & 3) << 4) | ((g & 3) << 2) | (b & 3)) |
||||
|
||||
#define rgb6_r(c) ((((rgb6_t) (c)) & 0x30) << 2) |
||||
#define rgb6_g(c) ((((rgb6_t) (c)) & 0xC) << 4) |
||||
#define rgb6_b(c) ((((rgb6_t) (c)) & 0x3) << 6) |
||||
#define rgb6_xrgb(c) xrgb(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_xrgbc(c) xrgbc(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_rgb24(c) rgb24(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_rgb24c(c) rgb24c(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
|
||||
|
||||
#define add_xrgb(x, y) ((xrgb_t) { (((y).r > (255 - (x).r)) ? 255 : ((x).r + (y).r)), (((y).g > (255 - (x).g)) ? 255 : ((x).g + (y).g)), (((y).b > 255 - (x).b) ? 255 : ((x).b + (y).b)) }) |
@ -0,0 +1,103 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
An implementation of button debouncer. |
||||
|
||||
First, the system must be initialized - even before including: |
||||
|
||||
#define DEBO_CHANNELS 2 |
||||
#define DEBO_TICKS 5 |
||||
|
||||
#inclue "lib/debounce.h" |
||||
|
||||
A pin is registered like this: |
||||
|
||||
#define BTN1 B,0 |
||||
#define BTN2 B,1 |
||||
|
||||
debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
|
||||
debo_add_rev(BTN1); // active low
|
||||
debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
|
||||
|
||||
Then periodically call the tick function (perhaps in a timer interrupt): |
||||
|
||||
debo_tick(); |
||||
|
||||
To check if input is active, use |
||||
|
||||
debo_get_pin(0); // state of input registered as #0
|
||||
debo_get_pin(1); // state of input registered as #1
|
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
|
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
|
||||
|
||||
// Number of pins to debounce
|
||||
#ifndef DEBO_CHANNELS |
||||
# error "DEBO_CHANNELS not defined!" |
||||
#endif |
||||
|
||||
#ifndef DEBO_TICKS |
||||
# warning "DEBO_TICKS not defined, defaulting to 5!" |
||||
# define DEBO_TICKS 5 |
||||
#endif |
||||
|
||||
|
||||
/* Internal deboucer entry */ |
||||
typedef struct { |
||||
PORT_P reg; // pointer to IO register
|
||||
uint8_t bit; // bits 6 and 7 of this hold "state" & "invert" flag
|
||||
uint8_t count; // number of ticks this was in the new state
|
||||
} debo_slot_t; |
||||
|
||||
/** Debounce data array */ |
||||
debo_slot_t debo_slots[DEBO_CHANNELS]; |
||||
uint8_t debo_next_slot = 0; |
||||
|
||||
/** Define a debounced pin (must be IO!) */ |
||||
|
||||
#define debo_add_rev(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 1) |
||||
#define debo_add(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 0) |
||||
|
||||
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert) |
||||
{ |
||||
debo_slots[debo_next_slot] = (debo_slot_t){ |
||||
.reg = reg, |
||||
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
|
||||
.count = 0, |
||||
}; |
||||
|
||||
return debo_next_slot++; |
||||
} |
||||
|
||||
|
||||
/** Check debounced pins, should be called periodically. */ |
||||
void debo_tick() |
||||
{ |
||||
for (uint8_t i = 0; i < debo_next_slot; i++) { |
||||
// current pin value (right 3 bits, xored with inverse bit)
|
||||
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7); |
||||
|
||||
if (value != get_bit(debo_slots[i].bit, 6)) { |
||||
|
||||
// different pin state than last recorded state
|
||||
if (debo_slots[i].count < DEBO_TICKS) { |
||||
debo_slots[i].count++; |
||||
} else { |
||||
// overflown -> latch value
|
||||
set_bit(debo_slots[i].bit, 6, value); // set state bit
|
||||
debo_slots[i].count = 0; |
||||
} |
||||
} else { |
||||
debo_slots[i].count = 0; // reset the counter
|
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Get a value of debounced pin */ |
||||
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7)) |
@ -0,0 +1,393 @@ |
||||
#pragma once |
||||
|
||||
#include <stdbool.h> |
||||
#include <stdint.h> |
||||
#include <avr/io.h> |
||||
#include <avr/pgmspace.h> |
||||
#include <util/delay.h> |
||||
|
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
#include "nsdelay.h" |
||||
|
||||
/*
|
||||
HD44780 LCD display driver - 4-bit mode |
||||
|
||||
Required macros - pin settings (eg. B,3 or D,0) |
||||
|
||||
LCD_PIN_RS |
||||
LCD_PIN_RW |
||||
LCD_PIN_E |
||||
LCD_PIN_D7 |
||||
LCD_PIN_D6 |
||||
LCD_PIN_D5 |
||||
LCD_PIN_D4 |
||||
|
||||
Define those before including the header file. |
||||
*/ |
||||
|
||||
// Commands for user
|
||||
|
||||
// Clear screen (reset)
|
||||
#define LCD_CLEAR 0b00000001 |
||||
// Move cursor to (0,0), unshift...
|
||||
#define LCD_HOME 0b00000010 |
||||
|
||||
// Set mode: Increment + NoShift
|
||||
#define LCD_MODE_INC 0b00000110 |
||||
// Set mode: Increment + Shift
|
||||
#define LCD_MODE_INC_SHIFT 0b00000111 |
||||
|
||||
// Set mode: Decrement + NoShift
|
||||
#define LCD_MODE_DEC 0b00000100 |
||||
// Set mode: Decrement + Shift
|
||||
#define LCD_MODE_DEC_SHIFT 0b00000101 |
||||
|
||||
// Disable display (data remains untouched)
|
||||
#define LCD_DISABLE 0b00001000 |
||||
|
||||
// Disable cursor
|
||||
#define LCD_CURSOR_NONE 0b00001100 |
||||
// Set cursor to still underscore
|
||||
#define LCD_CURSOR_BAR 0b00001110 |
||||
// Set cursor to blinking block
|
||||
#define LCD_CURSOR_BLINK 0b00001101 |
||||
// Set cursor to both of the above at once
|
||||
#define LCD_CURSOR_BOTH (LCD_CURSOR_BAR | LCD_CURSOR_BLINK) |
||||
|
||||
// Move cursor
|
||||
#define LCD_MOVE_LEFT 0b00010000 |
||||
#define LCD_MOVE_RIGHT 0b00010100 |
||||
|
||||
// Shift display
|
||||
#define LCD_SHIFT_LEFT 0b00011000 |
||||
#define LCD_SHIFT_RIGHT 0b00011100 |
||||
|
||||
// Set iface to 5x7 font, 1-line
|
||||
#define LCD_IFACE_4BIT_1LINE 0b00100000 |
||||
#define LCD_IFACE_8BIT_1LINE 0b00110000 |
||||
// Set iface to 5x7 font, 2-line
|
||||
#define LCD_IFACE_4BIT_2LINE 0b00101000 |
||||
#define LCD_IFACE_8BIT_2LINE 0b00111000 |
||||
|
||||
|
||||
// Start address of rows
|
||||
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54}; |
||||
|
||||
// prototypes
|
||||
|
||||
// --- PUBLIC API ---
|
||||
|
||||
/** Init the display */ |
||||
void lcd_init(); |
||||
/** Write a command */ |
||||
void lcd_write_command(const uint8_t bb); |
||||
/** Write data byte */ |
||||
void lcd_write_data(const uint8_t bb); |
||||
/** Read busy flag & address */ |
||||
uint8_t lcd_read_bf_addr(); |
||||
/** Read byte from ram */ |
||||
uint8_t lcd_read_ram(); |
||||
/** Show string */ |
||||
void lcd_str(char* str); |
||||
/** Show string at X, Y */ |
||||
#define lcd_str_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_str((str_p)); } while(0) |
||||
/** Show char */ |
||||
void lcd_char(const char c); |
||||
/** Show char at X, Y */ |
||||
#define lcd_char_xy(x, y, c) do { lcd_xy((x), (y)); lcd_char((c)); } while(0) |
||||
/** Move cursor to X, Y */ |
||||
void lcd_xy(const uint8_t x, const uint8_t y); |
||||
/** Set address in CGRAM */ |
||||
void lcd_set_addr_cgram(const uint8_t acg); |
||||
/** Set address in DDRAM */ |
||||
void lcd_set_addr(const uint8_t add); |
||||
/** Go home */ |
||||
void lcd_home(); |
||||
/** Clear the screen */ |
||||
void lcd_clear(); |
||||
|
||||
/** Set cursor */ |
||||
#define CURSOR_NONE 0b00 |
||||
#define CURSOR_BAR 0b10 |
||||
#define CURSOR_BLINK 0b01 |
||||
#define CURSOR_BOTH 0b11 |
||||
void lcd_cursor(uint8_t type); |
||||
|
||||
/** Disable / enable, preserving cursor */ |
||||
void lcd_disable(); |
||||
void lcd_enable(); |
||||
|
||||
/** Define a custom glyph */ |
||||
void lcd_define_glyph(const uint8_t index, const uint8_t* array); |
||||
|
||||
|
||||
// Internals
|
||||
void _lcd_mode_r(); |
||||
void _lcd_mode_w(); |
||||
void _lcd_clk(); |
||||
void _lcd_wait_bf(); |
||||
void _lcd_write_byte(uint8_t bb); |
||||
uint8_t _lcd_read_byte(); |
||||
|
||||
|
||||
// Write utilities
|
||||
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F) |
||||
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4) |
||||
#define _lcd_write_nibble(nib) do { \ |
||||
write_pin(LCD_PIN_D7, get_bit((nib), 3)); \
|
||||
write_pin(LCD_PIN_D6, get_bit((nib), 2)); \
|
||||
write_pin(LCD_PIN_D5, get_bit((nib), 1)); \
|
||||
write_pin(LCD_PIN_D4, get_bit((nib), 0)); \
|
||||
} while(0) |
||||
|
||||
|
||||
|
||||
// 0 W, 1 R
|
||||
bool _lcd_mode; |
||||
|
||||
/** Initialize the display */ |
||||
void lcd_init() |
||||
{ |
||||
// configure pins as output
|
||||
as_output(LCD_PIN_E); |
||||
as_output(LCD_PIN_RW); |
||||
as_output(LCD_PIN_RS); |
||||
_lcd_mode = 1; // force data pins to output
|
||||
_lcd_mode_w(); |
||||
|
||||
// Magic sequence to enter 4-bit mode
|
||||
_delay_ms(16); |
||||
_lcd_write_nibble(0b0011); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_write_nibble(0b0010); |
||||
_lcd_clk(); |
||||
_delay_us(100); |
||||
|
||||
// Configure the display
|
||||
lcd_write_command(LCD_IFACE_4BIT_2LINE); |
||||
lcd_write_command(LCD_DISABLE); |
||||
lcd_write_command(LCD_CLEAR); |
||||
lcd_write_command(LCD_MODE_INC); |
||||
|
||||
lcd_enable(); |
||||
} |
||||
|
||||
|
||||
|
||||
/** Send a pulse on the ENABLE line */ |
||||
void _lcd_clk() |
||||
{ |
||||
pin_up(LCD_PIN_E); |
||||
delay_ns(420); |
||||
pin_down(LCD_PIN_E); |
||||
} |
||||
|
||||
|
||||
/** Enter READ mode */ |
||||
void _lcd_mode_r() |
||||
{ |
||||
if (_lcd_mode == 1) return; // already in R mode
|
||||
|
||||
pin_up(LCD_PIN_RW); |
||||
|
||||
as_input_pu(LCD_PIN_D7); |
||||
as_input_pu(LCD_PIN_D6); |
||||
as_input_pu(LCD_PIN_D5); |
||||
as_input_pu(LCD_PIN_D4); |
||||
|
||||
_lcd_mode = 1; |
||||
} |
||||
|
||||
|
||||
/** Enter WRITE mode */ |
||||
void _lcd_mode_w() |
||||
{ |
||||
if (_lcd_mode == 0) return; // already in W mode
|
||||
|
||||
pin_down(LCD_PIN_RW); |
||||
|
||||
as_output(LCD_PIN_D7); |
||||
as_output(LCD_PIN_D6); |
||||
as_output(LCD_PIN_D5); |
||||
as_output(LCD_PIN_D4); |
||||
|
||||
_lcd_mode = 0; |
||||
} |
||||
|
||||
|
||||
/** Read a byte */ |
||||
uint8_t _lcd_read_byte() |
||||
{ |
||||
_lcd_mode_r(); |
||||
|
||||
uint8_t res = 0; |
||||
|
||||
_lcd_clk(); |
||||
res = (read_pin(LCD_PIN_D7) << 7) | (read_pin(LCD_PIN_D6) << 6) | (read_pin(LCD_PIN_D5) << 5) | (read_pin(LCD_PIN_D4) << 4); |
||||
|
||||
_lcd_clk(); |
||||
res |= (read_pin(LCD_PIN_D7) << 3) | (read_pin(LCD_PIN_D6) << 2) | (read_pin(LCD_PIN_D5) << 1) | (read_pin(LCD_PIN_D4) << 0); |
||||
|
||||
return res; |
||||
} |
||||
|
||||
|
||||
/** Write an instruction byte */ |
||||
void lcd_write_command(uint8_t bb) |
||||
{ |
||||
_lcd_wait_bf(); |
||||
pin_down(LCD_PIN_RS); // select instruction register
|
||||
_lcd_write_byte(bb); // send instruction byte
|
||||
} |
||||
|
||||
|
||||
/** Write a data byte */ |
||||
void lcd_write_data(uint8_t bb) |
||||
{ |
||||
_lcd_wait_bf(); |
||||
pin_up(LCD_PIN_RS); // select data register
|
||||
_lcd_write_byte(bb); // send data byte
|
||||
} |
||||
|
||||
|
||||
/** Read BF & Address */ |
||||
uint8_t lcd_read_bf_addr() |
||||
{ |
||||
pin_down(LCD_PIN_RS); |
||||
return _lcd_read_byte(); |
||||
} |
||||
|
||||
|
||||
/** Read CGRAM or DDRAM */ |
||||
uint8_t lcd_read_ram() |
||||
{ |
||||
pin_up(LCD_PIN_RS); |
||||
return _lcd_read_byte(); |
||||
} |
||||
|
||||
|
||||
/** Write a byte using the 8-bit interface */ |
||||
void _lcd_write_byte(uint8_t bb) |
||||
{ |
||||
_lcd_mode_w(); // enter W mode
|
||||
|
||||
_lcd_write_high(bb); |
||||
_lcd_clk(); |
||||
|
||||
_lcd_write_low(bb); |
||||
_lcd_clk(); |
||||
} |
||||
|
||||
|
||||
|
||||
/** Wait until the device is ready */ |
||||
void _lcd_wait_bf() |
||||
{ |
||||
uint8_t d = 0; |
||||
while(d++ < 120 && lcd_read_bf_addr() & _BV(7)) |
||||
_delay_us(1); |
||||
} |
||||
|
||||
|
||||
/** Send a string to LCD */ |
||||
void lcd_str(char* str_p) |
||||
{ |
||||
while (*str_p) |
||||
lcd_char(*str_p++); |
||||
} |
||||
|
||||
|
||||
/** Sedn a char to LCD */ |
||||
void lcd_char(const char c) |
||||
{ |
||||
lcd_write_data(c); |
||||
} |
||||
|
||||
|
||||
/** Set cursor position */ |
||||
void lcd_xy(const uint8_t x, const uint8_t y) |
||||
{ |
||||
lcd_set_addr(LCD_ROW_ADDR[y] + (x)); |
||||
} |
||||
|
||||
|
||||
uint8_t _lcd_old_cursor = CURSOR_NONE; |
||||
bool _lcd_enabled = false; |
||||
|
||||
/** Set LCD cursor. If not enabled, only remember it. */ |
||||
void lcd_cursor(uint8_t type) |
||||
{ |
||||
_lcd_old_cursor = (type & CURSOR_BOTH); |
||||
|
||||
if (_lcd_enabled) lcd_write_command(LCD_CURSOR_NONE | _lcd_old_cursor); |
||||
} |
||||
|
||||
|
||||
/** Display display (preserving cursor) */ |
||||
void lcd_disable() |
||||
{ |
||||
lcd_write_command(LCD_DISABLE); |
||||
_lcd_enabled = false; |
||||
} |
||||
|
||||
|
||||
/** Enable display (restoring cursor) */ |
||||
void lcd_enable() |
||||
{ |
||||
_lcd_enabled = true; |
||||
lcd_cursor(_lcd_old_cursor); |
||||
} |
||||
|
||||
|
||||
/** Go home */ |
||||
void lcd_home() |
||||
{ |
||||
lcd_write_command(LCD_HOME); |
||||
} |
||||
|
||||
|
||||
/** Clear the screen */ |
||||
void lcd_clear() |
||||
{ |
||||
lcd_write_command(LCD_CLEAR); |
||||
} |
||||
|
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph(const uint8_t index, const uint8_t* array) |
||||
{ |
||||
lcd_set_addr_cgram(index * 8); |
||||
for (uint8_t i = 0; i < 8; ++i) { |
||||
lcd_write_data(array[i]); |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array) |
||||
{ |
||||
lcd_set_addr_cgram(index * 8); |
||||
for (uint8_t i = 0; i < 8; ++i) { |
||||
lcd_write_data(pgm_read_byte(&array[i])); |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Set address in CGRAM */ |
||||
void lcd_set_addr_cgram(const uint8_t acg) |
||||
{ |
||||
lcd_write_command(0b01000000 | ((acg) & 0b00111111)); |
||||
} |
||||
|
||||
|
||||
/** Set address in DDRAM */ |
||||
void lcd_set_addr(const uint8_t add) |
||||
{ |
||||
lcd_write_command(0b10000000 | ((add) & 0b01111111)); |
||||
} |
@ -0,0 +1,22 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Custom loops |
||||
*/ |
||||
|
||||
// Repeat code n times (uint8_t counter)
|
||||
#define repeat(count) repeat_aux(count, _repeat_##__COUNTER__) |
||||
#define repeat_aux(count, cntvar) for (uint8_t cntvar = 0; cntvar < (count); cntvar++) |
||||
|
||||
// Repeat code n times (uint16_t counter)
|
||||
#define repeatx(count) repeatx_aux(count, _repeatx_##__COUNTER__) |
||||
#define repeatx_aux(count, cntvar) for (uint16_t cntvar = 0; cntvar < (count); cntvar++) |
||||
|
||||
// Repeat with custom counter name (uint8_t)
|
||||
#define loop(var, count) repeat_aux(count, var) |
||||
// ..., uint16_t
|
||||
#define loopx(var, count) repeatx_aux(count, var) |
||||
|
||||
// Do until condition is met
|
||||
#define until(what) while(!(what)) |
||||
|
@ -0,0 +1,6 @@ |
||||
#pragma once |
||||
|
||||
/** Weird constructs for the compiler */ |
||||
|
||||
// general macros
|
||||
#define SECTION(pos) __attribute__((naked, used, section(pos))) |
@ -0,0 +1,21 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Functions for precise delays (nanoseconds / cycles) |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <util/delay_basic.h> |
||||
#include <stdint.h> |
||||
|
||||
/* Convert nanoseconds to cycle count */ |
||||
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) ) |
||||
|
||||
/** Wait c cycles */ |
||||
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0)) |
||||
|
||||
/** Wait n nanoseconds, plus c cycles */ |
||||
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c)) |
||||
|
||||
/** Wait n nanoseconds */ |
||||
#define delay_ns(ns) delay_c(ns2cycles(ns)) |
@ -0,0 +1,107 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
This file provides macros for pin manipulation. |
||||
|
||||
You can define your application pins like so: |
||||
|
||||
// Led at PORTB, pin 1
|
||||
#define LED B,1 |
||||
|
||||
// Switch at PORTD, pin 7
|
||||
#define SW1 D,7 |
||||
|
||||
Now you can use macros from this file to wirh with the pins, eg: |
||||
|
||||
as_output(LED); |
||||
as_input(SW1); |
||||
pullup_on(SW1); |
||||
|
||||
toggle_pin(LED); |
||||
while (pin_is_low(SW1)); |
||||
|
||||
- The macros io2XXX() can be used to get literal name of register associated with the pin. |
||||
- io2n() provides pin number. |
||||
- The XXX_aux() macros are internal and should not be used elsewhere. |
||||
- The io_pack() macro is used to pass pin (io) to other macro without expanding it. |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include "calc.h" |
||||
|
||||
|
||||
// Get particular register associated with the name X (eg. D -> PORTD)
|
||||
#define reg_ddr(X) DDR ## X |
||||
#define reg_port(X) PORT ## X |
||||
#define reg_pin(X) PIN ## X |
||||
|
||||
#define io2ddr_aux(reg, bit) reg_ddr(reg) |
||||
#define io2ddr(io) io2ddr_aux(io) |
||||
#define io2port_aux(reg, bit) reg_port(reg) |
||||
#define io2port(io) io2port_aux(io) |
||||
#define io2pin_aux(reg, bit) reg_pin(reg) |
||||
#define io2pin(io) io2pin_aux(io) |
||||
#define io2n_aux(reg, bit) bit |
||||
#define io2n(io) io2n_aux(io) |
||||
|
||||
#define io_pack(port, bit) port, bit |
||||
|
||||
|
||||
// pointer to port
|
||||
typedef volatile uint8_t* PORT_P; |
||||
// number of bit in port
|
||||
typedef uint8_t BIT_N; |
||||
|
||||
|
||||
// === pin manipulation ===
|
||||
#define set_pin_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define clear_pin_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define read_pin_aux(port, bit) get_bit(reg_pin(port), (bit)) |
||||
#define write_pin_aux(port, bit, value) set_bit(reg_port(port), (bit), (value)) |
||||
#define toggle_pin_aux(port, bit) sbi(reg_pin(port), (bit)) |
||||
|
||||
|
||||
#define pin_up(io) set_pin_aux(io) |
||||
#define pin_high(io) set_pin_aux(io) |
||||
|
||||
#define pin_down(io) clear_pin_aux(io) |
||||
#define pin_low(io) clear_pin_aux(io) |
||||
|
||||
#define get_pin(io) read_pin_aux(io) |
||||
#define read_pin(io) read_pin_aux(io) |
||||
|
||||
#define pin_is_low(io) !read_pin_aux(io) |
||||
#define pin_is_high(io) read_pin_aux(io) |
||||
|
||||
#define set_pin(io, value) write_pin_aux(io, (value)) |
||||
#define write_pin(io, value) write_pin_aux(io, (value)) |
||||
#define toggle_pin(io) toggle_pin_aux(io) |
||||
|
||||
|
||||
|
||||
// setting pin direction
|
||||
#define as_input_aux(port, bit) cbi(reg_ddr(port), (bit)) |
||||
#define as_output_aux(port, bit) sbi(reg_ddr(port), (bit)) |
||||
#define set_dir_aux(port, bit, dir) write_bit(reg_ddr(port), (bit), (dir)) |
||||
|
||||
|
||||
#define as_input(io) as_input_aux(io) |
||||
#define as_input_pu(io) do { as_input_aux(io); pullup_enable_aux(io); } while(0) |
||||
|
||||
#define as_output(io) as_output_aux(io) |
||||
#define set_dir(io, dir) set_dir_aux(io, (dir)) |
||||
|
||||
|
||||
// setting pullup
|
||||
#define pullup_enable_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define pullup_disable_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define set_pullup_aux(port, bit, on) write_bit(reg_port(port), (bit), (on)) |
||||
|
||||
|
||||
#define pullup_enable(io) pullup_enable_aux(io) |
||||
#define pullup_on(io) pullup_enable_aux(io) |
||||
|
||||
#define pullup_disable(io) pullup_disable_aux(io) |
||||
#define pullup_off(io) pullup_disable_aux(io) |
||||
|
||||
#define set_pullup(io, on) set_pullup_aux(io, on) |
@ -0,0 +1,98 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Utils for driving a WS28xx (tested on WS2812B) RGB LED strips. |
||||
|
||||
It's implemented as macros to avoid overhead when passing values, and to |
||||
enable driving multiple strips at once. |
||||
|
||||
To avoid bloating your code, try to reduce the number of invocations - |
||||
compute color and then send it. |
||||
|
||||
[IMPORTANT] |
||||
|
||||
Some seemingly random influences can ruin the communication. |
||||
If you have enough memory, consider preparing the colors in array, |
||||
and sending this array using one of the "ws_send_XXX_array" macros. |
||||
|
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
|
||||
#include "pins.h" |
||||
#include "nsdelay.h" |
||||
#include "colors.h" |
||||
|
||||
/* Driver code for WS2812B */ |
||||
|
||||
// --- timing constraints (NS) ---
|
||||
|
||||
#ifndef WS_T_1H |
||||
# define WS_T_1H 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_1L |
||||
# define WS_T_1L 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0H |
||||
# define WS_T_0H 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0L |
||||
# define WS_T_0L 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_LATCH |
||||
# define WS_T_LATCH 7000 |
||||
#endif |
||||
|
||||
|
||||
/** Wait long enough for the colors to show */ |
||||
#define ws_show() do {delay_ns_c(WS_T_LATCH, 0); } while(0) |
||||
|
||||
|
||||
/** Send one byte to the RGB strip */ |
||||
#define ws_send_byte(io, bb) do { \ |
||||
for (volatile int8_t __ws_tmp = 7; __ws_tmp >= 0; --__ws_tmp) { \
|
||||
if ((bb) & (1 << __ws_tmp)) { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_1H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_1L, -10); \
|
||||
} else { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_0H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_0L, -10); \
|
||||
} \
|
||||
} \
|
||||
} while(0) |
||||
|
||||
|
||||
/** Send R,G,B color to the strip */ |
||||
#define ws_send_rgb(io, r, g, b) do { \ |
||||
ws_send_byte(io_pack(io), g); \
|
||||
ws_send_byte(io_pack(io), r); \
|
||||
ws_send_byte(io_pack(io), b); \
|
||||
} while(0) |
||||
|
||||
/** Send a RGB struct */ |
||||
#define ws_send_xrgb(io, xrgb) ws_send_rgb(io_pack(io), (xrgb).r, (xrgb).g, (xrgb).b) |
||||
|
||||
/** Send color hex */ |
||||
#define ws_send_rgb24(io, rgb) ws_send_rgb(io_pack(io), rgb24_r(rgb), rgb24_g(rgb), rgb24_b(rgb)) |
||||
#define ws_send_rgb15(io, rgb) ws_send_rgb(io_pack(io), rgb15_r(rgb), rgb15_g(rgb), rgb15_b(rgb)) |
||||
#define ws_send_rgb12(io, rgb) ws_send_rgb(io_pack(io), rgb12_r(rgb), rgb12_g(rgb), rgb12_b(rgb)) |
||||
#define ws_send_rgb6(io, rgb) ws_send_rgb(io_pack(io), rgb6_r(rgb), rgb6_g(rgb), rgb6_b(rgb)) |
||||
|
||||
/** Send array of colors */ |
||||
#define ws_send_xrgb_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), xrgb) |
||||
#define ws_send_rgb24_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb24) |
||||
#define ws_send_rgb15_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb15) |
||||
#define ws_send_rgb12_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb12) |
||||
#define ws_send_rgb6_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb6) |
||||
|
||||
// prototype for sending array. it's ugly, sorry.
|
||||
#define __ws_send_array_proto(io, rgbs, length, style) do { \ |
||||
for (uint8_t __ws_tmp_sap_i = 0; __ws_tmp_sap_i < length; __ws_tmp_sap_i++) { \
|
||||
style ## _t __ws_tmp_sap2 = (rgbs)[__ws_tmp_sap_i]; \
|
||||
ws_send_ ## style(io_pack(io), __ws_tmp_sap2); \
|
||||
} \
|
||||
} while(0) |
@ -0,0 +1,31 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Ye Olde Control Structures |
||||
*/ |
||||
|
||||
#include "loops.h" |
||||
|
||||
#define whilst(what) while((what)) |
||||
#define when(what) if((what)) |
||||
#define otherwise else |
||||
#define commence { |
||||
#define then { |
||||
#define cease } |
||||
#define choose(what) switch((what)) |
||||
#define option case |
||||
#define shatter break |
||||
#define replay continue |
||||
#define equals == |
||||
#define is == |
||||
#define be = |
||||
#define over > |
||||
#define above > |
||||
#define under < |
||||
#define below < |
||||
#define let /**/ |
||||
#define raise(what) (what)++ |
||||
|
||||
#define number int |
||||
|
||||
#warning "This is a joke. Do not use YeOlde.h in serious code!" |
@ -0,0 +1,98 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
// #include <stdbool.h>
|
||||
#include <stdint.h> |
||||
#include <stdlib.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
#include "lib/colors.h" |
||||
#include "lib/adc.h" |
||||
|
||||
#define WS_T_1H 800 |
||||
#define WS_T_1L 400 |
||||
#define WS_T_0H 120 |
||||
#define WS_T_0L 900 |
||||
|
||||
#include "lib/ws_rgb.h" |
||||
|
||||
#define WS1 D2 |
||||
|
||||
void SECTION(".init8") init() |
||||
{ |
||||
adc_init(); |
||||
srand(adc_read_word(0)); |
||||
|
||||
as_output(WS1); |
||||
|
||||
cli(); |
||||
} |
||||
|
||||
|
||||
typedef struct { |
||||
xrgb_t act; |
||||
xrgb_t target; |
||||
} cell_t; |
||||
|
||||
|
||||
void update_cnt(uint8_t* act, uint8_t* target) |
||||
{ |
||||
if (*act == *target) { |
||||
//*target = rand() % 256;
|
||||
int8_t add = -10 + rand() % 21; |
||||
|
||||
if(add > 0) { |
||||
if (add + (*target) <= 255) { |
||||
*target += add; |
||||
} else { |
||||
*target = 255; |
||||
} |
||||
} else { |
||||
if(add + (*target) >= 0) { |
||||
*target += add; |
||||
} else { |
||||
*target = 0; |
||||
} |
||||
} |
||||
} else { |
||||
if (*act < *target) { |
||||
(*act)++; |
||||
} else { |
||||
(*act)--; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void update_cell(cell_t* cell) |
||||
{ |
||||
update_cnt(&(cell->act.r), &(cell->target.r)); |
||||
update_cnt(&(cell->act.g), &(cell->target.g)); |
||||
update_cnt(&(cell->act.b), &(cell->target.b)); |
||||
} |
||||
|
||||
void main() |
||||
{ |
||||
#define LEN 8 |
||||
cell_t rainbow[LEN]; |
||||
|
||||
for(uint8_t i=0; i<LEN; i++) { |
||||
rainbow[i] = (cell_t){ |
||||
.act = rgb24_xrgbc(0x888888), |
||||
.target = rgb24_xrgbc(0x888888) |
||||
}; |
||||
} |
||||
|
||||
while(1) { |
||||
for(uint8_t i=0; i<LEN; i++) { |
||||
update_cell(&rainbow[i]); |
||||
} |
||||
|
||||
for(uint8_t i=0; i<LEN; i++) { |
||||
ws_send_xrgb(WS1, rainbow[i].act); |
||||
} |
||||
|
||||
_delay_ms(10); |
||||
} |
||||
} |
Loading…
Reference in new issue