master
Ondřej Hruška 1 year ago
parent 7f087ae854
commit 2cc0a155e8
  1. 23
      Makefile
  2. 67
      lib/porklib/adc.c
  3. 26
      lib/porklib/adc.h
  4. 66
      lib/porklib/blockdev.h
  5. 89
      lib/porklib/calc.h
  6. 103
      lib/porklib/color.c
  7. 57
      lib/porklib/color.h
  8. 52
      lib/porklib/debounce.c
  9. 66
      lib/porklib/debounce.h
  10. 88
      lib/porklib/dht11.c
  11. 17
      lib/porklib/dht11.h
  12. 1253
      lib/porklib/fat16.c
  13. 276
      lib/porklib/fat16.h
  14. 64
      lib/porklib/fat16_internal.h
  15. 276
      lib/porklib/iopins.c
  16. 213
      lib/porklib/iopins.h
  17. 365
      lib/porklib/lcd.c
  18. 146
      lib/porklib/lcd.h
  19. 21
      lib/porklib/nsdelay.h
  20. 248
      lib/porklib/onewire.c
  21. 58
      lib/porklib/onewire.h
  22. 202
      lib/porklib/sd.c
  23. 53
      lib/porklib/sd.h
  24. 184
      lib/porklib/sd_blockdev.c
  25. 7
      lib/porklib/sd_blockdev.h
  26. 67
      lib/porklib/sd_fat.c
  27. 32
      lib/porklib/sd_fat.h
  28. 83
      lib/porklib/sipo_pwm.c
  29. 49
      lib/porklib/sipo_pwm.h
  30. 168
      lib/porklib/sonar.c
  31. 67
      lib/porklib/sonar.h
  32. 35
      lib/porklib/spi.c
  33. 30
      lib/porklib/spi.h
  34. 246
      lib/porklib/stream.c
  35. 106
      lib/porklib/stream.h
  36. 714
      lib/porklib/uart.c
  37. 253
      lib/porklib/uart.h
  38. 139
      lib/porklib/wsrgb.c
  39. 53
      lib/porklib/wsrgb.h
  40. 126
      src/main.c

@ -10,7 +10,20 @@ PROG_TYPE = arduino
# Build the final AVRDUDE arguments
PROG_ARGS = -c $(PROG_TYPE) -p $(MCU) -b $(PROG_BAUD) -P $(PROG_DEV)
INCFLAGS += -Isrc -Ilib/libssd1306/src
INCFLAGS += -Isrc -Ilib/libssd1306/src -Ilib/porklib
LIB_SOURCES =
#LIB_SOURCES += lib/porklib/uart.c
#LIB_SOURCES += lib/porklib/uart.c
LIB_SOURCES += lib/porklib/iopins.c
#LIB_SOURCES += lib/porklib/stream.c
LIB_SOURCES += lib/porklib/adc.c
#LIB_SOURCES += lib/porklib/dht11.c
#LIB_SOURCES += lib/porklib/sonar.c
#LIB_SOURCES += lib/porklib/onewire.c
#LIB_SOURCES += lib/porklib/spi.c
#LIB_SOURCES += lib/porklib/sd.c
#LIB_SOURCES += lib/porklib/fat16.c
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
@ -40,7 +53,7 @@ OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
SOURCES=$(wildcard $(SRC_DIR)/*.c)
SOURCES=$(wildcard $(SRC_DIR)/*.c) $(LIB_SOURCES)
OBJECTS=$(SOURCES:$(SRC_DIR)/%.c=$(BUILD_DIR)/%.o)
DEPENDS=$(BUILD_DIR)/.depends
@ -62,7 +75,11 @@ eeprom: $(TARGET).eeprom
size: $(TARGET).elf
$(AVRSIZE) -C --mcu=$(MCU) $<
$(TARGET).elf: $(OBJECTS) | $(BUILD_DIR)
# Build the display library
lib/libssd1306/bld/libssd1306.a:
$(MAKE) -C lib/libssd1306/ -f Makefile.avr MCU=atmega328p
$(TARGET).elf: $(OBJECTS) lib/libssd1306/bld/libssd1306.a | $(BUILD_DIR)
$(LD) $(CFLAGS) $(LFLAGS) -o $@ $^ lib/libssd1306/bld/libssd1306.a
%.hex: %.elf

@ -0,0 +1,67 @@
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
#include "adc.h"
/** Initialize the ADC */
void adc_init()
{
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
// ADCSRA |= _BV(ADPS2) | _BV(ADPS0); // 32 prescaler -> 500 kHz, good for 8-bit measurement
ADMUX |= _BV(REFS0) | _BV(REFS1); // Voltage reference = internal 1.1V
sbi(ADCSRA, ADEN); // Enable ADC
}
/** Disable AD */
void adc_disable()
{
cbi(ADCSRA, ADEN);
}
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel)
{
set_low_nibble(ADMUX, channel); // Select channel to sample
sbi(ADMUX, ADLAR); // Align result to left
sbi(ADCSRA, ADSC); // Start conversion
while (bit_is_high(ADCSRA, ADSC)); // Wait for it...
return ADCH; // The upper 8 bits of ADC result
}
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel)
{
set_low_nibble(ADMUX, channel); // Select channel to sample
cbi(ADMUX, ADLAR); // Align result to right
sbi(ADCSRA, ADSC); // Start conversion
while (get_bit(ADCSRA, ADSC)); // Wait for it...
return ADCW; // The whole ADC word (10 bits)
}
/** Sample analog pin with 10-bit precision */
void adc_async_start_measure_word(uint8_t channel)
{
set_low_nibble(ADMUX, channel); // Select channel to sample
cbi(ADMUX, ADLAR); // Align result to right
sbi(ADCSRA, ADSC); // Start conversion
}
bool adc_async_ready()
{
return 0 == get_bit(ADCSRA, ADSC);
}
uint16_t adc_async_get_result_word() {
return ADCW; // The whole ADC word (10 bits)
}

@ -0,0 +1,26 @@
#pragma once
//
// Utilities for build-in A/D converter
//
#include <avr/io.h>
#include <stdint.h>
/** Initialize the ADC */
void adc_init();
/** Disable AD (for power saving?) */
void adc_disable();
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel);
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel);
void adc_async_start_measure_word(uint8_t channel);
bool adc_async_ready();
uint16_t adc_async_get_result_word();

@ -0,0 +1,66 @@
#pragma once
//
// Block device interface, somewhat akin to stream.h
// Used for filesystem implementations.
//
#include <stdint.h>
/** Abstract block device interface
*
* Populate an instance of this with pointers to your I/O functions.
*/
typedef struct
{
/** Sequential read at cursor
* @param dest destination memory structure
* @param len number of bytes to load and store in {dest}
*/
void (*load)(void* dest, const uint16_t len);
/** Sequential write at cursor
* @param src source memory structure
* @param len number of bytes to write
*/
void (*store)(const void* src, const uint16_t len);
/** Write one byte at cursor
* @param b byte to write
*/
void (*write)(const uint8_t b);
/** Read one byte at cursor
* @return the read byte
*/
uint8_t (*read)(void);
/** Absolute seek - set cursor
* @param addr new cursor address
*/
void (*seek)(const uint32_t addr);
/** Relative seek - move cursor
* @param offset cursor address change
*/
void (*rseek)(const int16_t offset);
/** Flush the data buffer if it's dirty.
*
* Should be called after each sequence of writes,
* to avoid data loss.
*
* Tmplementations that do not need this should provide
* a no-op function.
*/
void (*flush)(void);
} BLOCKDEV;

@ -0,0 +1,89 @@
#pragma once
//
// Bit and byte manipulation utilities
//
#include <stdint.h>
// --- Increment in range ---
// when overflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define inc_wrap(var, min, max) { if ((var) >= (max - 1)) { (var) = (min); } else { (var)++; } }
// ..., upper bound included
#define inc_wrapi(var, min, max) inc_wrap((var), (min), (max) + 1)
// --- Decrement in range ---
// when underflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define dec_wrap(var, min, max) { if ((var) <= (min)) { (var) = (max) - 1; } else { (var)--; } }
// ..., upper bound included
#define dec_wrapi(var, min, max) dec_wrap((var), (min), (max) + 1)
// --- Bit manipulation --
// Set bit
#define sbi(reg, bit) { (reg) |= (1 << (uint8_t)(bit)); }
// Clear bit
#define cbi(reg, bit) { (reg) &= ~(1 << (uint8_t)(bit)); }
// Get n-th bit
#define get_bit(reg, bit) (((reg) >> (uint8_t)(bit)) & 0x1)
// Test n-th bit (Can't use bit_is_set, as it's redefined in sfr_def.h)
#define bit_is_high(reg, bit) get_bit(reg, bit)
#define bit_is_low(reg, bit) (!get_bit(reg, bit))
// Write value to n-th bit
#define set_bit(reg, bit, value) { (reg) = ((reg) & ~(1 << (uint8_t)(bit))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); }
// Invert n-th bit
#define toggle_bit(reg, bit) { (reg) ^= (1 << (uint8_t)(bit)); }
// --- Bit manipulation with pointer to variable ---
// Set n-th bit in pointee
#define sbi_p(reg_p, bit) { (*(reg_p)) |= (1 << (uint8_t)(bit)); }
// Clear n-th bit in pointee
#define cbi_p(reg_p, bit) { (*(reg_p)) &= ~(1 << (uint8_t)(bit)); }
// Get n-th bit in pointee
#define get_bit_p(reg_p, bit) ((*(reg_p) >> (uint8_t)(bit)) & 0x1)
// Test n-th bit in pointee (Can't use bit_is_set, as it's redefined in sfr_def.h)
#define bit_is_high_p(reg_p, bit) get_bit_p(reg_p, bit)
#define bit_is_low_p(reg_p, bit) (!get_bit_p(reg_p, bit))
// Write value to a bit in pointee
#define set_bit_p(reg_p, bit, value) { *(reg_p) = (*(reg_p) & ~(1 << ((uint8_t)(bit) & 0x1))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); }
#define toggle_bit_p(reg_p, bit) { *(reg_p) ^= (1 << (uint8_t)(bit)); }
// --- Nibble manipulation ---
// Replace nibble in a byte
#define set_low_nibble(reg, value) { (reg) = ((reg) & 0xF0) | ((uint8_t)(value) & 0xF); }
#define set_high_nibble(reg, value) { (reg) = ((reg) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); }
#define set_low_nibble_p(reg_p, value) { *(reg_p) = (*(reg_p) & 0xF0) | ((uint8_t)(value) & 0xF); }
#define set_high_nibble_p(reg_p, value) { *(reg_p) = (*(reg_p) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); }
#define low_nibble(x) ((uint8_t)(x) & 0xF)
#define high_nibble(x) (((uint8_t)(x) & 0xF0) >> 4)
// --- Range tests ---
// Test if X is within low..high, regardless of bounds order
#define in_range(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (high) && (x) < (low))))
// ..., include greater bound
#define in_rangei(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (high) && (x) <= (low))))
// Test if X in low..high, wrap around ends if needed.
#define in_range_wrap(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (low) || (x) < (high))))
// ..., include upper bound
#define in_range_wrapi(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (low) || (x) <= (high))))

@ -0,0 +1,103 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include "iopins.h"
#include "nsdelay.h"
#include "color.h"
// --- HSL ---
#ifdef HSL_LINEAR
const uint8_t FADE_128[] =
{
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4,
5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 13, 14,
14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36,
38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 59, 61, 63,
65, 67, 68, 69, 71, 72, 74, 76, 78, 80, 82, 85, 88, 90, 92, 95, 98, 100,
103, 106, 109, 112, 116, 119, 122, 125, 129, 134, 138, 142, 147, 151,
153, 156, 160, 163, 165, 170, 175, 180, 185, 190, 195, 200, 207, 214, 218,
221, 225, 228, 232, 234, 241, 248, 254, 255
};
#endif
// based on: https://github.com/lewisd32/avr-hsl2rgb
xrgb_t hsl_xrgb(const hsl_t cc)
{
// 0 .. 256*3
const uint16_t hh = (uint16_t) cc.h * 3;
const uint8_t hue_mod = hh % 256;
uint8_t r_temp, g_temp, b_temp;
if (hh < 256)
{
r_temp = hue_mod ^ 255;
g_temp = hue_mod;
b_temp = 0;
}
else if (hh < 512)
{
r_temp = 0;
g_temp = hue_mod ^ 255;
b_temp = hue_mod;
}
else if (hh < 768)
{
r_temp = hue_mod;
g_temp = 0;
b_temp = hue_mod ^ 255;
}
else
{
r_temp = 0;
g_temp = 0;
b_temp = 0;
}
const uint8_t inverse_sat = (cc.s ^ 255);
xrgb_t rgb;
uint8_t t8;
uint16_t t16;
#ifdef HSL_LINEAR
const uint8_t bri = FADE_128[cc.l >> 1];
#else
const uint8_t bri = cc.l;
#endif
t8 = r_temp;
t16 = t8 * cc.s + t8;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.r = t8;
t8 = g_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.g = t8;
t8 = b_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.b = t8;
return rgb;
}

@ -0,0 +1,57 @@
#pragma once
// --- color types ---
//
// The XXXc macros don't use cast, so they can be used in array initializers.
//
// xrgb ... 3-byte true-color RGB (8 bits per component)
// rgb24 ... 24-bit color value, with equal nr of bits per component
//
// XX_r (_g, _b) ... extract component from the color, and convert it to 0..255
// Define HSL_LINEAR to get more linear brightness in hsl->rgb conversion
typedef struct
{
uint8_t r;
uint8_t g;
uint8_t b;
} xrgb_t;
typedef uint32_t rgb24_t;
#define xrgb(rr, gg, bb) ((xrgb_t)xrgbc(rr, gg, bb))
// xrgb for constant array declarations
#define xrgbc(rr, gg, bb) { .r = ((uint8_t)(rr)), .g = ((uint8_t)(gg)), .b = ((uint8_t)(bb)) }
#define xrgb_r(c) ((uint8_t)(c.r))
#define xrgb_g(c) ((uint8_t)(c.g))
#define xrgb_b(c) ((uint8_t)(c.b))
#define xrgb_rgb24(c) ((((rgb24_t)c.r) << 16) | (((rgb24_t)c.g) << 8) | (((rgb24_t)c.b)))
#define xrgb_rgb15(c) (((((rgb15_t)c.r) & 0xF8) << 7) | ((((rgb15_t)c.g) & 0xF8) << 2) | ((((rgb15_t)c.b) & 0xF8) >> 3))
#define xrgb_rgb12(c) (((((rgb12_t)c.r) & 0xF0) << 4) | ((((rgb12_t)c.g) & 0xF0)) | ((((rgb12_t)c.b) & 0xF0) >> 4))
#define xrgb_rgb6(c) (((((rgb6_t)c.r) & 0xC0) >> 2) | ((((rgb6_t)c.g) & 0xC0) >> 4) | ((((rgb6_t)c.b) & 0xC0) >> 6))
#define rgb24c(r,g,b) (((((rgb24_t)r) & 0xFF) << 16) | ((((rgb24_t)g) & 0xFF) << 8) | (((rgb24_t)b) & 0xFF))
#define rgb24(r,g,b) ((rgb24_t) rgb24(r,g,b))
#define rgb24_r(c) ((((rgb24_t) (c)) >> 16) & 0xFF)
#define rgb24_g(c) ((((rgb24_t) (c)) >> 8) & 0xFF)
#define rgb24_b(c) ((((rgb24_t) (c)) >> 0) & 0xFF)
#define rgb24_xrgb(c) xrgb(rgb24_r(c), rgb24_g(c), rgb24_b(c))
#define rgb24_xrgbc(c) xrgbc(rgb24_r(c), rgb24_g(c), rgb24_b(c))
#define add_xrgb(x, y) ((xrgb_t) { (((y).r > (255 - (x).r)) ? 255 : ((x).r + (y).r)), (((y).g > (255 - (x).g)) ? 255 : ((x).g + (y).g)), (((y).b > 255 - (x).b) ? 255 : ((x).b + (y).b)) })
// HSL data structure
typedef struct
{
uint8_t h;
uint8_t s;
uint8_t l;
} hsl_t;
/* Convert HSL to XRGB */
xrgb_t hsl_xrgb(const hsl_t color);

@ -0,0 +1,52 @@
#include <avr/io.h>
#include <stdbool.h>
#include "debounce.h"
#include "calc.h"
#include "iopins.h"
#include "debo_config.h"
/** Debounce data array */
uint8_t debo_next_slot = 0;
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert)
{
debo_slots[debo_next_slot] = (debo_slot_t)({
.reg = reg,
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
.count = 0,
});
return debo_next_slot++;
}
/** Check debounced pins, should be called periodically. */
void debo_tick()
{
for (uint8_t i = 0; i < debo_next_slot; i++)
{
// current pin value (right 3 bits, xored with inverse bit)
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7);
if (value != get_bit(debo_slots[i].bit, 6))
{
// different pin state than last recorded state
if (debo_slots[i].count < DEBO_TICKS)
{
debo_slots[i].count++;
}
else
{
// overflown -> latch value
set_bit(debo_slots[i].bit, 6, value); // set state bit
debo_slots[i].count = 0;
}
}
else
{
debo_slots[i].count = 0; // reset the counter
}
}
}

@ -0,0 +1,66 @@
#pragma once
//
// An implementation of button debouncer.
//
// ----
//
// You must provide a config file debo_config.h (next to your main.c)
//
// A pin is registered like this:
//
// #define BTN1 12 // pin D12
// #define BTN2 13
//
// debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
// debo_add_rev(BTN1); // active low
// debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
//
// Then periodically call the tick function (perhaps in a timer interrupt):
//
// debo_tick();
//
// To check if input is active, use
//
// debo_get_pin(0); // state of input #0 (registered first)
// debo_get_pin(1); // state of input #1 (registered second)
//
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
#include "iopins.h"
// Your config file
#include "debo_config.h"
/*
#define DEBO_CHANNELS 2
#define DDEBO_TICKS 5
*/
/* Internal deboucer entry */
typedef struct
{
PORT_P reg; // pointer to IO register
uint8_t bit; // bits 6 and 7 of this hold "state" & "invert" flag
uint8_t count; // number of ticks this was in the new state
} debo_slot_t;
debo_slot_t debo_slots[DEBO_CHANNELS];
/** Add a pin for debouncing (must be used with constant args) */
#define debo_add_rev(pin) debo_register(&_pin(pin), _pn(pin), 1)
#define debo_add(pin) debo_register(&_pin(pin), _pn(pin), 0)
/** Add a pin for debouncing (low level function) */
uint8_t debo_register(PORT_P pin_reg_pointer, uint8_t bit, bool invert);
/** Check debounced pins, should be called periodically. */
void debo_tick();
/** Get a value of debounced pin */
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7))

@ -0,0 +1,88 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "dht11.h"
/** Read one bit */
bool _dht11_rxbit(const uint8_t pin)
{
// Wait until start of pulse
while (is_low_n(pin));
uint8_t cnt = 0;
while (is_high_n(pin))
{
cnt++;
_delay_us(5);
}
return (cnt > 8);
}
/** Read one byte */
uint8_t _dht11_rxbyte(const uint8_t pin)
{
uint8_t byte = 0;
for (uint8_t i = 0; i < 8; i++)
{
if (_dht11_rxbit(pin))
byte |= (1 << (7 - i));
}
return byte;
}
/** Read tehmperature and humidity from the DHT11, returns false on failure */
bool dht11_read(const uint8_t pin, dht11_result_t* result)
{
// bus down for > 18 ms
as_output_n(pin);
pin_low_n(pin);
_delay_ms(20);
// bus up for 20-40us
pin_high_n(pin);
_delay_us(20);
// release
as_input_pu_n(pin);
// DHT should send 80us LOW & 80us HIGH
_delay_us(40);
if (!is_low_n(pin))
return false; // init error
_delay_us(80);
if (!is_high_n(pin))
return false; // init error
// skip to start of first bit
_delay_us(50);
// Receive 5 data bytes (Rh int, Rh dec, Temp int, Temp dec, Checksum)
// Decimal bytes are zero for DHT11 -> we can ignore them.
uint8_t bytes[5];
uint8_t sum = 0;
for (uint8_t i = 0; i < 5; i++)
{
uint8_t b = _dht11_rxbyte(pin);
bytes[i] = b;
if (i < 4) sum += b;
}
// Verify checksum
if (sum != bytes[4]) return false;
result->rh = bytes[0];
result->temp = bytes[2];
return true;
}

@ -0,0 +1,17 @@
#pragma once
//
// Reading temperature and relative humidity from DHT11
//
#include <stdint.h>
#include <stdbool.h>
typedef struct
{
int8_t temp;
int8_t rh;
} dht11_result_t;
/** Read tehmperature and humidity from the DHT11, returns false on failure */
bool dht11_read(const uint8_t pin, dht11_result_t* result);

File diff suppressed because it is too large Load Diff

@ -0,0 +1,276 @@
#pragma once
//
// Simple FAT16 library.
//
// To use it, implement BLOCKDEV functions
// and attach them to it's instance.
//
#include <stdint.h>
#include <stdbool.h>
#include "blockdev.h"
// -------------------------------
/**
* File types (values can be used for debug printing).
* Accessible using file->type
*/
typedef enum
{
FT_NONE = '-',
FT_DELETED = 'x',
FT_SUBDIR = 'D',
FT_PARENT = 'P',
FT_LABEL = 'L',
FT_LFN = '~',
FT_INVALID = '?', // not recognized weird file
FT_SELF = '.',
FT_FILE = 'F'
} FAT16_FT;
/** "File address" for saving and restoring file */
typedef struct
{
uint16_t clu;
uint16_t num;
uint32_t cur_rel;
} FSAVEPOS;
// Include definitions of fully internal structs
#include "fat16_internal.h"
/**
* File handle struct.
*
* File handle contains cursor, file name, type, size etc.
* Everything (files, dirs) is accessed using this.
*/
typedef struct __attribute__((packed))
{
/**
* Raw file name. Starting 0x05 was converted to 0xE5.
* To get PRINTABLE file name, use fat16_dispname()
*/
uint8_t name[11];
/**
* File attributes - bit field composed of FA_* flags
* (internal)
*/
uint8_t attribs;
// 14 bytes skipped (10 reserved, date, time)
/** First cluster of the file. (internal) */
uint16_t clu_start;
/**
* File size in bytes.
* This is the current allocated and readable file size.
*/
uint32_t size;
// --- the following fields are added when reading ---
/** File type. */
FAT16_FT type;
// --- INTERNAL FIELDS ---
// Cursor variables. (internal)
uint32_t cur_abs; // absolute position in device
uint32_t cur_rel; // relative position in file
uint16_t cur_clu; // cluster where the cursor is
uint16_t cur_ofs; // offset within the active cluster
// File position in the directory. (internal)
uint16_t clu; // first cluster of directory
uint16_t num; // file entry number
// Pointer to the FAT16 handle. (internal)
const FAT16* fat;
}
FFILE;
/**
* Store modified file metadata and flush it to disk.
*/
void ff_flush_file(FFILE* file);
/**
* Save a file "position" into a struct, for later restoration.
* Cursor is also saved.
*/
FSAVEPOS ff_savepos(const FFILE* file);
/**
* Restore a file from a saved position.
*/
void ff_reopen(FFILE* file, const FSAVEPOS* pos);
/**
* Initialize the file system - store into "fat"
*/
bool ff_init(const BLOCKDEV* dev, FAT16* fat);
/**
* Open the first file of the root directory.
* The file may be invalid (eg. a volume label, deleted etc),
* or blank (type FT_NONE) if the filesystem is empty.
*/
void ff_root(const FAT16* fat, FFILE* file);
/**
* Resolve the disk label.
* That can be in the Boot Sector, or in the first root directory entry.
*
* @param fat the FAT handle
* @param label_out string to store the label in. Should have at least 12 bytes.
*/
char* ff_disk_label(const FAT16* fat, char* label_out);
// ----------- FILE I/O -------------
/**
* Move file cursor to a position relative to file start
* Returns false on I/O error (bad file, out of range...)
*/
bool ff_seek(FFILE* file, uint32_t addr);
/**
* Read bytes from file into memory
* Returns number of bytes read, 0 on error.
*/
uint16_t ff_read(FFILE* file, void* target, uint16_t len);
/**
* Write into file at a "seek" position.
*/
bool ff_write(FFILE* file, const void* source, uint32_t len);
/**
* Store a 0-terminated string at cursor.
*/
bool ff_write_str(FFILE* file, const char* source);
/**
* Create a new file in given folder
*
* file ... open directory; new file is opened into this handle.
* name ... name of the new file, including extension
*/
bool ff_newfile(FFILE* file, const char* name);
/**
* Create a sub-directory of given name.
* Directory is allocated and populated with entries "." and ".."
*/
bool ff_mkdir(FFILE* file, const char* name);
/**
* Set new file size.
* Allocates / frees needed clusters, does NOT erase them.
*
* Useful mainly for shrinking.
*/
void set_file_size(FFILE* file, uint32_t size);
/**
* Delete a *FILE* and free it's clusters.
*/
bool ff_rmfile(FFILE* file);
/**
* Delete an empty *DIRECTORY* and free it's clusters.
*/
bool ff_rmdir(FFILE* file);
/**
* Delete a file or directory, even FT_LFN and FT_INVALID.
* Directories are deleted recursively (!)
*/
bool ff_delete(FFILE* file);
// --------- NAVIGATION ------------
/** Go to previous file in the directory (false = no prev file) */
bool ff_prev(FFILE* file);
/** Go to next file in directory (false = no next file) */
bool ff_next(FFILE* file);
/**
* Open a subdirectory denoted by the file.
* Provided handle changes to the first entry of the directory.
*/
bool ff_opendir(FFILE* dir);
/**
* Open a parent directory. Fails in root.
* Provided handle changes to the first entry of the parent directory.
*/
bool ff_parent(FFILE* file);
/** Jump to first file in this directory */
void ff_first(FFILE* file);
/**
* Find a file with given "display name" in this directory, and open it.
* If file is found, "file" will contain it's handle.
* Otherwise, the handle is unchanged.
*/
bool ff_find(FFILE* file, const char* name);
// -------- FILE INSPECTION -----------
/** Check if file is a valid entry, or long-name/label/deleted */
bool ff_is_regular(const FFILE* file);
/**
* Resolve a file name, trim spaces and add null terminator.
* Returns the passed char*, or NULL on error.
*/
char* ff_dispname(const FFILE* file, char* disp_out);
/**
* Convert filename to zero-padded fixed length one
* Returns the passed char*.
*/
char* ff_rawname(const char* disp_in, char* raw_out);

@ -0,0 +1,64 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
// Internal types and stuff that is needed in the header for declarations,
// but is not a part of the public API.
/** Boot Sector structure */
typedef struct __attribute__((packed))
{
// Fields loaded directly from disk:
// 13 bytes skipped
uint8_t sectors_per_cluster;
uint16_t reserved_sectors;
uint8_t num_fats;
uint16_t root_entries;
// 3 bytes skipped
uint16_t fat_size_sectors;
// 8 bytes skipped
uint32_t total_sectors; // if "short size sectors" is used, it's copied here too
// 7 bytes skipped
char volume_label[11]; // space padded, no terminator
// Added fields:
uint32_t bytes_per_cluster;
}
Fat16BootSector;
/** FAT filesystem handle */
typedef struct __attribute__((packed))
{
// Backing block device
const BLOCKDEV* dev;
// Root directory sector start
uint32_t rd_addr;
// Start of first cluster (number "2")
uint32_t data_addr;
// Start of fat table
uint32_t fat_addr;
// Boot sector data struct
Fat16BootSector bs;
}
FAT16;
/**
* File Attributes (bit flags)
* Accessible using file->attribs
*/
#define FA_READONLY 0x01 // read only file
#define FA_HIDDEN 0x02 // hidden file
#define FA_SYSTEM 0x04 // system file
#define FA_LABEL 0x08 // volume label entry, found only in root directory.
#define FA_DIR 0x10 // subdirectory
#define FA_ARCHIVE 0x20 // archive flag

@ -0,0 +1,276 @@
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
#include "iopins.h"
void set_dir_n(const uint8_t pin, const uint8_t d)
{
switch(pin) {
case 0: set_dir(0, d); return;
case 1: set_dir(1, d); return;
case 2: set_dir(2, d); return;
case 3: set_dir(3, d); return;
case 4: set_dir(4, d); return;
case 5: set_dir(5, d); return;
case 6: set_dir(6, d); return;
case 7: set_dir(7, d); return;
case 8: set_dir(8, d); return;
case 9: set_dir(9, d); return;
case 10: set_dir(10, d); return;
case 11: set_dir(11, d); return;
case 12: set_dir(12, d); return;
case 13: set_dir(13, d); return;
case 14: set_dir(14, d); return;
case 15: set_dir(15, d); return;
case 16: set_dir(16, d); return;
case 17: set_dir(17, d); return;
case 18: set_dir(18, d); return;
case 19: set_dir(19, d); return;
case 20: set_dir(20, d); return;
case 21: set_dir(21, d); return;
}
}
void as_input_n(const uint8_t pin)
{
switch(pin) {
case 0: as_input(0); return;
case 1: as_input(1); return;
case 2: as_input(2); return;
case 3: as_input(3); return;
case 4: as_input(4); return;
case 5: as_input(5); return;
case 6: as_input(6); return;
case 7: as_input(7); return;
case 8: as_input(8); return;
case 9: as_input(9); return;
case 10: as_input(10); return;
case 11: as_input(11); return;
case 12: as_input(12); return;
case 13: as_input(13); return;
case 14: as_input(14); return;
case 15: as_input(15); return;
case 16: as_input(16); return;
case 17: as_input(17); return;
case 18: as_input(18); return;
case 19: as_input(19); return;
case 20: as_input(20); return;
case 21: as_input(21); return;
}
}
void as_input_pu_n(const uint8_t pin)
{
switch(pin) {
case 0: as_input_pu(0); return;
case 1: as_input_pu(1); return;
case 2: as_input_pu(2); return;
case 3: as_input_pu(3); return;
case 4: as_input_pu(4); return;
case 5: as_input_pu(5); return;
case 6: as_input_pu(6); return;
case 7: as_input_pu(7); return;
case 8: as_input_pu(8); return;
case 9: as_input_pu(9); return;
case 10: as_input_pu(10); return;
case 11: as_input_pu(11); return;
case 12: as_input_pu(12); return;
case 13: as_input_pu(13); return;
case 14: as_input_pu(14); return;
case 15: as_input_pu(15); return;
case 16: as_input_pu(16); return;
case 17: as_input_pu(17); return;
case 18: as_input_pu(18); return;
case 19: as_input_pu(19); return;
case 20: as_input_pu(20); return;
case 21: as_input_pu(21); return;
}
}
void as_output_n(const uint8_t pin)
{
switch(pin) {
case 0: as_output(0); return;
case 1: as_output(1); return;
case 2: as_output(2); return;
case 3: as_output(3); return;
case 4: as_output(4); return;
case 5: as_output(5); return;
case 6: as_output(6); return;
case 7: as_output(7); return;
case 8: as_output(8); return;
case 9: as_output(9); return;
case 10: as_output(10); return;
case 11: as_output(11); return;
case 12: as_output(12); return;
case 13: as_output(13); return;
case 14: as_output(14); return;
case 15: as_output(15); return;
case 16: as_output(16); return;
case 17: as_output(17); return;
case 18: as_output(18); return;
case 19: as_output(19); return;
case 20: as_output(20); return;
case 21: as_output(21); return;
}
}
void set_pin_n(const uint8_t pin, const uint8_t v)
{
switch(pin) {
case 0: set_pin(0, v); return;
case 1: set_pin(1, v); return;
case 2: set_pin(2, v); return;
case 3: set_pin(3, v); return;
case 4: set_pin(4, v); return;
case 5: set_pin(5, v); return;
case 6: set_pin(6, v); return;
case 7: set_pin(7, v); return;
case 8: set_pin(8, v); return;
case 9: set_pin(9, v); return;
case 10: set_pin(10, v); return;
case 11: set_pin(11, v); return;
case 12: set_pin(12, v); return;
case 13: set_pin(13, v); return;
case 14: set_pin(14, v); return;
case 15: set_pin(15, v); return;
case 16: set_pin(16, v); return;
case 17: set_pin(17, v); return;
case 18: set_pin(18, v); return;
case 19: set_pin(19, v); return;
case 20: set_pin(20, v); return;
case 21: set_pin(21, v); return;
}
}
void pin_low_n(const uint8_t pin)
{
switch(pin) {
case 0: pin_low(0); return;
case 1: pin_low(1); return;
case 2: pin_low(2); return;
case 3: pin_low(3); return;
case 4: pin_low(4); return;
case 5: pin_low(5); return;
case 6: pin_low(6); return;
case 7: pin_low(7); return;
case 8: pin_low(8); return;
case 9: pin_low(9); return;
case 10: pin_low(10); return;
case 11: pin_low(11); return;
case 12: pin_low(12); return;
case 13: pin_low(13); return;
case 14: pin_low(14); return;
case 15: pin_low(15); return;
case 16: pin_low(16); return;
case 17: pin_low(17); return;
case 18: pin_low(18); return;
case 19: pin_low(19); return;
case 20: pin_low(20); return;
case 21: pin_low(21); return;
}
}
void pin_high_n(const uint8_t pin)
{
switch(pin) {
case 0: pin_high(0); return;
case 1: pin_high(1); return;
case 2: pin_high(2); return;
case 3: pin_high(3); return;
case 4: pin_high(4); return;
case 5: pin_high(5); return;
case 6: pin_high(6); return;
case 7: pin_high(7); return;
case 8: pin_high(8); return;
case 9: pin_high(9); return;
case 10: pin_high(10); return;
case 11: pin_high(11); return;
case 12: pin_high(12); return;
case 13: pin_high(13); return;
case 14: pin_high(14); return;
case 15: pin_high(15); return;
case 16: pin_high(16); return;
case 17: pin_high(17); return;
case 18: pin_high(18); return;
case 19: pin_high(19); return;
case 20: pin_high(20); return;
case 21: pin_high(21); return;
}
}
void toggle_pin_n(const uint8_t pin)
{
switch(pin) {
case 0: toggle_pin(0); return;
case 1: toggle_pin(1); return;
case 2: toggle_pin(2); return;
case 3: toggle_pin(3); return;
case 4: toggle_pin(4); return;
case 5: toggle_pin(5); return;
case 6: toggle_pin(6); return;
case 7: toggle_pin(7); return;
case 8: toggle_pin(8); return;
case 9: toggle_pin(9); return;
case 10: toggle_pin(10); return;
case 11: toggle_pin(11); return;
case 12: toggle_pin(12); return;
case 13: toggle_pin(13); return;
case 14: toggle_pin(14); return;
case 15: toggle_pin(15); return;
case 16: toggle_pin(16); return;
case 17: toggle_pin(17); return;
case 18: toggle_pin(18); return;
case 19: toggle_pin(19); return;
case 20: toggle_pin(20); return;
case 21: toggle_pin(21); return;
}
}
bool get_pin_n(const uint8_t pin)
{
switch(pin) {
case 0: return get_pin(0);
case 1: return get_pin(1);
case 2: return get_pin(2);
case 3: return get_pin(3);
case 4: return get_pin(4);
case 5: return get_pin(5);
case 6: return get_pin(6);
case 7: return get_pin(7);
case 8: return get_pin(8);
case 9: return get_pin(9);
case 10: return get_pin(10);
case 11: return get_pin(11);
case 12: return get_pin(12);
case 13: return get_pin(13);
case 14: return get_pin(14);
case 15: return get_pin(15);
case 16: return get_pin(16);
case 17: return get_pin(17);
case 18: return get_pin(18);
case 19: return get_pin(19);
case 20: return get_pin(20);
case 21: return get_pin(21);
}
return false;
}
bool is_low_n(const uint8_t pin)
{
return !get_pin_n(pin);
}
bool is_high_n(const uint8_t pin)
{
return get_pin_n(pin);
}

@ -0,0 +1,213 @@
#pragma once
//
// * Utilities for pin aliasing / numbering. *
//
// Designed for Arduino.
//
// If you know the pin number beforehand, you can use the macros.
//
// If you need to use a variable for pin number, use the `_n` functions.
// They are much slower, so always check if you really need them
// - and they aren't fit for things where precise timing is required.
//
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
// type: pointer to port
typedef volatile uint8_t* PORT_P;
/** Pin numbering reference */
#define D0 0
#define D1 1
#define D2 2
#define D3 3
#define D4 4
#define D5 5
#define D6 6
#define D7 7
#define D8 8
#define D9 9
#define D10 10
#define D11 11
#define D12 12
#define D13 13
#define D14 14
#define D15 15
#define D16 16
#define D17 17
#define D18 18
#define D19 19
#define D20 20
#define D21 21
#define A0 14
#define A1 15
#define A2 16
#define A3 17
#define A4 18
#define A5 19
#define A6 20
#define A7 21
#define _ddr(pin) _DDR_##pin
#define _pin(pin) _PIN_##pin
#define _pn(pin) _PN_##pin
#define _port(pin) _PORT_##pin
/** Set pin direction */
#define set_dir(pin, d) set_bit( _ddr(pin), _pn(pin), d )
void set_dir_n(const uint8_t pin, const uint8_t d);
/** Configure pin as input */
#define as_input(pin) cbi( _ddr(pin), _pn(pin) )
void as_input_n(const uint8_t pin);
/** Configure pin as input, with pull-up enabled */
#define as_input_pu(pin) { as_input(pin); pin_high(pin); }
void as_input_pu_n(const uint8_t pin);
/** Configure pin as output */
#define as_output(pin) sbi( _ddr(pin), _pn(pin) )
void as_output_n(const uint8_t pin);
/** Write value to a pin */
#define set_pin(pin, v) set_bit( _port(pin), _pn(pin), v )
void set_pin_n(const uint8_t pin, const uint8_t v);
/** Write 0 to a pin */
#define pin_low(pin) cbi( _port(pin), _pn(pin) )
void pin_low_n(const uint8_t pin);
/** Write 1 to a pin */
#define pin_high(pin) sbi( _port(pin), _pn(pin) )
void pin_high_n(const uint8_t pin);
/** Toggle a pin state */
#define toggle_pin(pin) sbi( _pin(pin), _pn(pin) )
void toggle_pin_n(const uint8_t pin);
/** Read a pin value */
#define get_pin(pin) get_bit( _pin(pin), _pn(pin) )
bool get_pin_n(const uint8_t pin);
/** CHeck if pin is low */
#define is_low(pin) (get_pin(pin) == 0)
bool is_low_n(const uint8_t pin);
/** CHeck if pin is high */
#define is_high(pin) (get_pin(pin) != 0)
bool is_high_n(const uint8_t pin);
// Helper macros
#define _PORT_0 PORTD
#define _PORT_1 PORTD
#define _PORT_2 PORTD
#define _PORT_3 PORTD
#define _PORT_4 PORTD
#define _PORT_5 PORTD
#define _PORT_6 PORTD
#define _PORT_7 PORTD
#define _PORT_8 PORTB
#define _PORT_9 PORTB
#define _PORT_10 PORTB
#define _PORT_11 PORTB
#define _PORT_12 PORTB
#define _PORT_13 PORTB
#define _PORT_14 PORTC
#define _PORT_15 PORTC
#define _PORT_16 PORTC
#define _PORT_17 PORTC
#define _PORT_18 PORTC
#define _PORT_19 PORTC
#define _PORT_20 PORTC
#define _PORT_21 PORTC
#define _PIN_0 PIND
#define _PIN_1 PIND
#define _PIN_2 PIND
#define _PIN_3 PIND
#define _PIN_4 PIND
#define _PIN_5 PIND
#define _PIN_6 PIND
#define _PIN_7 PIND
#define _PIN_8 PINB
#define _PIN_9 PINB
#define _PIN_10 PINB
#define _PIN_11 PINB
#define _PIN_12 PINB
#define _PIN_13 PINB
#define _PIN_14 PINC
#define _PIN_15 PINC
#define _PIN_16 PINC
#define _PIN_17 PINC
#define _PIN_18 PINC
#define _PIN_19 PINC
#define _PIN_20 PINC
#define _PIN_21 PINC
#define _DDR_0 DDRD
#define _DDR_1 DDRD
#define _DDR_2 DDRD
#define _DDR_3 DDRD
#define _DDR_4 DDRD
#define _DDR_5 DDRD
#define _DDR_6 DDRD
#define _DDR_7 DDRD
#define _DDR_8 DDRB
#define _DDR_9 DDRB
#define _DDR_10 DDRB
#define _DDR_11 DDRB
#define _DDR_12 DDRB
#define _DDR_13 DDRB
#define _DDR_14 DDRC
#define _DDR_15 DDRC
#define _DDR_16 DDRC
#define _DDR_17 DDRC
#define _DDR_18 DDRC
#define _DDR_19 DDRC
#define _DDR_20 DDRC
#define _DDR_21 DDRC
#define _PN_0 0
#define _PN_1 1
#define _PN_2 2
#define _PN_3 3
#define _PN_4 4
#define _PN_5 5
#define _PN_6 6
#define _PN_7 7
#define _PN_8 0
#define _PN_9 1
#define _PN_10 2
#define _PN_11 3
#define _PN_12 4
#define _PN_13 5
#define _PN_14 0
#define _PN_15 1
#define _PN_16 2
#define _PN_17 3
#define _PN_18 4
#define _PN_19 5
#define _PN_20 6
#define _PN_21 7

@ -0,0 +1,365 @@
#include <stdbool.h>
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "calc.h"
#include "iopins.h"
#include "nsdelay.h"
#include "lcd.h"
#include "lcd_config.h"
// Start address of rows
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54};
// Shared stream instance
static STREAM _lcd_singleton;
STREAM* lcd;
// Internal prototypes
void _lcd_mode_r();
void _lcd_mode_w();
void _lcd_clk();
void _lcd_wait_bf();
void _lcd_write_byte(uint8_t bb);
uint8_t _lcd_read_byte();
// Write utilities
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F)
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4)
#define _lcd_write_nibble(nib) do { \
set_pin(LCD_D7, get_bit((nib), 3)); \
set_pin(LCD_D6, get_bit((nib), 2)); \
set_pin(LCD_D5, get_bit((nib), 1)); \
set_pin(LCD_D4, get_bit((nib), 0)); \
} while(0)
// 0 W, 1 R
bool _lcd_mode;
struct
{
uint8_t x;
uint8_t y;
} _pos;
enum
{
TEXT = 0,
CG = 1
} _addrtype;
/** Initialize the display */
void lcd_init()
{
// configure pins as output
as_output(LCD_E);
as_output(LCD_RW);
as_output(LCD_RS);
_lcd_mode = 1; // force data pins to output
_lcd_mode_w();
// Magic sequence to invoke Cthulhu (or enter 4-bit mode)
_delay_ms(16);
_lcd_write_nibble(0b0011);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_write_nibble(0b0010);
_lcd_clk();
_delay_us(100);
// Configure the display
lcd_command(LCD_IFACE_4BIT_2LINE);
lcd_command(LCD_DISABLE);
lcd_command(LCD_CLEAR);
lcd_command(LCD_MODE_INC);
// mark as enabled
lcd_enable();
_lcd_singleton.tx = &lcd_write;
_lcd_singleton.rx = &lcd_read;
// Stream
lcd = &_lcd_singleton;
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Send a pulse on the ENABLE line */
void _lcd_clk()
{
pin_high(LCD_E);
delay_ns(450);
pin_low(LCD_E);
}
/** Enter READ mode */
void _lcd_mode_r()
{
if (_lcd_mode == 1) return; // already in R mode
pin_high(LCD_RW);
as_input_pu(LCD_D7);
as_input_pu(LCD_D6);
as_input_pu(LCD_D5);
as_input_pu(LCD_D4);
_lcd_mode = 1;
}
/** Enter WRITE mode */
void _lcd_mode_w()
{
if (_lcd_mode == 0) return; // already in W mode
pin_low(LCD_RW);
as_output(LCD_D7);
as_output(LCD_D6);
as_output(LCD_D5);
as_output(LCD_D4);
_lcd_mode = 0;
}
/** Read a byte */
uint8_t _lcd_read_byte()
{
_lcd_mode_r();
uint8_t res = 0;
_lcd_clk();
res = (get_pin(LCD_D7) << 7) | (get_pin(LCD_D6) << 6) | (get_pin(LCD_D5) << 5) | (get_pin(LCD_D4) << 4);
_lcd_clk();
res |= (get_pin(LCD_D7) << 3) | (get_pin(LCD_D6) << 2) | (get_pin(LCD_D5) << 1) | (get_pin(LCD_D4) << 0);
return res;
}
/** Write an instruction byte */
void lcd_command(uint8_t bb)
{
_lcd_wait_bf();
pin_low(LCD_RS); // select instruction register
_lcd_write_byte(bb); // send instruction byte
}
/** Write a data byte */
void lcd_write(uint8_t bb)
{
if (_addrtype == TEXT)
{
if (bb == '\r')
{
// CR
_pos.x = 0;
lcd_xy(_pos.x, _pos.y);
return;
}
if (bb == '\n')
{
// LF
_pos.y++;
lcd_xy(_pos.x, _pos.y);
return;
}
_pos.x++;
}
_lcd_wait_bf();
pin_high(LCD_RS); // select data register
_lcd_write_byte(bb); // send data byte
}
/** Read BF & Address */
uint8_t lcd_read_bf_addr()
{
pin_low(LCD_RS);
return _lcd_read_byte();
}
/** Read CGRAM or DDRAM */
uint8_t lcd_read()
{
if (_addrtype == TEXT) _pos.x++;
pin_high(LCD_RS);
return _lcd_read_byte();
}
/** Write a byte using the 4-bit interface */
void _lcd_write_byte(uint8_t bb)
{
_lcd_mode_w(); // enter W mode
_lcd_write_high(bb);
_lcd_clk();
_lcd_write_low(bb);
_lcd_clk();
}
/** Wait until the device is ready */
void _lcd_wait_bf()
{
uint8_t d = 0;
while (d++ < 120 && lcd_read_bf_addr() & _BV(7))
_delay_us(1);
}
/** Send a string to LCD */
void lcd_puts(char* str_p)
{
char c;
while ((c = *str_p++))
lcd_putc(c);
}
/** Print from progmem */
void lcd_puts_P(const char* str_p)
{
char c;
while ((c = pgm_read_byte(str_p++)))
lcd_putc(c);
}
/** Sedn a char to LCD */
void lcd_putc(const char c)
{
lcd_write(c);
}
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y)
{
_pos.x = x;
_pos.y = y;
lcd_addr(LCD_ROW_ADDR[y] + (x));
}
uint8_t _lcd_old_cursor = CURSOR_NONE;
bool _lcd_enabled = false;
/** Set LCD cursor. If not enabled, only remember it. */
void lcd_cursor(uint8_t type)
{
_lcd_old_cursor = (type & CURSOR_BOTH);
if (_lcd_enabled) lcd_command(LCD_CURSOR_NONE | _lcd_old_cursor);
}
/** Display display (preserving cursor) */
void lcd_disable()
{
lcd_command(LCD_DISABLE);
_lcd_enabled = false;
}
/** Enable display (restoring cursor) */
void lcd_enable()
{
_lcd_enabled = true;
lcd_cursor(_lcd_old_cursor);
}
/** Go home */
void lcd_home()
{
lcd_command(LCD_HOME);
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Clear the screen */
void lcd_clear()
{
lcd_command(LCD_CLEAR);
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Define a glyph */
void lcd_glyph(const uint8_t index, const uint8_t* array)
{
lcd_addr_cg(index * 8);
for (uint8_t i = 0; i < 8; ++i)
{
lcd_write(array[i]);
}
// restore previous position
lcd_xy(_pos.x, _pos.y);
_addrtype = TEXT;
}
/** Define a glyph */
void lcd_glyph_P(const uint8_t index, const uint8_t* array)
{
lcd_addr_cg(index * 8);
for (uint8_t i = 0; i < 8; ++i)
{
lcd_write(pgm_read_byte(&array[i]));
}
// restore previous position
lcd_xy(_pos.x, _pos.y);
_addrtype = TEXT;
}
/** Set address in CGRAM */
void lcd_addr_cg(const uint8_t acg)
{
_addrtype = CG;
lcd_command(0b01000000 | ((acg) & 0b00111111));
}
/** Set address in DDRAM */
void lcd_addr(const uint8_t add)
{
_addrtype = TEXT;
lcd_command(0b10000000 | ((add) & 0b01111111));
}

@ -0,0 +1,146 @@
#pragma once
// HD44780 LCD display driver - 4-bit mode
//
// LCD pins are configured using a file lcd_config.h, which you
// have to add next to your main.c file.
//
// Content can be something like this:
//
//
#include <stdint.h>
#include <stdbool.h>
#include "stream.h"
// Your file with configs
#include "lcd_config.h"
/*
#define LCD_RS 10
#define LCD_RW 11
#define LCD_E 12
#define LCD_D4 13
#define LCD_D5 14
#define LCD_D6 15
#define LCD_D7 16
*/
// Shared LCD stream object
// Can be used with functions from stream.h once LCD is initialized
extern STREAM* lcd;
// --- Commands ---
// Clear screen (reset)
#define LCD_CLEAR 0b00000001
// Move cursor to (0,0), unshift...
#define LCD_HOME 0b00000010
// Set mode: Increment + NoShift
#define LCD_MODE_INC 0b00000110
// Set mode: Increment + Shift
#define LCD_MODE_INC_SHIFT 0b00000111
// Set mode: Decrement + NoShift
#define LCD_MODE_DEC 0b00000100
// Set mode: Decrement + Shift
#define LCD_MODE_DEC_SHIFT 0b00000101
// Disable display (data remains untouched)
#define LCD_DISABLE 0b00001000
// Disable cursor
#define LCD_CURSOR_NONE 0b00001100
// Set cursor to still underscore
#define LCD_CURSOR_BAR 0b00001110
// Set cursor to blinking block
#define LCD_CURSOR_BLINK 0b00001101
// Set cursor to both of the above at once
#define LCD_CURSOR_BOTH (LCD_CURSOR_BAR | LCD_CURSOR_BLINK)
// Move cursor
#define LCD_MOVE_LEFT 0b00010000
#define LCD_MOVE_RIGHT 0b00010100
// Shift display
#define LCD_SHIFT_LEFT 0b00011000
#define LCD_SHIFT_RIGHT 0b00011100
// Set iface to 5x7 font, 1-line
#define LCD_IFACE_4BIT_1LINE 0b00100000
#define LCD_IFACE_8BIT_1LINE 0b00110000
// Set iface to 5x7 font, 2-line
#define LCD_IFACE_4BIT_2LINE 0b00101000
#define LCD_IFACE_8BIT_2LINE 0b00111000
/** Initialize the display */
void lcd_init();
/** Write an instruction byte */
void lcd_command(uint8_t bb);
/** Write a data byte */
void lcd_write(uint8_t bb);
/** Read BF & Address */
uint8_t lcd_read_bf_addr();
/** Read CGRAM or DDRAM */
uint8_t lcd_read();
/** Send a string to LCD */
void lcd_puts(char* str_p);
/** Send a string to LCD from program memory */
void lcd_puts_P(const char* str_p);
/** Sedn a char to LCD */
void lcd_putc(const char c);
/** Show string at X, Y */
#define lcd_puts_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_puts((str_p)); } while(0)
/** Show string at X, Y */
#define lcd_puts_xy_P(x, y, str_p) do { lcd_xy((x), (y)); lcd_puts_P((str_p)); } while(0)
/** Show char at X, Y */
#define lcd_putc_xy(x, y, c) do { lcd_xy((x), (y)); lcd_putc((c)); } while(0)
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y);
/** Set LCD cursor. If not enabled, only remember it. */
#define CURSOR_NONE 0b00
#define CURSOR_BAR 0b10
#define CURSOR_BLINK 0b01
#define CURSOR_BOTH 0b11
void lcd_cursor(uint8_t type);
/** Display display (preserving cursor) */
void lcd_disable();
/** Enable display (restoring cursor) */
void lcd_enable();
/** Go home */
void lcd_home();
/** Clear the screen */
void lcd_clear();
/** Define a glyph - 8 bytes, right 5 bits are used */
void lcd_glyph(const uint8_t index, const uint8_t* array);
/** Define a glyph that's in PROGMEM */
void lcd_glyph_P(const uint8_t index, const uint8_t* array);
/** Set address in CGRAM */
void lcd_addr_cg(const uint8_t acg);
/** Set address in DDRAM */
void lcd_addr(const uint8_t add);

@ -0,0 +1,21 @@
#pragma once
//
// Functions for precise delays (nanoseconds / cycles)
//
#include <avr/io.h>
#include <util/delay_basic.h>
#include <stdint.h>
/* Convert nanoseconds to cycle count */
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) )
/** Wait c cycles */
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0))
/** Wait n nanoseconds, plus c cycles */
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c))
/** Wait n nanoseconds */
#define delay_ns(ns) delay_c(ns2cycles(ns))

@ -0,0 +1,248 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "onewire.h"
/** Perform bus reset. Returns true if any device is connected */
bool ow_reset(const uint8_t pin)
{
as_output_n(pin);
pin_low_n(pin);
_delay_us(480);
as_input_pu_n(pin);
_delay_us(70);
const bool a = get_pin_n(pin);
_delay_us(410);
return a;
}
/** Send a single bit */
void _ow_tx_bit(const uint8_t pin, const bool bit)
{
as_output_n(pin);
pin_low_n(pin);
if (bit)
{
_delay_us(6);
as_input_pu_n(pin);
_delay_us(64);
}
else
{
_delay_us(60);
as_input_pu_n(pin);
_delay_us(10);
}
}
/** Send a single byte */
void ow_send(const uint8_t pin, const uint8_t byte)
{
for (uint8_t i = 0; i < 8; i++)
{
_ow_tx_bit(pin, (byte >> i) & 0x01);
}
}
/** Read a single bit */
bool _ow_rx_bit(const uint8_t pin)
{
as_output_n(pin);
pin_low_n(pin);
_delay_us(6);
as_input_pu_n(pin);
_delay_us(9);
const bool a = get_pin_n(pin);
_delay_us(55);
return a;
}
/** Read a single byte */
uint8_t ow_read(const uint8_t pin)
{
uint8_t byte = 0;
for (uint8_t i = 0; i < 8; i++)
{
byte = (byte >> 1) | (_ow_rx_bit(pin) << 7);
}
return byte;
}
/** Wait until the device is ready. Returns false on timeout */
bool ow_wait_ready(const uint8_t pin)
{
uint16_t timeout = 700;
as_input_pu_n(pin);
while (--timeout > 0)
{
if (is_high_n(pin)) return true;
_delay_ms(1);
}
return false;
}
/** Read bytes into an array */
void ow_read_arr(const uint8_t pin, uint8_t* array, const uint8_t count)
{
for (uint8_t i = 0; i < count; i++)
{
array[i] = ow_read(pin);
}
}
// ---------- CRC utils ----------
/*
Dallas 1-wire CRC routines for Arduino with examples of usage.
The 16-bit routine is new.
The 8-bit routine is from http://github.com/paeaetech/paeae/tree/master/Libraries/ds2482/
Copyright (C) 2010 Kairama Inc
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Dallas 1-wire 16-bit CRC calculation. Developed from Maxim Application Note 27.
/** Compute a CRC16 checksum */
uint16_t crc16(uint8_t *data, uint8_t len)
{
uint16_t crc = 0;
for (uint8_t i = 0; i < len; i++)
{
uint8_t inbyte = data[i];
for (uint8_t j = 0; j < 8; j++)
{
uint8_t mix = (crc ^ inbyte) & 0x01;
crc = crc >> 1;
if (mix)
crc = crc ^ 0xA001;
inbyte = inbyte >> 1;
}
}
return crc;
}
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
/** Compute a CRC8 checksum */
uint8_t crc8(uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
for (uint8_t i = 0; i < len; i++)
{
uint8_t inbyte = addr[i];
for (uint8_t j = 0; j < 8; j++)
{
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix)
crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
// --- utils for DS1820 ---
/** Read temperature in 0.0625°C, or TEMP_ERROR on error */
int16_t ds1820_read_temp(uint8_t pin)
{
ow_send(pin, READ_SCRATCHPAD);
uint8_t bytes[9];
ow_read_arr(pin, bytes, 9);
uint8_t crc = crc8(bytes, 8);
if (crc != bytes[8])
{
return TEMP_ERROR;
}
else
{
int16_t a = ((bytes[1] << 8) | bytes[0]) >> 1;
a = a << 4;
a += (16 - bytes[6]) & 0x0F;
a -= 0x04;
return a;
}
}
/** Read temperature in 0.1°C, or TEMP_ERROR on error */
int16_t ds1820_read_temp_c(uint8_t pin)
{
int32_t temp = ds1820_read_temp(pin);
if (temp == TEMP_ERROR)
return TEMP_ERROR;
temp *= 625;
uint16_t rem = temp % 1000;
temp /= 1000;
if (rem >= 500) temp++;
return (int16_t) temp;
}
bool ds1820_single_measure(uint8_t pin)
{
ow_reset(pin);
ow_send(pin, SKIP_ROM);
ow_send(pin, CONVERT_T);
if (!ow_wait_ready(pin))
{
return false;
}
ow_reset(pin);
ow_send(pin, SKIP_ROM);
return true;
}

@ -0,0 +1,58 @@
#pragma once
//
// Utils for Dallas OneWire bus (DS1820 etc)
//
#include <stdint.h>
#include <stdbool.h>
#define SKIP_ROM 0xCC
#define CONVERT_T 0x44
#define READ_SCRATCHPAD 0xBE
/** Perform bus reset. Returns true if any device is connected */
bool ow_reset(const uint8_t pin);
/** Send a single byte */
void ow_send(const uint8_t pin, const uint8_t byte);
/** Read a single byte */
uint8_t ow_read(const uint8_t pin);
/** Wait until the device is ready. Returns false on timeout */
bool ow_wait_ready(const uint8_t pin);
/** Read bytes into an array */
void ow_read_arr(const uint8_t pin, uint8_t* array, const uint8_t count);
/** Compute a CRC16 checksum */
uint16_t crc16(uint8_t *data, uint8_t len);
/** Compute a CRC8 checksum */
uint8_t crc8(uint8_t *addr, uint8_t len);
// --- utils for DS1820 ---
#define TEMP_ERROR -32768
/**
* Read temperature in 0.0625°C, or TEMP_ERROR on error
* Use this where you'd normally use READ_SCRATCHPAD
*/
int16_t ds1820_read_temp(uint8_t pin);
/**
* Read temperature in 0.1°C, or TEMP_ERROR on error
* Use this where you'd normally use READ_SCRATCHPAD
*/
int16_t ds1820_read_temp_c(uint8_t pin);
/**
* Perform a temperature measurement with single DS1820 device on the line
* Can be followed by a call to read temperature (READ_SCRATCHPAD).
*
* Returns false on failure (device not connected)
*/
bool ds1820_single_measure(uint8_t pin);

@ -0,0 +1,202 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "spi.h"
#include "sd.h"
#define SD_RESET 0x40 // used to make card enter SPI mode
#define SD_GET_STATUS 0x41 // used to check if card left IDLE - should return 0
#define SD_SET_BLOCKLEN 0x50 // used to check if card left IDLE - should return 0
#define SD_READ_BLOCK 0x51 // read single block
#define SD_WRITE_BLOCK 0x58 // write single block
bool sd_inited = false;
bool sd_init()
{
if (sd_inited) return true;
sd_inited = true;
uint8_t i;
spi_init();
spi_ss_disable(); // needed for init sequence, first command will enable it again
// idle for 10 bytes / 80 clocks
for (i = 0; i < 10; i++)
{
spi_write(0xFF);
}
// Send "Go to SPI mode" command, which should return "1"
for (i = 0; i < 100 && sd_command(SD_RESET, 0) != 1; i++)
_delay_ms(10);
if (i == 100)
return false; // timeout
// CMD1 until card comes out of "idle" mode
for (i = 0; i < 100 && sd_command(SD_GET_STATUS, 0) != 0; i++)
_delay_ms(10);
if (i == 100)
return false; // timeout
// f_cpu/8 speed (-> 2 MHz)
SPSR |= _BV(SPI2X);
SPCR &= 0xFC | _BV(SPR0);
// Set block size to 512 bytes (SD card default)
sd_command(SD_SET_BLOCKLEN, 512);
return true;
}
uint8_t sd_command(const uint8_t cmd, const uint32_t arg)
{
spi_ss_enable();
spi_write(cmd);
spi_write(arg >> 24);
spi_write(arg >> 16);
spi_write(arg >> 8);
spi_write(arg);
spi_write(0x95); // CRC for the "init" command, later is ignored
// Send 8 bytes of 0xFF
// SD card replies with non-0xFF once it's done processing the command
uint8_t i, tmp, ret = 0xFF;
for (i = 0; i < 8; i++)
{
tmp = spi_write(0xFF);
if (tmp != 0xFF)
ret = tmp;
}
spi_ss_disable();
return ret;
}
bool sd_read(const uint32_t sector, const uint16_t read_at, uint8_t * buffer, const uint16_t write_at, const uint16_t len)
{
if (read_at + len > 512) return false;
uint16_t i;
spi_ss_enable();
spi_write(SD_READ_BLOCK);
spi_write(sector >> 15); // sector * 512 >> 24
spi_write(sector >> 7); // sector * 512 >> 16
spi_write(sector << 1); // sector * 512 >> 8
spi_write(0); // sector * 512
spi_write(0xFF);
// wait for 0 (ready)
for (i = 0; i < 100 && spi_write(0xFF) != 0x00; i++);
if (i == 100)
{
spi_ss_disable();
return false; // timeout
}
// wait for 0xFE (data start)
for (i = 0; i < 100 && spi_write(0xFF) != 0xFE; i++);
if (i == 100)
{
spi_ss_disable();
return false; // timeout
}
// skip "offset" bytes
for (i = 0; i < read_at; i++)
spi_write(0xFF);
// read "len" bytes
for (i = write_at; i < write_at + len; i++)
buffer[i] = spi_write(0xFF);
// skip remaining bytes in the sector
for (i = read_at + len; i < 512; i++)
spi_write(0xFF);
// skip checksum
spi_write(0xFF);
spi_write(0xFF);
spi_ss_disable();
return true;
}
bool sd_write(const uint32_t sector, const uint8_t * buffer512)
{
uint16_t i;
spi_ss_enable();
spi_write(SD_WRITE_BLOCK);
spi_write(sector >> 15); // sector * 512 >> 24
spi_write(sector >> 7); // sector * 512 >> 16
spi_write(sector << 1); // sector * 512 >> 8
spi_write(0); // sector * 512
spi_write(0xFF);
// wait for 0 (ready)
for (i = 0; i < 100 && spi_write(0xFF) != 0x00; i++);
if (i == 100)
{
spi_ss_disable();
return false; // timeout
}
// Start of data
spi_write(0xFE);
// Data
for (i = 0; i < 512; i++)
{
spi_write(buffer512[i]);
}
// Fake CRC
spi_write(0xFF);
spi_write(0xFF);
// Should contain flag that data was accepted
uint8_t resp = spi_write(0xFF);
if ((resp & 0x0F) != 0x05)
{
// Data not accepted
spi_ss_disable();
return false;
}
else
{
// Data accepted, wait for write complete
for (i = 0; i < 0xFFFF && spi_write(0xFF) == 0x00; i++);
if (i == 0xFFFF)
{
spi_ss_disable();
return false; // timeout
}
}
spi_write(0xFF); // 8 clocks
spi_ss_disable();
return true;
}

@ -0,0 +1,53 @@
#pragma once
//
// SD card low-level I/O utilities
//
// Inspired by:
// http://www.avrfreaks.net/forum/tutc-simple-fat-and-sd-tutorial
//
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "spi.h"
/** Init SD card on SPI */
bool sd_init();
/**
* Send a command to the SD card
*
* @param cmd command to send
* @param arg command argument
* @return return value on success, 0xFF if nothing received back.
*/
uint8_t sd_command(uint8_t cmd, uint32_t arg);
/**
* Read from a sector into a buffer memory structure.
*
* @param sector sector to read (512 bytes long each)
* @param read_at offset within the sector
* @param buffer target buffer
* @param write_at target starting address
* @param len number of bytes to read
* @return true on success
*/
bool sd_read(uint32_t sector, uint16_t read_at, uint8_t * buffer, uint16_t write_at, uint16_t len);
/**
* Write bytes from a buffer into a sector.
*
* @param sector sector to write (512 bytes long each)
* @param buffer512 source buffer
* @return true on success
*/
bool sd_write(uint32_t sector, const uint8_t * buffer512);

@ -0,0 +1,184 @@
#include <stdint.h>
#include <stdbool.h>
#include "sd_blockdev.h"
#include "sd.h"
// helpers
void load_sector(const uint32_t addr);
void store_sector();
void handle_cursor_ov();
// blockdev methods
void dev_load(void* dest, const uint16_t len);
void dev_store(const void* src, const uint16_t len);
uint8_t dev_read();
void dev_write(const uint8_t b);
void dev_seek(const uint32_t addr);
void dev_rseek(const int16_t offset);
void dev_flush();
/** Sector buffer */
uint8_t buff[512];
/** Address of the buffered sector */
uint32_t buff_addr;
/** Buffer needs to be flushed before next read */
bool buff_dirty = false;
/** Buffer holds a valid sector */
bool buff_valid = false;
/** seek cursor */
uint32_t cursor_sec;
uint16_t cursor_offs;
/** Flush the buffer, if it's dirty */
void dev_flush()
{
if (buff_dirty)
{
store_sector();
buff_dirty = false;
}
}
void load_sector(const uint32_t addr)
{
// do not load if already loaded
if (buff_valid && buff_addr == addr)
{
return;
}
dev_flush();
// read entire sector
sd_read(addr, 0, buff, 0, 512);
buff_valid = true;
buff_addr = addr;
}
void store_sector()
{
// Do not store if not laoded.
if (!buff_dirty) return;
if (!buff_valid) return;
sd_write(buff_addr, buff);
}
/**
* Handle cursor overflow.
* MUST ABSOLUTELY NOT load/store buffer or change buffer addr!
*/
inline void handle_cursor_ov()
{
if (cursor_offs >= 512)
{
cursor_sec++;
cursor_offs = 0;
}
}
void dev_write(const uint8_t b)
{
load_sector(cursor_sec);
// dirty only if changed
if (buff[cursor_offs] != b)
{
buff[cursor_offs++] = b;
buff_dirty = true;
}
else
{
cursor_offs++;
}
handle_cursor_ov();
}
uint8_t dev_read()
{
load_sector(cursor_sec);
const uint8_t b = buff[cursor_offs++];
handle_cursor_ov();
return b;
}
void dev_load(void* dest, const uint16_t len)
{
for (uint16_t a = 0; a < len; a++)
{
*((uint8_t*)dest++) = dev_read();
}
}
void dev_store(const void* src, const uint16_t len)
{
for (uint16_t a = 0; a < len; a++)
{
dev_write(*((uint8_t*)src++));
}
}
void dev_seek(const uint32_t addr)
{
// compute sector and offset counters
cursor_sec = addr >> 9;
cursor_offs = addr & 0x1FF;
}
void dev_rseek(const int16_t offset)
{
// add WITHIN the same sector
if (offset > 0 && cursor_offs + offset < 512)
{
cursor_offs += offset;
return;
}
// subtract WITHIN the same sector
if (offset < 0 && ((uint16_t)(-offset) <= cursor_offs))
{
cursor_offs += offset;
return;
}
// abs addr change
dev_seek(((cursor_sec << 9) + cursor_offs) + offset);
}
/** Init SD card block device */
bool sdb_init(BLOCKDEV* dev)
{
if (!sd_init()) return false;
dev->load = &dev_load;
dev->store = &dev_store;
dev->read = &dev_read;
dev->write = &dev_write;
dev->seek = &dev_seek;
dev->rseek = &dev_rseek;
dev->flush = &dev_flush;
return true;
}

@ -0,0 +1,7 @@
#pragma once
#include "blockdev.h"
#include <stdbool.h>
/** Initialize the SD card block device */
bool sdb_init(BLOCKDEV* dev);

@ -0,0 +1,67 @@
#include <stdint.h>
#include <stdbool.h>
#include "sd_blockdev.h"
#include "sd_fat.h"
#include "fat16.h"
FAT16 _fat;
BLOCKDEV _dev;
static STREAM _s;
STREAM* sdf_stream = &_s;
FFILE* stream_file;
bool stream_active = false;
void stream_tx(uint8_t b)
{
if (!stream_active) return;
ff_write(stream_file, &b, 1);
}
uint8_t stream_rx()
{
if (!stream_active) return 0;
uint8_t b;
ff_read(stream_file, &b, 1);
return b;
}
void sdf_open_stream(FFILE* file)
{
stream_active = true;
stream_file = file;
}
bool sdfat_inited = false;
bool sdf_init()
{
if (sdfat_inited) return true;
sdfat_inited = true;
if (!sdb_init(&_dev)) return false;
if (!ff_init(&_dev, &_fat)) return false;
sdf_stream->rx = &stream_rx;
sdf_stream->tx = &stream_tx;
return true;
}
void sdf_root(FFILE* file)
{
ff_root(&_fat, file);
}
void sdf_disk_label(char* str)
{
ff_disk_label(&_fat, str);
}

@ -0,0 +1,32 @@
#pragma once
//
// FAT-on-SD helpers.
//
// This can be used for convenience, as it does all the init for you
// and hides the implementation. All regular ff_* functions will work on the FFILE.
//
#include <stdint.h>
#include "fat16.h"
#include "stream.h"
/** Initialize FAT16 filesystem on a SPI-connected SD card */
bool sdf_init();
/** Get first file of the root folder. */
void sdf_root(FFILE* file);
/** Get a disk label. Str should have 12 chars. */
void sdf_disk_label(char* str);
extern STREAM* sdf_stream;
/**
* Open a stream for a file. There can be only one stream at a time.
*
* The stream will operate at the current file's cursor, just like
* ff_read and ff_write.
*/
void sdf_open_stream(FFILE* file);

@ -0,0 +1,83 @@
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "sipo_pwm.h"
#include "iopins.h"
#include "sipo_pwm_config.h"
/* -------- SIPO PWM MODULE ---------- */
/** Buffer for sending bits to SIPO */
bool _buff[SPWM_CHANNELS];
uint8_t spwm_levels[SPWM_CHANNELS];
/** Send _buff to SIPO */
void _send_buffer()
{
for (int8_t i = SPWM_CHANNELS - 1; i >= 0; i--)
{
#if (SPWM_INVERT)
set_pin(SPWM_DATA, !_buff[i]); /* Common anode */
#else
set_pin(SPWM_DATA, _buff[i]); /* Common cathode */
#endif
// send a CLK pulse
pin_high(SPWM_CLK);
pin_low(SPWM_CLK);
}
// send a STR pulse
pin_high(SPWM_STR);
pin_low(SPWM_STR);
}
void spwm_init()
{
// Pin directions
as_output(SPWM_CLK);
as_output(SPWM_STR);
as_output(SPWM_DATA);
// Initial states
pin_low(SPWM_CLK);
pin_low(SPWM_STR);
}
/**
* Display PWM channels.
* This could be called in a Timer ISR.
*/
void spwm_send()
{
// Set all bits to 1 (if their PWM level is 0, set to 0)
for (uint8_t bit = 0; bit < SPWM_CHANNELS; bit++)
{
_buff[bit] = (bool) spwm_levels[bit];
}
// Show initial state
_send_buffer();
// For each PWM level...
for (uint16_t pwm = 0; pwm < SPWM_COLOR_DEPTH; pwm++)
{
// Turn OFF bits that are below the level
for (uint8_t bit = 0; bit < SPWM_CHANNELS; bit++)
{
if (spwm_levels[bit] < pwm)
{
_buff[bit] = 0;
}
}
// And show...
_send_buffer();
}
}

@ -0,0 +1,49 @@
#pragma once
// --- SIPO PWM Module ---
//
// SIPO = shift register with paralel output.
//
// This module lets you use SIPO outputs as a "software PWM".
//
// Tested to work on 74hc4094 and 74hc595
#include <stdint.h>
// Your file with configs
#include "sipo_pwm_config.h"
/*
// --- PWM pin aliases ---
// Store signal
#define SPWM_STR D2
// Shift/clock signal
#define SPWM_CLK D3
// Data signal
#define SPWM_DATA D4
// --- Other settings ---
// Number of PWM levels (color depth)
#define SPWM_COLOR_DEPTH 256
// Number of SIPO channels
#define SPWM_CHANNELS 24
// Invert outputs (for Common Anode LEDs)
#define SPWM_INVERT 1
*/
// Array for setting PWM levels (PWM_CHANNELS-long)
extern uint8_t spwm_levels[SPWM_CHANNELS];
/** Configure output pins etc */
void spwm_init();
/** Perform one PWM cycle.
* This should be called in a Timer ISR or a loop.
*/
void spwm_send();

@ -0,0 +1,168 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "sonar.h"
// Currently measured sonar
static sonar_t* _so;
// Flag that measurement is in progress
volatile bool sonar_busy;
// Result of last measurement, in millimeters
volatile int16_t sonar_result;
void _sonar_init_do(sonar_t* so, PORT_P port, uint8_t ntx, PORT_P pin, uint8_t nrx)
{
so->port = port;
so->ntx = ntx;
so->pin = pin;
so->nrx = nrx;
switch ((const uint16_t) pin)
{
case ((const uint16_t) &PINB):
so->bank = 0;
break;
case ((const uint16_t) &PINC):
so->bank = 1;
break;
case ((const uint16_t) &PIND):
so->bank = 2;
break;
}
}
/**
* Start sonar measurement
* Interrupts must be enabled
* TIMER 1 will be used for the async measurement
* Timer 1 overflow and Pin Change interrupts must invoke Sonar handlers.
*/
bool sonar_start(sonar_t* so)
{
if (sonar_busy) return false;
_so = so;
sonar_busy = true;
// make sure the timer is stopped (set clock to NONE)
TCCR1B = 0;
// Timer overflow interrupt enable
// We'll stop measuring on overflow
sbi(TIMSK1, TOIE1);
// Clear the timer value
TCNT1 = 0;
// Set up pin change interrupt mask for the RX pin
switch (so->bank)
{
case 0:
sbi(PCMSK0, so->nrx);
break;
case 1:
sbi(PCMSK1, so->nrx);
break;
case 2:
sbi(PCMSK2, so->nrx);
break;
}
// send positive pulse
sbi_p(so->port, so->ntx);
_delay_us(_SNR_TRIG_TIME);
cbi_p(so->port, so->ntx);
// Wait for start of response
while (bit_is_low_p(so->pin, so->nrx));
// Set timer clock source: F_CPU / 8 (0.5 us resolution)
TCCR1B = (0b010 << CS10);
// Enable pin change interrupt
sbi(PCICR, so->bank);
return true;
}
/** Stop the timer */
void _sonar_stop()
{
// stop timer
TCCR1B = 0;
// Disable RX pin interrupt mask
switch (_so->bank)
{
case 0:
PCMSK0 &= ~(1 << (_so->nrx));
break;
case 1:
PCMSK1 &= ~(1 << (_so->nrx));
break;
case 2:
PCMSK2 &= ~(1 << (_so->nrx));
break;
}
// Disable timer1 overflow interrupt
cbi(TIMSK1, TOIE1);
sonar_busy = false;
}
/** Handle TIMER1_OVF (returns true if consumed) */
inline bool sonar_handle_t1ovf()
{
if (!sonar_busy) return false; // nothing
sonar_result = -1;
_sonar_stop();
return true;
}
/** Handle pin change interrupt (returns true if consumed) */
inline bool sonar_handle_pci()
{
if (!sonar_busy)
{
return false; // nothing
}
if (bit_is_high_p(_so->pin, _so->nrx))
{
// rx is high, not our pin change event
return false;
}
uint64_t x = TCNT1;
x /= _SNR_DIV_CONST;
x *= 100000000L;
x /= F_CPU;
sonar_result = (int16_t) x;
// no obstacle
if (sonar_result > _SNR_MAX_DIST) sonar_result = -1;
_sonar_stop();
return true;
}

@ -0,0 +1,67 @@
#pragma once
//
// Utilities for working with the HC-SR04 ultrasonic sensor
// Can be easily modified to work with other similar modules
//
// It's required that you call the sonar_handle_* functions from your ISRs
// See example program for more info.
//
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
// Calib constant for the module
// CM = uS / _DIV_CONST
#define _SNR_DIV_CONST 58
// Max module distance in MM
#define _SNR_MAX_DIST 4000
// Trigger time in uS
#define _SNR_TRIG_TIME 10
// Sonar data object
typedef struct
{
PORT_P port; // Tx PORT
uint8_t ntx; // Tx bit number
PORT_P pin; // Rx PIN
uint8_t nrx; // Rx bit number
uint8_t bank; // Rx PCINT bank
} sonar_t;
extern volatile bool sonar_busy;
extern volatile int16_t sonar_result;
// Create a Sonar port
// Args: sonar_t* so, Trig pin, Echo pin
#define sonar_init(so, trig, echo) do { \
as_output(trig); \
as_input_pu(echo); \
_sonar_init_do(so, &_port(trig), _pn(trig), &_pin(echo), _pn(echo)); \
} while(0)
// private, in header because of the macro.
void _sonar_init_do(sonar_t* so, PORT_P port, uint8_t ntx, PORT_P pin, uint8_t nrx);
/**
* Start sonar measurement
* Interrupts must be enabled
* TIMER 1 will be used for the async measurement
*/
bool sonar_start(sonar_t* so);
/** Handle TIMER1_OVF (returns true if consumed) */
bool sonar_handle_t1ovf();
/** Handle pin change interrupt (returns true if consumed) */
bool sonar_handle_pci();

@ -0,0 +1,35 @@
#include <avr/io.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "spi.h"
bool spi_inited = false;
/** Init SPI (for SD card communication) */
void spi_init()
{
if (spi_inited) return;
spi_inited = true;
// Pin configuration
as_output(PIN_SS);
as_output(PIN_MOSI);
as_output(PIN_SCK);
as_input_pu(PIN_MISO);
// Enable SPI, master, clock = F_CPU/128
SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0) | _BV(SPR1);
}
/** Write a byte to SPI. Returns received byte. */
uint8_t spi_write(uint8_t b)
{
SPDR = b;
while (!(SPSR & _BV(SPIF)));
return SPDR;
}

@ -0,0 +1,30 @@
#pragma once
#include <stdint.h>
#include "iopins.h"
#define PIN_MISO 12
#define PIN_MOSI 11
#define PIN_SCK 13
#define PIN_SS 10
/** Set SS to active state (LOW) */
#define spi_ss_enable() pin_low(PIN_SS)
/** Set SS to disabled state (HIGH) */
#define spi_ss_disable() pin_high(PIN_SS)
/** Init SPI (for SD card communication) */
void spi_init();
/**
* Write / read a byte to SPI.
*
* @param ch the written byte
* @return received byte
*/
uint8_t spi_write(uint8_t b);

@ -0,0 +1,246 @@
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include "stream.h"
#include "calc.h"
static char tmpstr[16]; // buffer for number rendering
void put_bytes(const STREAM *p, const uint8_t* str, const uint16_t len)
{
for (uint16_t i = 0; i < len; i++)
{
p->tx(str[i]);
}
}
void put_str(const STREAM *p, const char *str)
{
char c;
while ((c = *str++))
{
p->tx(c);
}
}
void put_str_P(const STREAM *p, const char* str)
{
char c;
while ((c = pgm_read_byte(str++)))
{
p->tx(c);
}
}
static void _putnf(const STREAM *p, const uint8_t places);
void put_c(const STREAM *p, const uint8_t c)
{
p->tx(c);
}
/** Send signed int8 */
void put_u8(const STREAM *p, const uint8_t num)
{
utoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned int8 */
void put_i8(const STREAM *p, const int8_t num)
{
itoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned int */
void put_u16(const STREAM *p, const uint16_t num)
{
utoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send signed int */
void put_i16(const STREAM *p, const int16_t num)
{
itoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned long */
void put_u32(const STREAM *p, const uint32_t num)
{
ultoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send signed long */
void put_i32(const STREAM *p, const int32_t num)
{
ltoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Print number as hex */
void _print_hex(const STREAM *p, uint8_t* start, uint8_t bytes)
{
for (; bytes > 0; bytes--)
{
uint8_t b = *(start + bytes - 1);
for (uint8_t j = 0; j < 2; j++)
{
uint8_t x = high_nibble(b);
b = b << 4;
if (x < 0xA)
{
p->tx('0' + x);
}
else
{
p->tx('A' + (x - 0xA));
}
}
}
}
/** Send unsigned int8 */
void put_x8(const STREAM *p, const uint8_t num)
{
_print_hex(p, (uint8_t*) &num, 1);
}
/** Send int as hex */
void put_x16(const STREAM *p, const uint16_t num)
{
_print_hex(p, (uint8_t*) &num, 2);
}
/** Send long as hex */
void put_x32(const STREAM *p, const uint32_t num)
{
_print_hex(p, (uint8_t*) &num, 4);
}
/** Send long long as hex */
void put_x64(const STREAM *p, const uint64_t num)
{
_print_hex(p, (uint8_t*) &num, 8);
}
// float variant doesn't make sense for 8-bit int
/** Send unsigned int as float */
void put_u16f(const STREAM *p, const uint16_t num, const uint8_t places)
{
utoa(num, tmpstr, 10);
_putnf(p, places);
}
/** Send signed int as float */
void put_i16f(const STREAM *p, const int16_t num, const uint8_t places)
{
if (num < 0)
{
p->tx('-');
itoa(-num, tmpstr, 10);
}
else
{
itoa(num, tmpstr, 10);
}
_putnf(p, places);
}
/** Send unsigned long as float */
void put_u32f(const STREAM *p, const uint32_t num, const uint8_t places)
{
ultoa(num, tmpstr, 10);
_putnf(p, places);
}
/** Send signed long as float */
void put_i32f(const STREAM *p, const int32_t num, const uint8_t places)
{
if (num < 0)
{
p->tx('-');
ltoa(-num, tmpstr, 10);
}
else
{
ltoa(num, tmpstr, 10);
}
_putnf(p, places);
}
/** Print number in tmp string as float with given decimal point position */
void _putnf(const STREAM *p, const uint8_t places)
{
// measure text length
uint8_t len = 0;
while (tmpstr[len] != 0) len++;
int8_t at = len - places;
// print virtual zeros
if (at <= 0)
{
p->tx('0');
p->tx('.');
while (at <= -1)
{
p->tx('0');
at++;
}
at = -1;
}
// print the number
uint8_t i = 0;
while (i < len)
{
if (at-- == 0)
{
p->tx('.');
}
p->tx(tmpstr[i++]);
}
}
/** Print CR LF */
void put_nl(const STREAM *p)
{
p->tx(13);
p->tx(10);
}

@ -0,0 +1,106 @@
#pragma once
//
// Streams -- in this library -- are instances of type STREAM.
//
// A stream can be used for receiving and sending bytes, generally
// it's a pipe to a device.
//
// They are designed for printing numbers and strings, but can
// also be used for general data transfer.
//
// Examples of streams:
// "uart.h" -> declares global variable "uart" which is a pointer to the UART stream
// "lcd.h" -> declares a global variable "lcd" (pointer to LCD scho stream)
//
// Streams help avoid code duplication, since the same functions can be used
// to format and print data to different device types.
//
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <avr/pgmspace.h>
/** Stream structure */
typedef struct
{
void (*tx)(uint8_t b);
uint8_t (*rx)(void);
} STREAM;
/** Send bytes to stream */
void put_bytes(const STREAM *p, const uint8_t* str, uint16_t len);
/** Print string into a stream */
void put_str(const STREAM *p, const char *str);
/** Print a programspace string into a stream */
void put_str_P(const STREAM *p, const char* str);
/** Put a char/byte. Basically the same as p->tx() */
void put_c(const STREAM *p, uint8_t c);
/** Send signed int8 */
void put_u8(const STREAM *p, uint8_t num);
/** Send unsigned int8 */
void put_i8(const STREAM *p, int8_t num);
/** Send unsigned int */
void put_u16(const STREAM *p, uint16_t num);
/** Send signed int */
void put_i16(const STREAM *p, int16_t num);
/** Send unsigned long */
void put_u32(const STREAM *p, uint32_t num);
/** Send signed long */
void put_i32(const STREAM *p, int32_t num);
/** Send unsigned int8 */
void put_x8(const STREAM *p, uint8_t num);
/** Send int as hex */
void put_x16(const STREAM *p, uint16_t num);
/** Send long as hex */
void put_x32(const STREAM *p, uint32_t num);
/** Send long long as hex */
void put_x64(const STREAM *p, uint64_t num);
// float variant doesn't make sense for 8-bit int
/** Send unsigned int as float */
void put_u16f(const STREAM *p, uint16_t num, uint8_t places);
/** Send signed int as float */
void put_i16f(const STREAM *p, int16_t num, uint8_t places);
/** Send unsigned long as float */
void put_u32f(const STREAM *p, uint32_t num, uint8_t places);
/** Send signed long as float */
void put_i32f(const STREAM *p, int32_t num, uint8_t places);
/** Print CR LF */
void put_nl(const STREAM *p);

@ -0,0 +1,714 @@
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "calc.h"
#include "uart.h"
#include "stream.h"
// Shared stream instance
static STREAM _uart_singleton;
STREAM* uart = &_uart_singleton;
void _uart_init_do(uint16_t ubrr)
{
/*Set baud rate */
UBRR0H = (uint8_t)(ubrr >> 8);
UBRR0L = (uint8_t) ubrr;
// Enable Rx and Tx
UCSR0B = (1 << RXEN0) | (1 << TXEN0);
// 8-bit data, 1 stop bit
UCSR0C = (0b11 << UCSZ00);
_uart_singleton.tx = &uart_tx;
_uart_singleton.rx = &uart_rx;
}
/** Enable or disable RX ISR */
void uart_isr_rx(bool yes)
{
set_bit(UCSR0B, RXCIE0, yes);
}
/** Enable or disable TX ISR (1 byte is sent) */
void uart_isr_tx(bool yes)
{
set_bit(UCSR0B, TXCIE0, yes);
}
/** Enable or disable DRE ISR (all is sent) */
void uart_isr_dre(bool yes)
{
set_bit(UCSR0B, UDRIE0, yes);
}
/** Send byte over UART */
void uart_tx(uint8_t data)
{
// Wait for transmit buffer
while (!uart_tx_ready());
// send it
UDR0 = data;
}
/** Receive one byte over UART */
uint8_t uart_rx()
{
// Wait for data to be received
while (!uart_rx_ready());
// Get and return received data from buffer
return UDR0;
}
/** Send string over UART */
void uart_puts(const char* str)
{
while (*str)
{
uart_tx(*str++);
}
}
/** Send progmem string over UART */
void uart_puts_P(const char* str)
{
char c;
while ((c = pgm_read_byte(str++)))
{
uart_tx(c);
}
}
/** Clear receive buffer */
void uart_flush()
{
uint8_t dummy;
while (bit_is_high(UCSR0A, RXC0))
{
dummy = UDR0;
}
}
// ------------- VT100 extension --------------
void _vt_apply_style();
void _vt_reset_attribs_do();
void _vt_style_do();
void _vt_color_do();
void vt_goto(uint8_t x, uint8_t y)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, y + 1); // one-based !
uart_tx(';');
put_u8(uart, x + 1);
uart_tx('H');
}
void vt_goto_x(uint8_t x)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, x + 1);
uart_tx('`');
}
void vt_goto_y(uint8_t y)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, y + 1);
uart_tx('d');
}
void vt_move(int8_t x, int8_t y)
{
vt_move_x(x);
vt_move_y(y);
}
void vt_move_x(int8_t x)
{
if (x < 0)
{
vt_left(-x);
}
else
{
vt_right(x);
}
}
void vt_move_y(int8_t y)
{
if (y < 0)
{
vt_up(-y);
}
else
{
vt_down(y);
}
}
void vt_up(uint8_t y)
{
if (y == 0) return;
uart_tx(27);
uart_tx('[');
put_u8(uart, y);
uart_tx('A');
}
void vt_down(uint8_t y)
{
if (y == 0) return;
uart_tx(27);
uart_tx('[');
put_u8(uart, y);
uart_tx('B');
}
void vt_left(uint8_t x)
{
if (x == 0) return;
uart_tx(27);
uart_tx('[');
put_u8(uart, x);
uart_tx('D');
}
void vt_right(uint8_t x)
{
if (x == 0) return;
uart_tx(27);
uart_tx('[');
put_u8(uart, x);
uart_tx('C');
}
void vt_scroll(int8_t y)
{
while (y < 0)
{
uart_tx(27);
uart_tx('D'); // up
y++;
}
while (y > 0)
{
uart_tx(27);
uart_tx('M'); // down
y--;
}
}
void vt_scroll_set(uint8_t from, uint8_t to)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, from);
uart_tx(';');
put_u8(uart, to);
uart_tx('r');
}
void vt_scroll_reset()
{
uart_tx(27);
uart_tx('[');
uart_tx('r');
}
typedef struct
{
uint8_t flags;
uint8_t fg;
uint8_t bg;
} vt_style_t;
vt_style_t saved_style;
vt_style_t current_style;
void vt_save()
{
uart_puts_P(PSTR("\x1B[s"));
saved_style = current_style;
}
void vt_restore()
{
uart_puts_P(PSTR("\x1B[u"));
current_style = saved_style;
}
/** Disable all text attributes (excluding color) */
void vt_attr_reset()
{
current_style.flags = 0;
_vt_reset_attribs_do();
_vt_apply_style();
}
/** Set color to white on black */
void vt_color_reset()
{
current_style.fg = VT_WHITE;
current_style.bg = VT_BLACK;
_vt_color_do();
}
/** Enable or disable a text attribute */
void vt_attr(uint8_t attribute, bool on)
{
// flags are powers of two
// so this can handle multiple OR'd flags
for (uint8_t c = 1; c <= VT_FAINT; c *= 2)
{
if (attribute & c)
{
if (on)
{
current_style.flags |= c;
}
else
{
current_style.flags &= ~c;
}
}
}
_vt_apply_style();
}
/** Send style and color commands */
void _vt_apply_style()
{
_vt_reset_attribs_do();
_vt_style_do();
_vt_color_do();
}
/** Set color 0..7 */
void vt_color(uint8_t fg, uint8_t bg)
{
current_style.fg = fg;
current_style.bg = bg;
_vt_color_do();
}
/** Set FG color 0..7 */
void vt_color_fg(uint8_t fg)
{
current_style.fg = fg;
_vt_color_do();
}
/** Set BG color 0..7 */
void vt_color_bg(uint8_t bg)
{
current_style.bg = bg;
_vt_color_do();
}
/** Send reset command */
inline void _vt_reset_attribs_do()
{
uart_puts_P(PSTR("\x1B[m")); // reset
}
/** Send commands for text attribs */
void _vt_style_do()
{
if (current_style.flags & VT_BOLD)
{
uart_puts_P(PSTR("\x1B[1m"));
}
if (current_style.flags & VT_FAINT)
{
uart_puts_P(PSTR("\x1B[2m"));
}
if (current_style.flags & VT_ITALIC)
{
uart_puts_P(PSTR("\x1B[3m"));
}
if (current_style.flags & VT_UNDERLINE)
{
uart_puts_P(PSTR("\x1B[4m"));
}
if (current_style.flags & VT_BLINK)
{
uart_puts_P(PSTR("\x1B[5m"));
}
if (current_style.flags & VT_REVERSE)
{
uart_puts_P(PSTR("\x1B[7m"));
}
}
/** Send commands for xolor */
void _vt_color_do()
{
uart_tx(27);
uart_tx('[');
put_u8(uart, 30 + current_style.fg);
uart_tx(';');
put_u8(uart, 40 + current_style.bg);
uart_tx('m');
}
/** Insert blank lines febore the current line */
void vt_insert_lines(uint8_t count)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, count);
uart_tx('L');
}
/** Delete lines from the current line down */
void vt_delete_lines(uint8_t count)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, count);
uart_tx('M');
}
/** Insert empty characters at cursor */
void vt_insert_chars(uint8_t count)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, count);
uart_tx('@');
}
/** Delete characters at cursor */
void vt_delete_chars(uint8_t count)
{
uart_tx(27);
uart_tx('[');
put_u8(uart, count);
uart_tx('P');
}
void vt_clear()
{
uart_puts_P(PSTR("\x1B[2J"));
}
void vt_erase_forth()
{
uart_puts_P(PSTR("\x1B[K"));
}
void vt_erase_back()
{
uart_puts_P(PSTR("\x1B[1K"));
}
void vt_erase_line()
{
uart_puts_P(PSTR("\x1B[2K"));
}
void vt_erase_above()
{
uart_puts_P(PSTR("\x1B[1J"));
}
void vt_erase_below()
{
uart_puts_P(PSTR("\x1B[J"));
}
void vt_home()
{
uart_puts_P(PSTR("\x1B[H"));
}
/** Initialize helper variables */
void vt_init()
{
vt_reset();
}
/** Reset state and clear screen */
void vt_reset()
{
// reset color and attributes
vt_color_reset();
vt_attr_reset();
vt_scroll_reset();
// clear screen
vt_clear();
// go to top left
vt_home();
// overwrite saved state
vt_save();
}
// Assigned keyhandler
void (*_vt_kh)(uint8_t, bool) = NULL;
/** Assign a key handler (later used with vt_handle_key) */
void vt_set_key_handler(void (*handler)(uint8_t, bool))
{
_vt_kh = handler;
}
// state machine states
typedef enum
{
GROUND = 0,
ESC = 1,
BR = 2,
O = 3,
WAITING_TILDE = 4
} KSTATE;
// code received before started to wait for a tilde
uint8_t _before_wtilde;
// current state
KSTATE _kstate = GROUND;
void _vt_kh_abort()
{
switch (_kstate)
{
case ESC:
_vt_kh(VK_ESC, true);
break;
case BR:
_vt_kh(VK_ESC, true);
_vt_kh('[', false);
break;
case O:
_vt_kh(VK_ESC, true);
_vt_kh('O', false);
break;
case WAITING_TILDE:
_vt_kh(VK_ESC, true);
_vt_kh('[', false);
vt_handle_key(_before_wtilde);
break;
case GROUND:
// nop
break;
}
_kstate = GROUND;
}
/**
* Handle a key received over UART
* Takes care of multi-byte keys and translates them to special
* constants.
*/
void vt_handle_key(uint8_t c)
{
if (_vt_kh == NULL) return;
switch (_kstate)
{
case GROUND:
switch (c)
{
case 27:
_kstate = ESC;
break;
case VK_ENTER:
case VK_TAB:
case VK_BACKSPACE:
_vt_kh(c, true);
return;
default:
_vt_kh(c, false);
return;
}
break; // continue to next char
case ESC:
switch (c)
{
case '[':
_kstate = BR;
break; // continue to next char
case 'O':
_kstate = O;
break; // continue to next char
default:
// bad code
_vt_kh_abort();
vt_handle_key(c);
return;
}
break;
case BR:
switch (c)
{
// arrows
case 65:
case 66:
case 67:
case 68:
_vt_kh(c, true);
_kstate = GROUND;
return;
// ins del pgup pgdn
case 50:
case 51:
case 53:
case 54:
// wait for terminating tilde
_before_wtilde = c;
_kstate = WAITING_TILDE;
break; // continue to next char
// bad key
default:
_vt_kh_abort();
vt_handle_key(c);
return;
}
break;
case O:
switch (c)
{
// F keys
case 80:
case 81:
case 82:
case 83:
// home, end
case 72:
case 70:
_vt_kh(c, true);
_kstate = GROUND;
return;
// bad key
default:
_vt_kh_abort();
vt_handle_key(c);
return;
}
case WAITING_TILDE:
if (c != '~')
{
_vt_kh_abort();
vt_handle_key(c);
return;
}
else
{
_vt_kh(_before_wtilde, true);
_kstate = GROUND;
return;
}
}
// wait for next key
if (_kstate != GROUND)
{
_delay_ms(2);
if (!uart_rx_ready())
{
// abort receiving
_vt_kh_abort();
}
else
{
vt_handle_key(uart_rx());
}
}
}

@ -0,0 +1,253 @@
#pragma once
//
// Utilities for UART communication.
//
// First, init uart with desired baud rate using uart_init(baud).
// Then enable interrupts you want with uart_isr_XXX().
//
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdbool.h>
#include <stdint.h>
#include "stream.h"
// Shared UART stream object
// Can be used with functions from stream.h once UART is initialized
extern STREAM* uart;
/** Init UART for given baudrate */
void _uart_init_do(uint16_t ubrr); // internal, needed for the macro.
#define uart_init(baud) _uart_init_do(F_CPU / 16 / (baud) - 1)
/** Check if there's a byte in the RX register */
#define uart_rx_ready() (0 != (UCSR0A & (1 << RXC0)))
/** Check if transmission of everything is done */
#define uart_tx_ready() (0 != (UCSR0A & (1 << UDRE0)))
// Enable UART interrupts
/** Enable or disable RX ISR */
void uart_isr_rx(bool enable);
/** Enable or disable TX ISR (1 byte is sent) */
void uart_isr_tx(bool enable);
/** Enable or disable DRE ISR (all is sent) */
void uart_isr_dre(bool enable);
// Basic IO
/** Receive one byte over UART */
uint8_t uart_rx();
/** Send byte over UART */
#define uart_putc(data) uart_tx((data))
void uart_tx(uint8_t data);
/** Clear receive buffer */
void uart_flush();
// Strings
/** Send string over UART */
void uart_puts(const char* str);
/** Send progmem string over UART */
void uart_puts_P(const char* str);
//
// ANSI / VT100 utilities for UART
//
// To use this, first call uart_init(baud) and vt_init()
// To print stuff on the screen, use uart_puts() etc from uart.h
//
// INIT
/** Initialize helper variables */
void vt_init();
/** Reset state and clear screen */
void vt_reset();
// CURSOR MOVE
/** Move cursor to top left corner */
void vt_home();
/** Jump to a location on the screen */
void vt_goto(uint8_t x, uint8_t y);
/** Jump to given X, keep Y */
void vt_goto_x(uint8_t x);
/** Jump to given Y, keep X */
void vt_goto_y(uint8_t y);
/** Move cursor relative to current location */
void vt_move(int8_t x, int8_t y);
/** Move cursor horizontally */
void vt_move_x(int8_t x);
/** Move cursor vertically */
void vt_move_y(int8_t y);
/** Move cursor up y cells */
void vt_up(uint8_t y);
/** Move cursor down y cells */
void vt_down(uint8_t y);
/** Move cursor left x cells */
void vt_left(uint8_t x);
/** Move cursor right x cells */
void vt_right(uint8_t x);
// SCROLLING
/** Scroll y lines down (like up/down, but moves window if needed) */
void vt_scroll(int8_t down);
/** Set scrolling region (lines) */
void vt_scroll_set(uint8_t from, uint8_t to);
/** Sets scrolling region to the entire screen. */
void vt_scroll_reset();
// COLOR
#define VT_BLACK 0
#define VT_RED 1
#define VT_GREEN 2
#define VT_YELLOW 3
#define VT_BLUE 4
#define VT_MAGENTA 5
#define VT_CYAN 6
#define VT_WHITE 7
/** Set color 0..7 */
void vt_color(uint8_t fg, uint8_t bg);
/** Set FG color 0..7 */
void vt_color_fg(uint8_t fg);
/** Set BG color 0..7 */
void vt_color_bg(uint8_t bg);
/** Set color to white on black */
void vt_color_reset();
// STYLES
#define VT_BOLD 1
#define VT_UNDERLINE 2
#define VT_BLINK 4
#define VT_REVERSE 8
#define VT_ITALIC 16
#define VT_FAINT 32
/** Enable or disable a text attribute */
void vt_attr(uint8_t attribute, bool on);
/** Disable all text attributes (excluding color) */
void vt_attr_reset();
// SAVE & RESTORE
/** Save cursor position & text attributes */
void vt_save();
/** Restore cursor to saved values */
void vt_restore();
// MODIFY
/** Insert blank lines febore the current line */
void vt_insert_lines(uint8_t count);
/** Delete lines from the current line down */
void vt_delete_lines(uint8_t count);
/** Insert empty characters at cursor */
void vt_insert_chars(uint8_t count);
/** Delete characters at cursor */
void vt_delete_chars(uint8_t count);
// ERASING
/** Clear the screen */
void vt_clear();
/** Erase to the end of line */
void vt_erase_forth();
/** Erase line to cursor */
void vt_erase_back();
/** Erase entire line */
void vt_erase_line();
/** Erase screen below the line */
void vt_erase_above();
/** Erase screen above the line */
void vt_erase_below();
// KEY HANDLER
// Special keys from key handler
#define VK_LEFT 68
#define VK_RIGHT 67
#define VK_UP 65
#define VK_DOWN 66
#define VK_DELETE 51
#define VK_INSERT 50
#define VK_PGUP 53
#define VK_PGDN 54
#define VK_HOME 72
#define VK_END 70
#define VK_F1 80
#define VK_F2 81
#define VK_F3 82
#define VK_F4 83
#define VK_BACKSPACE 8
#define VK_TAB 9
#define VK_ENTER 13
#define VK_ESC 27
void vt_handle_key(uint8_t c);
void vt_set_key_handler(void (*handler)(uint8_t, bool));

@ -0,0 +1,139 @@
#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>
#include "iopins.h"
#include "nsdelay.h"
#include "wsrgb.h"
#include "color.h"
#include "ws_config.h"
/* Driver code for WS2812B */
void ws_init()
{
as_output(WS_PIN);
}
/** Wait long enough for the colors to show */
void ws_show()
{
delay_ns_c(WS_T_LATCH, 0);
}
/** Send one byte to the RGB strip */
void ws_send_byte(const uint8_t bb)
{
for (volatile int8_t i = 7; i >= 0; --i)
{
if ((bb) & (1 << i))
{
pin_high(WS_PIN);
delay_ns_c(WS_T_1H, -2);
pin_low(WS_PIN);
delay_ns_c(WS_T_1L, -10);
}
else
{
pin_high(WS_PIN);
delay_ns_c(WS_T_0H, -2);
pin_low(WS_PIN);
delay_ns_c(WS_T_0L, -10);
}
}
}
/** Send R,G,B color to the strip */
void ws_send_rgb(const uint8_t r, const uint8_t g, const uint8_t b)
{
ws_send_byte(g);
ws_send_byte(r);
ws_send_byte(b);
}
/** Send a RGB struct */
void ws_send_xrgb(xrgb_t xrgb)
{
ws_send_byte(xrgb.g);
ws_send_byte(xrgb.r);
ws_send_byte(xrgb.b);
}
/** Send color hex */
void ws_send_rgb24(rgb24_t rgb)
{
ws_send_byte(rgb24_g(rgb));
ws_send_byte(rgb24_r(rgb));
ws_send_byte(rgb24_b(rgb));
}
/** Send array of colors */
void ws_send_xrgb_array(const xrgb_t rgbs[], const uint8_t length)
{
for (uint8_t i = 0; i < length; i++)
{
const xrgb_t c = rgbs[i];
ws_send_byte(c.g);
ws_send_byte(c.r);
ws_send_byte(c.b);
}
}
/** Send array of colors */
void ws_send_rgb24_array(const rgb24_t rgbs[], const uint8_t length)
{
for (uint8_t i = 0; i < length; i++)
{
const rgb24_t c = rgbs[i];
ws_send_byte(rgb24_g(c));
ws_send_byte(rgb24_r(c));
ws_send_byte(rgb24_b(c));
}
}
//#define ws_send_rgb24_array(rgbs, length) __ws_send_array_proto((rgbs), (length), rgb24)
// prototype for sending array. it's ugly, sorry.
/*#define __ws_send_array_proto(rgbs, length, style) { \
for (uint8_t __rgb_sap_i = 0; __rgb_sap_i < length; __rgb_sap_i++) { \
style ## _t __rgb_sap2 = (rgbs)[__rgb_sap_i]; \
ws_send_ ## style(__rgb_sap2); \
} \
}*/
// /** Send a 2D array to a zig-zag display */
// #define ws_send_xrgb_array_zigzag(rgbs, width, height) { \
// int8_t __rgb_sxaz_y, __rgb_sxaz_x; \
// for(__rgb_sxaz_y = 0; __rgb_sxaz_y < (height); __rgb_sxaz_y ++) { \
// for(__rgb_sxaz_x = 0; __rgb_sxaz_x < (width); __rgb_sxaz_x++) { \
// ws_send_xrgb((rgbs)[__rgb_sxaz_y][__rgb_sxaz_x]); \
// } \
// __rgb_sxaz_y++; \
// for(__rgb_sxaz_x = (width) - 1; __rgb_sxaz_x >= 0; __rgb_sxaz_x--) { \
// ws_send_xrgb((rgbs)[__rgb_sxaz_y][__rgb_sxaz_x]); \
// } \
// } \
// }
// /* Send a linear array to a zig-zag display as a n*m board (row-by-row)
// #define ws_send_xrgb_array_zigzag_linear(rgbs, width, height) { \
// int8_t __rgb_sxazl_x, __rgb_sxazl_y; \
// for(__rgb_sxazl_y = 0; __rgb_sxazl_y < (height); __rgb_sxazl_y++) { \
// for(__rgb_sxazl_x = 0; __rgb_sxazl_x < (width); __rgb_sxazl_x++) { \
// ws_send_xrgb((rgbs)[__rgb_sxazl_y * (width) + __rgb_sxazl_x]); \
// } \
// __rgb_sxazl_y++; \
// for(__rgb_sxazl_x = width-1; __rgb_sxazl_x >=0; __rgb_sxazl_x--) { \
// ws_send_xrgb((rgbs)[__rgb_sxazl_y * (width) + __rgb_sxazl_x]); \
// } \
// } \
// }

@ -0,0 +1,53 @@
#pragma once
//
// Utils for driving a WS2812 RGB LED strips, and color manipulation in general.
//
// Timing is critical!
//
// Create a config file rgb_config.h next to your main.c
//
#include <stdint.h>
#include "iopins.h"
#include "color.h"
// Your config file
#include "ws_config.h"
/*
#define WS_T_1H 700
#define WS_T_1L 150
#define WS_T_0H 150
#define WS_T_0L 700
#define WS_T_LATCH 7000
#define WS_PIN 2
*/
// --- functions for RGB strips ---
/** Initialize OI */
void ws_init();
/** Wait long enough for the colors to show */
void ws_show();
/** Send one byte to the RGB strip */
void ws_send_byte(const uint8_t bb);
/** Send R,G,B color to the strip */
void ws_send_rgb(const uint8_t r, const uint8_t g, const uint8_t b);
/** Send a RGB struct */
void ws_send_xrgb(xrgb_t xrgb);
/** Send color hex */
void ws_send_rgb24(rgb24_t rgb);
/** Send array of colors */
void ws_send_xrgb_array(const xrgb_t rgbs[], const uint8_t length);
/** Send array of colors */
void ws_send_rgb24_array(const rgb24_t rgbs[], const uint8_t length);

@ -1,26 +1,68 @@
#include "twi.h"
#include "ssd1306.h"
#include "sevenseg.h"
#include "adc.h"
#include "iopins.h"
#include <avr/interrupt.h>
void main() {
TWI_Init();
const uint16_t adc_target16_acceptable = 900;
const uint16_t adc_target16 = 972;
//const uint8_t adc_target8 = 243;
static bool g_pwm_on = false;
ssd1306_128x32_i2c_init();
// ssd1306_128x64_spi_init(-1, 0, 1); // Use this line for nano pi (RST not used, 0=CE, gpio1=D/C)
// ssd1306_128x64_spi_init(3,4,5); // Use this line for Atmega328p (3=RST, 4=CE, 5=D/C)
// ssd1306_128x64_spi_init(24, 0, 23); // Use this line for Raspberry (gpio24=RST, 0=CE, gpio23=D/C)
// ssd1306_128x64_spi_init(22, 5, 21); // Use this line for ESP32 (VSPI) (gpio22=RST, gpio5=CE for VSPI, gpio21=D/C)
// composite_video_128x64_mono_init(); // Use this line for ESP32 with Composite video support
static volatile uint16_t tick_counter = 0;
static volatile bool tick_counter_changed = false;
ssd1306_clearScreen();
// Tick
ISR(INT0_vect)
{
tick_counter++;
tick_counter_changed = true;
}
static void init_isr() {
as_input(D2);
// using INT0 - arduino pin D2
EICRA = _BV(ISC01) | _BV(ISC00); // rising edge
EIMSK = _BV(INT0);
}
static void init_pwm_out() {
// Output is OC0A
as_output(D5);
//ssd1306_drawLine(0,0, ssd1306_displayWidth() -1, ssd1306_displayHeight() -1);
// initialize the timer
// Fast PWM mode, Output to OC0A
// clock is 16MHz, presc /64, counting to 80 -> freq 3125Hz
// Duty cycle = appx. 60%
OCR0A = 80;
OCR0B = 46;
TCCR0A = _BV(WGM00) | _BV(WGM01);
TCCR0B = _BV(CS01) | _BV(CS00) | _BV(WGM02);
}
static void pwm_on() {
TCCR0A |= _BV(COM0B1);
g_pwm_on = true;
}
static void pwm_off() {
TCCR0A &= ~_BV(COM0B1);
g_pwm_on = false;
}
void main() {
TWI_Init();
adc_init();
const uint8_t charw = 18;
const uint8_t spacing = 6;
const uint8_t barw=4;
init_pwm_out();
ssd1306_128x32_i2c_init();
ssd1306_clearScreen();
struct SevenSeg sseg = {
.x0 = 0,
@ -32,15 +74,57 @@ void main() {
.spacing = 4,
};
uint16_t i = 0;
uint16_t v;
uint16_t w;
int drawing = false;
init_isr();
sei();
// TODO show loading icon
sseg_number(&sseg, 0, 5, 0);
// request ADC meas
adc_async_start_measure_word(0);
// uint16_t cnt = 0;
uint16_t analog;
uint16_t count_boost_fail = 0;
for (;;) {
sseg_number(&sseg, i, 5, 1);
if (adc_async_ready()) {
analog = adc_async_get_result_word();
adc_async_start_measure_word(0);
bool good_voltage = analog >= adc_target16;
i++;
if (i == 9999) i = 0;
_delay_ms(100);
if (g_pwm_on) {
if (good_voltage) {
pwm_off();
count_boost_fail = 0;
} else {
count_boost_fail++;
}
}
else if (!good_voltage) {
pwm_on();
}
// If fail to reach target voltage in reasonable time,
// show weak battery icon and stop trying.
if (count_boost_fail > 50000 && analog < adc_target16_acceptable) {
// TODO weak battery icon
sseg_number(&sseg, 9999, 5, 0);
pwm_off();
for(;;) {}
}
// TODO synchronization?
if (tick_counter_changed) {
tick_counter_changed = false;
sseg_number(&sseg, tick_counter, 5, 0);
}
// if (++cnt > 10000) {
// sseg_number(&sseg, analog, 5, 0);
// cnt = 0;
// }
}
}
}

Loading…
Cancel
Save