SpriteHTTPD - embedded HTTP server with read-only filesystem and templating, originally developed for ESP8266, now stand-alone and POSIX compatible.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
spritehttpd/spritehttpd/src/utils/sha1.c

177 lines
5.0 KiB

/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
#include <stdint.h>
#include <string.h>
#include "sha1.h"
//according to http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf
// the cpu is normally defined as little ending, but can be big endian too.
// for the esp this seems to work
#if defined(__BYTE_ORDER__)&&(__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define SHA_BIG_ENDIAN
#endif
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void httpd_sha1_init(httpd_sha1nfo *s)
{
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->state[4] = 0xc3d2e1f0;
s->byteCount = 0;
s->bufferOffset = 0;
}
static uint32_t sha1_rol32(uint32_t number, uint8_t bits)
{
return ((number << bits) | (number >> (32 - bits)));
}
static void sha1_hashBlock(httpd_sha1nfo *s)
{
uint8_t i;
uint32_t a, b, c, d, e, t;
a = s->state[0];
b = s->state[1];
c = s->state[2];
d = s->state[3];
e = s->state[4];
for (i = 0; i < 80; i++) {
if (i >= 16) {
t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^ s->buffer[(i + 2) & 15] ^ s->buffer[i & 15];
s->buffer[i & 15] = sha1_rol32(t, 1);
}
if (i < 20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i < 40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i < 60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t += sha1_rol32(a, 5) + e + s->buffer[i & 15];
e = d;
d = c;
c = sha1_rol32(b, 30);
b = a;
a = t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
static void sha1_addUncounted(httpd_sha1nfo *s, uint8_t data)
{
uint8_t *const b = (uint8_t *) s->buffer;
#ifdef SHA_BIG_ENDIAN
b[s->bufferOffset] = data;
#else
b[s->bufferOffset ^ 3] = data;
#endif
s->bufferOffset++;
if (s->bufferOffset == BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void httpd_sha1_writebyte(httpd_sha1nfo *s, uint8_t data)
{
++s->byteCount;
sha1_addUncounted(s, data);
}
void httpd_sha1_write(httpd_sha1nfo *s, const char *data, size_t len)
{
for (; len--;) { httpd_sha1_writebyte(s, (uint8_t) *data++); }
}
static void sha1_pad(httpd_sha1nfo *s)
{
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56) { sha1_addUncounted(s, 0x00); }
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, (uint8_t)(s->byteCount >> 29)); // Shifting to multiply by 8
sha1_addUncounted(s, (uint8_t)(s->byteCount >> 21)); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, (uint8_t)(s->byteCount >> 13)); // byte.
sha1_addUncounted(s, (uint8_t)(s->byteCount >> 5));
sha1_addUncounted(s, (uint8_t)(s->byteCount << 3));
}
uint8_t *httpd_sha1_result(httpd_sha1nfo *s)
{
// Pad to complete the last block
sha1_pad(s);
#ifndef SHA_BIG_ENDIAN
// Swap byte order back
int i;
for (i = 0; i < 5; i++) {
s->state[i] =
(((s->state[i]) << 24) & 0xff000000)
| (((s->state[i]) << 8) & 0x00ff0000)
| (((s->state[i]) >> 8) & 0x0000ff00)
| (((s->state[i]) >> 24) & 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return (uint8_t *) s->state;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void httpd_sha1_initHmac(httpd_sha1nfo *s, const uint8_t *key, size_t keyLength)
{
uint8_t i;
memset(s->keyBuffer, 0, BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
httpd_sha1_init(s);
for (; keyLength--;) { httpd_sha1_writebyte(s, *key++); }
memcpy(s->keyBuffer, httpd_sha1_result(s), HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
httpd_sha1_init(s);
for (i = 0; i < BLOCK_LENGTH; i++) {
httpd_sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t *httpd_sha1_resultHmac(httpd_sha1nfo *s)
{
uint8_t i;
// Complete inner hash
memcpy(s->innerHash, httpd_sha1_result(s), HASH_LENGTH);
// Calculate outer hash
httpd_sha1_init(s);
for (i = 0; i < BLOCK_LENGTH; i++) { httpd_sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD); }
for (i = 0; i < HASH_LENGTH; i++) { httpd_sha1_writebyte(s, s->innerHash[i]); }
return httpd_sha1_result(s);
}