|
|
@ -29,6 +29,9 @@ |
|
|
|
* in-place array operations |
|
|
|
* in-place array operations |
|
|
|
* wide band support |
|
|
|
* wide band support |
|
|
|
* sanity checks |
|
|
|
* sanity checks |
|
|
|
|
|
|
|
* nicer FIR than square |
|
|
|
|
|
|
|
* (tried this, was twice as slow and did not sound much better) |
|
|
|
|
|
|
|
* scale squelch to other input parameters |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
#include <errno.h> |
|
|
|
#include <errno.h> |
|
|
@ -69,7 +72,8 @@ struct fm_state |
|
|
|
int pre_r; |
|
|
|
int pre_r; |
|
|
|
int pre_j; |
|
|
|
int pre_j; |
|
|
|
int prev_index; |
|
|
|
int prev_index; |
|
|
|
int downsample; /* min 4, max 256 */ |
|
|
|
int downsample; /* min 1, max 256 */ |
|
|
|
|
|
|
|
int post_downsample; |
|
|
|
int output_scale; |
|
|
|
int output_scale; |
|
|
|
int squelch_level; |
|
|
|
int squelch_level; |
|
|
|
int squelch_hits; |
|
|
|
int squelch_hits; |
|
|
@ -84,6 +88,10 @@ struct fm_state |
|
|
|
int freq_len; |
|
|
|
int freq_len; |
|
|
|
int freq_now; |
|
|
|
int freq_now; |
|
|
|
uint32_t sample_rate; |
|
|
|
uint32_t sample_rate; |
|
|
|
|
|
|
|
int fir_enable; |
|
|
|
|
|
|
|
int fir[256]; /* fir_len == downsample */ |
|
|
|
|
|
|
|
int fir_sum; |
|
|
|
|
|
|
|
int custom_atan; |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
void usage(void) |
|
|
|
void usage(void) |
|
|
@ -96,13 +104,17 @@ void usage(void) |
|
|
|
fprintf(stderr, |
|
|
|
fprintf(stderr, |
|
|
|
"rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n" |
|
|
|
"rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n" |
|
|
|
"Usage:\t -f frequency_to_tune_to [Hz]\n" |
|
|
|
"Usage:\t -f frequency_to_tune_to [Hz]\n" |
|
|
|
"\t (use multiple -f for scanning !!BROKEN!!)\n" |
|
|
|
"\t (use multiple -f for scanning)\n" |
|
|
|
"\t[-s samplerate (default: 24000 Hz)]\n" |
|
|
|
"\t[-s samplerate (default: 24000 Hz)]\n" |
|
|
|
"\t[-d device_index (default: 0)]\n" |
|
|
|
"\t[-d device_index (default: 0)]\n" |
|
|
|
"\t[-g tuner_gain (default: -1dB)]\n" |
|
|
|
"\t[-g tuner_gain (default: -1dB)]\n" |
|
|
|
"\t[-l squelch_level (default: 150)]\n" |
|
|
|
"\t[-l squelch_level (default: 150)]\n" |
|
|
|
"\t[-E freq sets lower edge (default: center)]\n" |
|
|
|
"\t[-E freq sets lower edge (default: center)]\n" |
|
|
|
"\tfilename (a '-' dumps samples to stdout)\n\n" |
|
|
|
"\tfilename (a '-' dumps samples to stdout)\n\n" |
|
|
|
|
|
|
|
"Experimental quality/cpu options:\n" |
|
|
|
|
|
|
|
"\t[-o oversampling (default: 1) !!BROKEN!!]\n" |
|
|
|
|
|
|
|
"\t[-F enables high quality FIR (default: off/square)]\n" |
|
|
|
|
|
|
|
"\t[-A enables high speed arctan (default: off)]\n\n" |
|
|
|
"Produces signed 16 bit ints, use Sox to hear them.\n" |
|
|
|
"Produces signed 16 bit ints, use Sox to hear them.\n" |
|
|
|
"\trtl_fm ... | play -t raw -r 24k -e signed-integer -b 16 -c 1 -V1 -\n\n"); |
|
|
|
"\trtl_fm ... | play -t raw -r 24k -e signed-integer -b 16 -c 1 -V1 -\n\n"); |
|
|
|
#endif |
|
|
|
#endif |
|
|
@ -152,8 +164,8 @@ void rotate_90(unsigned char *buf, uint32_t len) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len) |
|
|
|
void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len) |
|
|
|
{ |
|
|
|
|
|
|
|
/* simple square window FIR */ |
|
|
|
/* simple square window FIR */ |
|
|
|
|
|
|
|
{ |
|
|
|
int i=0, i2=0; |
|
|
|
int i=0, i2=0; |
|
|
|
while (i < (int)len) { |
|
|
|
while (i < (int)len) { |
|
|
|
fm->now_r += ((int)buf[i] - 128); |
|
|
|
fm->now_r += ((int)buf[i] - 128); |
|
|
@ -173,6 +185,63 @@ void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len) |
|
|
|
fm->signal_len = i2; |
|
|
|
fm->signal_len = i2; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void build_fir(struct fm_state *fm) |
|
|
|
|
|
|
|
/* for now, a simple triangle
|
|
|
|
|
|
|
|
* fancy FIRs are equally expensive, so use one */ |
|
|
|
|
|
|
|
/* point = sum(sample[i] * fir[i] * fir_len / fir_sum) */ |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i, len; |
|
|
|
|
|
|
|
len = fm->downsample; |
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
|
|
fm->fir[i] = i; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
for(i = len-1; i <= 0; i--) { |
|
|
|
|
|
|
|
fm->fir[i] = len - i; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fm->fir_sum = 0; |
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
|
|
fm->fir_sum += fm->fir[i]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void low_pass_fir(struct fm_state *fm, unsigned char *buf, uint32_t len) |
|
|
|
|
|
|
|
/* perform an arbitrary FIR, doubles CPU use */ |
|
|
|
|
|
|
|
// possibly bugged, or overflowing
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i=0, i2=0, i3=0; |
|
|
|
|
|
|
|
while (i < (int)len) { |
|
|
|
|
|
|
|
fm->prev_index++; |
|
|
|
|
|
|
|
i3 = fm->prev_index; |
|
|
|
|
|
|
|
fm->now_r += ((int)buf[i] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; |
|
|
|
|
|
|
|
fm->now_j += ((int)buf[i+1] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; |
|
|
|
|
|
|
|
i += 2; |
|
|
|
|
|
|
|
if (fm->prev_index < (fm->downsample)) { |
|
|
|
|
|
|
|
continue; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fm->signal[i2] = fm->now_r * fm->output_scale; |
|
|
|
|
|
|
|
fm->signal[i2+1] = fm->now_j * fm->output_scale; |
|
|
|
|
|
|
|
fm->prev_index = -1; |
|
|
|
|
|
|
|
fm->now_r = 0; |
|
|
|
|
|
|
|
fm->now_j = 0; |
|
|
|
|
|
|
|
i2 += 2; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fm->signal_len = i2; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int low_pass_simple(int16_t *signal2, int len, int step) |
|
|
|
|
|
|
|
// no wrap around, length must be multiple of step
|
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i, i2, sum; |
|
|
|
|
|
|
|
for(i=0; i < len; i+=step) { |
|
|
|
|
|
|
|
sum = 0; |
|
|
|
|
|
|
|
for(i2=0; i2<step; i2++) { |
|
|
|
|
|
|
|
sum += (int)signal2[i + i2]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
signal2[i] = (int16_t)(sum / step); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
return len / step; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* define our own complex math ops
|
|
|
|
/* define our own complex math ops
|
|
|
|
because ARMv5 has no hardware float */ |
|
|
|
because ARMv5 has no hardware float */ |
|
|
|
|
|
|
|
|
|
|
@ -182,10 +251,22 @@ void multiply(int ar, int aj, int br, int bj, int *cr, int *cj) |
|
|
|
*cj = aj*br + ar*bj; |
|
|
|
*cj = aj*br + ar*bj; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int polar_discriminant(int ar, int aj, int br, int bj) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int cr, cj; |
|
|
|
|
|
|
|
double angle; |
|
|
|
|
|
|
|
multiply(ar, aj, br, -bj, &cr, &cj); |
|
|
|
|
|
|
|
angle = atan2((double)cj, (double)cr); |
|
|
|
|
|
|
|
//if (angle > (3.14159) || angle < (-3.14159))
|
|
|
|
|
|
|
|
// {fprintf(stderr, "overflow %f\n", angle);}
|
|
|
|
|
|
|
|
return (int)(angle / 3.14159 * (1<<14)); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int fast_atan2(int y, int x) |
|
|
|
int fast_atan2(int y, int x) |
|
|
|
/* pre scaled for int16 */ |
|
|
|
/* pre scaled for int16 */ |
|
|
|
{ |
|
|
|
{ |
|
|
|
int yabs, angle, pi4=(1<<12); // note pi = 1<<14
|
|
|
|
int yabs, angle; |
|
|
|
|
|
|
|
int pi4=(1<<12), pi34=3*(1<<12); // note pi = 1<<14
|
|
|
|
if (x==0 && y==0) { |
|
|
|
if (x==0 && y==0) { |
|
|
|
return 0; |
|
|
|
return 0; |
|
|
|
} |
|
|
|
} |
|
|
@ -196,7 +277,7 @@ int fast_atan2(int y, int x) |
|
|
|
if (x >= 0) { |
|
|
|
if (x >= 0) { |
|
|
|
angle = pi4 - pi4 * (x-yabs) / (x+yabs); |
|
|
|
angle = pi4 - pi4 * (x-yabs) / (x+yabs); |
|
|
|
} else { |
|
|
|
} else { |
|
|
|
angle = 3*pi4 - pi4 * (x+yabs) / (yabs-x); |
|
|
|
angle = pi34 - pi4 * (x+yabs) / (yabs-x); |
|
|
|
} |
|
|
|
} |
|
|
|
if (y < 0) { |
|
|
|
if (y < 0) { |
|
|
|
return -angle; |
|
|
|
return -angle; |
|
|
@ -204,14 +285,11 @@ int fast_atan2(int y, int x) |
|
|
|
return angle; |
|
|
|
return angle; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int polar_discriminant(int ar, int aj, int br, int bj) |
|
|
|
int polar_disc_fast(int ar, int aj, int br, int bj) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int cr, cj; |
|
|
|
int cr, cj; |
|
|
|
double angle; |
|
|
|
|
|
|
|
multiply(ar, aj, br, -bj, &cr, &cj); |
|
|
|
multiply(ar, aj, br, -bj, &cr, &cj); |
|
|
|
angle = atan2((double)cj, (double)cr); |
|
|
|
return fast_atan2(cj, cr); |
|
|
|
return (int)(angle / 3.14159 * (1<<14)); |
|
|
|
|
|
|
|
//return fast_atan2(cj, cr);
|
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void fm_demod(struct fm_state *fm) |
|
|
|
void fm_demod(struct fm_state *fm) |
|
|
@ -221,8 +299,13 @@ void fm_demod(struct fm_state *fm) |
|
|
|
fm->pre_r, fm->pre_j); |
|
|
|
fm->pre_r, fm->pre_j); |
|
|
|
fm->signal2[0] = (int16_t)pcm; |
|
|
|
fm->signal2[0] = (int16_t)pcm; |
|
|
|
for (i = 2; i < (fm->signal_len); i += 2) { |
|
|
|
for (i = 2; i < (fm->signal_len); i += 2) { |
|
|
|
|
|
|
|
if (fm->custom_atan) { |
|
|
|
|
|
|
|
pcm = polar_disc_fast(fm->signal[i], fm->signal[i+1], |
|
|
|
|
|
|
|
fm->signal[i-2], fm->signal[i-1]); |
|
|
|
|
|
|
|
} else { |
|
|
|
pcm = polar_discriminant(fm->signal[i], fm->signal[i+1], |
|
|
|
pcm = polar_discriminant(fm->signal[i], fm->signal[i+1], |
|
|
|
fm->signal[i-2], fm->signal[i-1]); |
|
|
|
fm->signal[i-2], fm->signal[i-1]); |
|
|
|
|
|
|
|
} |
|
|
|
fm->signal2[i/2] = (int16_t)pcm; |
|
|
|
fm->signal2[i/2] = (int16_t)pcm; |
|
|
|
} |
|
|
|
} |
|
|
|
fm->pre_r = fm->signal[fm->signal_len - 2]; |
|
|
|
fm->pre_r = fm->signal[fm->signal_len - 2]; |
|
|
@ -281,13 +364,17 @@ static void optimal_settings(struct fm_state *fm, int freq, int hopping) |
|
|
|
r = rtlsdr_set_center_freq(dev, (uint32_t)capture_freq); |
|
|
|
r = rtlsdr_set_center_freq(dev, (uint32_t)capture_freq); |
|
|
|
if (hopping) { |
|
|
|
if (hopping) { |
|
|
|
return;} |
|
|
|
return;} |
|
|
|
fprintf(stderr, "Oversampling by: %ix.\n", fm->downsample); |
|
|
|
fprintf(stderr, "Oversampling input by: %ix.\n", fm->downsample); |
|
|
|
|
|
|
|
fprintf(stderr, "Oversampling output by: %ix.\n", fm->post_downsample); |
|
|
|
|
|
|
|
fprintf(stderr, "Buffer size: %0.2fms\n", |
|
|
|
|
|
|
|
1000 * 0.5 * (float)DEFAULT_BUF_LENGTH / (float)capture_rate); |
|
|
|
if (r < 0) { |
|
|
|
if (r < 0) { |
|
|
|
fprintf(stderr, "WARNING: Failed to set center freq.\n");} |
|
|
|
fprintf(stderr, "WARNING: Failed to set center freq.\n");} |
|
|
|
else { |
|
|
|
else { |
|
|
|
fprintf(stderr, "Tuned to %u Hz.\n", capture_freq);} |
|
|
|
fprintf(stderr, "Tuned to %u Hz.\n", capture_freq);} |
|
|
|
|
|
|
|
|
|
|
|
/* Set the sample rate */ |
|
|
|
/* Set the sample rate */ |
|
|
|
|
|
|
|
fprintf(stderr, "Sampling at %u Hz.\n", capture_rate); |
|
|
|
r = rtlsdr_set_sample_rate(dev, (uint32_t)capture_rate); |
|
|
|
r = rtlsdr_set_sample_rate(dev, (uint32_t)capture_rate); |
|
|
|
if (r < 0) { |
|
|
|
if (r < 0) { |
|
|
|
fprintf(stderr, "WARNING: Failed to set sample rate.\n");} |
|
|
|
fprintf(stderr, "WARNING: Failed to set sample rate.\n");} |
|
|
@ -298,9 +385,15 @@ void full_demod(unsigned char *buf, uint32_t len, struct fm_state *fm) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int sr, freq_next; |
|
|
|
int sr, freq_next; |
|
|
|
rotate_90(buf, len); |
|
|
|
rotate_90(buf, len); |
|
|
|
|
|
|
|
if (fm->fir_enable) { |
|
|
|
|
|
|
|
low_pass_fir(fm, buf, len); |
|
|
|
|
|
|
|
} else { |
|
|
|
low_pass(fm, buf, len); |
|
|
|
low_pass(fm, buf, len); |
|
|
|
|
|
|
|
} |
|
|
|
fm_demod(fm); |
|
|
|
fm_demod(fm); |
|
|
|
sr = post_squelch(fm); |
|
|
|
sr = post_squelch(fm); |
|
|
|
|
|
|
|
if (fm->post_downsample > 1) { |
|
|
|
|
|
|
|
fm->signal_len = low_pass_simple(fm->signal2, fm->signal_len, fm->post_downsample);} |
|
|
|
/* ignore under runs for now */ |
|
|
|
/* ignore under runs for now */ |
|
|
|
fwrite(fm->signal2, 2, fm->signal_len/2, fm->file); |
|
|
|
fwrite(fm->signal2, 2, fm->signal_len/2, fm->file); |
|
|
|
if (fm->freq_len > 1 && !sr && fm->squelch_hits > CONSEQ_SQUELCH) { |
|
|
|
if (fm->freq_len > 1 && !sr && fm->squelch_hits > CONSEQ_SQUELCH) { |
|
|
@ -362,9 +455,13 @@ int main(int argc, char **argv) |
|
|
|
fm.squelch_level = 150; |
|
|
|
fm.squelch_level = 150; |
|
|
|
fm.freq_len = 0; |
|
|
|
fm.freq_len = 0; |
|
|
|
fm.edge = 0; |
|
|
|
fm.edge = 0; |
|
|
|
|
|
|
|
fm.fir_enable = 0; |
|
|
|
|
|
|
|
fm.prev_index = -1; |
|
|
|
|
|
|
|
fm.post_downsample = 1; |
|
|
|
|
|
|
|
fm.custom_atan = 0; |
|
|
|
sem_init(&data_ready, 0, 0); |
|
|
|
sem_init(&data_ready, 0, 0); |
|
|
|
#ifndef _WIN32 |
|
|
|
#ifndef _WIN32 |
|
|
|
while ((opt = getopt(argc, argv, "d:f:g:s:b:l:E::")) != -1) { |
|
|
|
while ((opt = getopt(argc, argv, "d:f:g:s:b:l:o:EFA")) != -1) { |
|
|
|
switch (opt) { |
|
|
|
switch (opt) { |
|
|
|
case 'd': |
|
|
|
case 'd': |
|
|
|
dev_index = atoi(optarg); |
|
|
|
dev_index = atoi(optarg); |
|
|
@ -382,14 +479,25 @@ int main(int argc, char **argv) |
|
|
|
case 's': |
|
|
|
case 's': |
|
|
|
fm.sample_rate = (uint32_t)atof(optarg); |
|
|
|
fm.sample_rate = (uint32_t)atof(optarg); |
|
|
|
break; |
|
|
|
break; |
|
|
|
|
|
|
|
case 'o': |
|
|
|
|
|
|
|
fm.post_downsample = (int)atof(optarg); |
|
|
|
|
|
|
|
break; |
|
|
|
case 'E': |
|
|
|
case 'E': |
|
|
|
fm.edge = 1; |
|
|
|
fm.edge = 1; |
|
|
|
break; |
|
|
|
break; |
|
|
|
|
|
|
|
case 'F': |
|
|
|
|
|
|
|
fm.fir_enable = 1; |
|
|
|
|
|
|
|
break; |
|
|
|
|
|
|
|
case 'A': |
|
|
|
|
|
|
|
fm.custom_atan = 1; |
|
|
|
|
|
|
|
break; |
|
|
|
default: |
|
|
|
default: |
|
|
|
usage(); |
|
|
|
usage(); |
|
|
|
break; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* double sample_rate to limit to Δθ to ±π */ |
|
|
|
|
|
|
|
fm.sample_rate *= fm.post_downsample; |
|
|
|
|
|
|
|
|
|
|
|
if (argc <= optind) { |
|
|
|
if (argc <= optind) { |
|
|
|
usage(); |
|
|
|
usage(); |
|
|
@ -443,6 +551,7 @@ int main(int argc, char **argv) |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
optimal_settings(&fm, 0, 0); |
|
|
|
optimal_settings(&fm, 0, 0); |
|
|
|
|
|
|
|
build_fir(&fm); |
|
|
|
|
|
|
|
|
|
|
|
/* Set the tuner gain */ |
|
|
|
/* Set the tuner gain */ |
|
|
|
r = rtlsdr_set_tuner_gain(dev, gain); |
|
|
|
r = rtlsdr_set_tuner_gain(dev, gain); |
|
|
|