
Master Thesis

Czech

Technical

University

in Prague

F3 Faculty of Electrical Engineering

Department of Measurement

Learning and automation GPIO platform

Ondřej Hruška

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Sensors and Instrumentation
2018

ii

iv

Declaration

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze, 27. května 2018

...

v

Acknowledgements

blabla

vi

Abstract

This work focuses on the design of an AC appliance degradation detector. The goal is
to implement a device in the form of a power-plug adapter that could be used to monitor
and study the characteristics of the AC current.

A prototype with a STM32F3 processor and an ESP8266 programmable WiFi module
has been realised, together with a custom firmware for both processors, which allows easy
access to the measurements and charts using a web browser. The device also supports
regular reporting to a Xively or ThingSpeak monitoring server.

Keywords:

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.

Abstrakt

Tato práce se zabývá implementací detektoru poruch a degradací síťového spotřebiče
pomocí analýzy časového průběhu odebíraného proudu. Cílem je navrhnout a realizovat
přístroj ve formě zásuvkového adaptéru, který by bylo možné použít k monitorování
připojeného zařízení.

V rámci práce byl realizován prototyp přístroje s procesorem řady STM32F3 a progra-
movatelným WiFi modulem ESP8266. Zařízení umožňuje pohodlné ovládání a zobrazení
grafů spektra a průběhu proudu pomocí webového rozhraní. Dále je podporováno pravi-
delné hlášení stavu na servery Xively a ThingSpeak.

Klíčová slova:

Překlad názvu: Výuková a automatizační GPIO platforma

vii

Contents
1 Introduction 1

2 Goals and Requirements 3

2.1 Project Name . 3

2.2 Expected Use-Cases . 3

2.3 Supported Hardware Interfaces . 4

2.3.1 Direct Digital Input/Output . 4

2.3.2 Common Digital Buses . 4

2.3.3 Specialized Buses . 4

2.3.4 Analog Input/Output . 4

2.3.5 Frequency Measurement and Generation . 5

2.4 User Interface . 5

3 Existing Solutions 7

3.1 Bus Pirate . 7

3.2 Raspberry Pi . 7

3.3 The Firmata protocol . 8

3.4 Professional DAQ modules . 8

4 Universal Serial Bus 11

4.1 Basic Principles and Terminology . 11

4.2 USB Physical Layer . 12

4.3 USB Classes . 13

4.3.1 Mass Storage Class . 13

4.3.2 CDC/ACM Class . 13

4.3.3 Interface Association: Composite Class . 14

viii

Figures

ix

Chapter 1

Introduction

Prototyping, design evaluation and the measurement of physical properties in experiments
make a daily occurrence in the engineering praxis. This task typically involves the generation
and capture of electrical signals coming to and from specialized sensors, actuators and
other circuitry. As the technology advanced, mainly driven by the consumer electronics
market and the automotive industry, a variety of affordable integrated sensors became
available. Those devices can provide a sufficient accuracy and precision for the task at hand
while keeping the circuit complexity down by integrating a large portion of the necessary
circuitry together with the sensor on a single chip or in a compact module. Those modern
components gives as a low cost alternative to expensive laboratory equipment and much
larger instruments previously used. concrete

exam-
ples

concrete
exam-
plesHowever, the drive for miniaturization and the advent of modern hardware buses, in

particular USB (Universal Serial Bus), lead to the disappearance of low level computer ports,
such as the once ubiquitous parallel port, that would provide an easy way of connecting
those digital devices (and low level hardware in general) to personal computers.

Today, when one wants to perform some measurements using a digital sensor, the usual
route is to implement an embedded firmware for a microcontroller that can be connected
to the PC through USB. This approach makes it possible to optimize the solution for a
particular task and achieve high performance. However, building such a specialized tool, or
even writing the firmware alone, is time-consuming and requires domain knowledge that is
entirely removed from the measurements we want to perform with it.

Clearly it would be advantageous to have a way to easily attach those integrated devices
and low other level hardware to a PC without having to burden ourselves with technicalities
of the connection, even at the cost of lower performance compared to a specialized device or
a professional tool. The design and implementation of such a user-friendly, general purpose
hardware interfacing system is the object of this work.

1

2

Chapter 2

Goals and Requirements

This chapter discusses the project requirements and presents our expectations of the final
outcome.

The work’s main objective is the implementation of a reconfigurable embedded firmware,
a physical module providing the required digital buses, signal generation and acquisition
capabilities, and the PC libraries to work with it. It’s expected that several prototypes of
the hardware platform will be developed to evaluate different form factors.

2.1 Project Name

Every project needs a memorable name. During the development, the name "GEX" was
chosen, an acronym originating in the term GPIO Expander, which, although not describing
its scope perfectly, alludes to the project’s primary purpose of providing low level GPIO
capabilities to personal computers. The term GEX may be used through the text to refer
to the whole project or hardware modules developed for it.

2.2 Expected Use-Cases

First, we must consider in which situations the module could be helpful. As we explained
in the introduction, GEX should allow the user to connect digital sensors and electronic
circuits to a PC and work with them using high level application software.

This could be used to get familiar with a new chip or a module before using it in some
hardware project, to measure characteristic curves of a component, to collect experimental
data from a test setup, or, for instance, to control a positioning motor.

The applications can have a temporary character, a simple setup that is used once and
then dismantled, or a more permanent one. An example of the latter could be students’
laboratory tasks where the measurement setup is prepared beforehand by an instructor.
Another example could be the use of GEX as a data acquisition module for process or
environment monitoring.

The module should either be directly attached to the PC via a USB port, or controlled
wirelessly (possibly powered by a battery or a solar cell). A wireless connection can find
use in mobile robotic projects where the wired attachment isn’t practical, or when used
outdoors or in hardly accessible places.

3

2. Goals and Requirements
2.3 Supported Hardware Interfaces

The project’s scope is very broad and it’s hardly possible to enumerate all the use cases.
To achieve the greatest flexibility, it appears as a good strategy to divide the features into
smaller functional blocks that can be used independently or combined as needed.

2.3.1 Direct Digital Input/Output

The most basic interaction with hardware is simply changing the logic levels of output
pins, and reading input pins. With this feature alone it would be possible to analyze logic
circuits, trigger some transient effect we want to observe using an oscilloscope, sense a
button push, drive LED displays and more. Almost anything digital that doesn’t require
precise or fast timing1 could be achieved by this simple function.

To make this feature more versatile, it should be possible to receive an asynchronous
event on a pin state change, avoiding the need for polling loops in the control application.

2.3.2 Common Digital Buses

A popular way to attach peripheral devices to a microcontroller are hardware buses, the
most well known of which are SPI (Serial Peripheral Interface), I2C (or IIC, Inter-Integrated-
Circuit) and USART (Universal Synchronous Asynchronous Receiver Transmitter). There
is a hardware support in most microcontrollers for those buses, removing the burden of
precise timing from the firmware.

More information about those interfaces can be found in later chapters.link to
actual
place

link to
actual
place 2.3.3 Specialized Buses

Some devices exist that use their own proprietary protocol, usually to reduce the number
of data pins. An example of this group is the Dallas Semiconductor2 1-Wire bus, used by
the popular DS18x20 digital thermometers. Another such protocol is used by some types
of addressable LED strips.

A common characteristic of those buses is that they require precise timing and have no
native hardware support in the microcontroller. We can’t use the direct GPIO access here
due to latencies and jitter; those protocols need a custom low level routine in the firmware
that performs such "bit banging" more accurately.

2.3.4 Analog Input/Output

Microcontrollers typically include a 10-12 bit ADC (Analog to Digital Converter), often
accompanied by a DAC (Digital to Analog Converter), its output counterpart. In the lack

1We’re limited by the latencies of USB and the PC software.
2Acquired by Maxim Integrated in 2001

4

.. 2.4. User Interface

of a real DAC, the analog output, albeit with worse dynamic parameters, can be realized
using a PWM signal (Pulse Width Modulation, pulse train) followed by a low-pass filter.

While we mainly focused on digital interfaces thus far, providing means of generating and
capturing analog signals is also valuable. This capability makes it possible to read sensors
with voltage output and it can substitute a simple oscilloscope when sampled periodically
at a sufficient speed.

The analog output and input together can be used for automated characterization of
electronic components, or for analog feedback regulation. Should the analog output be
modulated, we could further use them to measure frequency-dependent characteristics, such
as the frequency response of analog filters.

2.3.5 Frequency Measurement and Generation

Some sensors have a variable frequency or a pulse-width modulated (PWM) output. To
capture those signals and convert them to a more useful digital value, we can use the
Input Capture or External Clock function of a general purpose timer/counter in the used
microcontroller. Those timers have a wide range of possible configurations and can be also
used for pulse counting or PWM generation.

2.4 User Interface

USB will be the primary way of connecting the module to a PC. Thanks to USB’s flexibility,
GEX can present itself to the computer as any kind of device, or even multiple devices at
once.

The most straightforward method of interfacing the board is by passing binary messages
in a fashion similar to USART. This can be done either using a "Virtual COM port" driver
(the CDC/ACM class), or through a raw access to the corresponding USB endpoints. Using
a raw access avoids potential problems with the operating system’s driver interfering or not
recognizing the device correctly; on the other hand, having GEX appear as a serial port
makes it easier to integrate into older development platforms that have a good serial port
support (such as National Instruments LabWindows CVI).

As for configuring the module, given the possible permanent nature of the experimental
setups built with it, it makes sense to store the settings inside its flash memory; it should
at the same time be possible to temporarily change them as needed.

We could load those settings using the serial interface, and indeed this should be
implemented for its flexibility. The serial interface will be, in some form, also used for the
wireless connection. However, having the power of USB at our disposal, we can make the
board appear as a mass storage device and expose the configuration as text files. This
approach, inspired by ARM mbed3, avoids the need to create a configuration utility and
can work cross-platform thanks to using the same driver as a real removable disk. Further,

3A similar mechanism is used for flashing firmware images to mbed-enabled development kits

5

2. Goals and Requirements
we can expose any useful information (such as a README file with instructions, or a
pin-out reference) using this virtual disk as separate files.

6

Chapter 3

Existing Solutions

The idea of making it easier to interact with low level hardware from a PC is not new.
Several solutions to this problem have been developed over the past years, each with its
own advantages and drawbacks. Some of the existing solutions will be presented in this
section.

3.1 Bus Pirate

picturespictures

http://dangerousprototypes.com/blog/about/

Bus Pirate, developed by Ian Lesnet at Dangerous Prototypes and manufactured by linklink
Seeed Studio, is a "tinkering kit" providing access to hardware interfaces like SPI, I2C, linklinkUSART and 1-Wire (those will be described later), as well as frequency measurement and

link to
actual
place

link to
actual
place

direct pin access.

The board aims to make it easy for the user to familiarize themself with new chips and
modules; it also provides a range of programming interfaces for flashing microcontroller
firmwares and memories. It communicates with the PC using a FTDI USB-serial bridge

Bus Pirate is open source and in scope it is similar to what we want to achieve here. It
can be scripted and controlled from languages like Python or Perl, connects to USB and
provides a wide selection of hardware interfaces.

The board is based on a PIC16 microcontroller running at 32MHz. Its analog/digital
converter (ADC) only has a resolution of 10 bits (1024 levels). There is no digital/analog
converter (DAC) available on the chip, making applications that require a varied output
voltage more difficult. Another limitation of the board is its low number of GPIO pins
which may be insufficient for certain applications, such as multi-channel sampling, parallel
interfaces, or connecting multiple different devices at once.

Those limitations, however, hardly impede on Bus Pirate’s primary purpose, which is to
provide an easy access to digital buses.

3.2 Raspberry Pi

link, pictures

7

3. Existing Solutions.......................................
Another device worth mentioning, albeit of a very different kind, is the Raspberry Pi.

It is a belief of the author that the inclusion of a GPIO (general purpose I/O) header on
the Raspberry Pi mini-computers was a significant factor in their success in the hobbyist
circles and school environments. This GPIO header exposes various hardware interfaces to
user programs running on the computer.

The responsibility of controlling the experimental hardware then lies on the user applica-
tion which also provides the user interface, much simplifying the development process. The
control application can be written in almost any programming language the experimenter
chooses; the most popular choices appear to be Python and JavaScript. The embedded
firmware, should an external microcontroller be used instead, would typically have to be
written in C, C++, or assembly.

A disadvantage of using a Raspberry Pi’s GPIO header is that the experiments would
have to be conducted directly on the mini-computer instead of using the more powerful
computer the researchers already have available1. This introduces complications with data
export or remote control. Further, should the experiment use a software package like
MATLAB, installing it on the ARM-based Raspberry Pi may prove problematic.

3.3 The Firmata protocol

links

Move this elsewhere

Firmata is a serial communication protocol based on MIDI (Musical Instrument Digital
Interface) for passing data to and from embedded microcontrollers. MIDI is primarily used
for attaching electronic musical instruments, such as synthesizers, keyboards, mixers etc.,
to each other or to a PC.

Firmata was designed for use with the Arduino firmware to allow easy construction of
user programs (called sketches in the Arduino environment) that communicate with a client
application running on the PC without having to worry about technical details.citationcitation

Implementing the Firmata protocol in a universal hardware interfacing module would
make it possible to use existing Firmata client libraries. However, it is constricted by the
limitations of the encompassing MIDI protocol and offers little flexibility.

3.4 Professional DAQ modules

There are several offerings from professional laboratory instrument manufacturers, however
their common property is a very high price. This renders them inaccessible for users with
a limited budget, such as hobbyists or students who would like to keep such a device for

1An exception may be the use of such a device in developing countries, where the Raspberry Pi serves as
a low-cost PC on its own.

8

.................................. 3.4. Professional DAQ modules

personal use. An example falling into this category is the National Instruments "I2C/SPI
Interface Device", which also includes several GPIO lines.

http://www.ni.com/en-gb/shop/select/i2c-spi-interface-device

The decoding of hardware buses like USART, SPI or I2C is a common feature in digital
storage oscilloscopes, as is the sampling of digital channels with "logic analyzer" add-ons.
They are valuable debugging tools, but hardly ever provide a way to interact with the bus
beyond passively intercepting an ongoing communication.

9

10

Chapter 4

Universal Serial Bus

This chapter presents an overview of the USB Full Speed interface, with focus on the features
used in the GEX firmware. USB is a versatile but complex interface, thus explaining it in
its entirety is beyond the scope of this text. References to external materials which explain
the protocol in greater detail will be provided for the interested reader. add

those
refs

add
those
refs4.1 Basic Principles and Terminology

USB is a hierarchical bus with a single master (host) and multiple slave devices. A USB
device that provides functionality to the host is called a function. Communication between
the host and a function is organized into virtual channels called pipes. Each pipe is identified
by an endpoint number.

Endpoints can be either unidirectional or bidirectional; the direction from the host to a
function is called OUT, the other direction (function the host) is called IN. A bidirectional
endpoint is technically composed of a IN and OUT endpoint with the same number. All
transactions (both IN and OUT) are initiated by the host; functions have to wait for their
turn. Endpoint 0 is bidirectional, always enabled, and serves as a control endpoint. The
host uses the control endpoint to read information about the device and configure it as
needed.

There are four types of transfers: control, bulk, isochronous, and interrupt. Each
endpoint is configured for a fixed transfer type.

• Control - initial configuration after device plug-in; also used for other aplication-specific
control messages that can affect other pipes.

• Bulk - used for burst transfers of large messages, commonly e.g. for mass storage
devices

• Isochronous - streaming with guaranteed low latency; designed for audio or video
streams where some data loss is preferred over stuttering

• Interrupt - low latency short messages, used for human interface devices like mice and
keyboards

The endpoint transfer type and other characteristics, together with other information
about the device, such as the serial number, are defined in a descriptor table. This is a

11

4. Universal Serial Bus......................................
tree-like binary structure defined in the function’s memory. The descriptor table is loaded
by the host to learn about the used endpoints and to attach the right driver to it.

The function’s endpoints are grouped into interfaces. An interface describes a logical
connection of endpoints, such as the reception and transmission endpoint that belong
together. An interface is assigned a class defining how it should be used. Standard classes
are defined by the USB specification to provide a uniform way of interfacing devices of the
same type, such as human-interface devices (mice, keyboards, gamepads) or mass storage
devices. The use of standard classes makes it possible to re-use the same driver software
for devices from different manufacturers. The class used for the GEX’s "virtual COM port"
function was originally meant for telephone modems, a common way of connecting to the
Internet at the time the first versions of USB were developed. A device using this class will
show as /dev/ttyACM0 on Linux and as a COM port on Windows, provided the system
supports it natively or the right driver is installed.

4.2 USB Physical Layer

USB uses differential signaling with NRZI encoding (Non Return to Zero Inverted) and
bit stuffing. The encoding, together with frame formatting, checksum verification, retrans-
mission, and other low level aspects of the USB connection are entirely handled by the
USB block in the microcontroller’s silicon. Normally we do not need to worry about those
details. What needs more attention are the electrical characteristics of the bus, which need
to be understood correctly for a successful PCB design.

The USB cable contains 4 conductors:

• VBUS (+5V)

• D+

• D–

• Ground

D+ and D– are commonly labeled DP and DM. The differential pair should be routed
in parallel and keep approximately the same length. The USB speed is determined by the
presence of a 1.5 kΩ pull-up resistor to 3.3V on one of the data lines: for Low Speed, D–
is pulled high, for Full Speed it’s the D+ line. The polarity of the differential signals is
inverted depending on the used speed. Some microcontrollers integrate the correct pull-up
resistor inside the USB block, removing the need for an external resistor.

When the function needs the host to re-enumerate it, that is, reload the descriptors and
re-attach the correct drivers, it can momentarily remove the pull-up resistor. In the case of
an internal pull-up, this can be done by flipping a control bit. An external resistor could be
connected through a transistor to facilitate re-enumeration, or it might be driven directly
by a GPIO pin.

The VBUS line provides a power supply to the function in the case of bus-powered devices.
Self-powered devices can leave this pin unconnected and instead use an external power

12

...4.3. USB Classes

supply. The current that can be drawn from the VBUS line is configured using a descriptor
and should not be exceeded. However, this limitation is often not enforced, especially when
USB hubs are used, and can’t be relied upon as a safety measure.

4.3 USB Classes

This section explains the function of the Mass Storage class and the CDC/ACM class
that find use in the GEX firmware. A list of all standard classes with a more detailed
explanation can be found in . link to

the ref
manual

link to
the ref
manual4.3.1 Mass Storage Class

The Mass Storage class (MSC) is natively supported by all modern operating systems (MS
Windows, MacOS, GNU/Linux, FreeBSD etc.) and finds use in thumb drives, external
disks, memory card readers and other storage devices.

The MSC specification defines multiple transport protocols that can be selected using
the descriptors. For it’s simplicity, the Bulk Only Transport (BOT) will be used. BOT uses
two bulk endpoints for reading and writing blocks of data and for the exchange of control
commands and status messages. For the device to be recognized by the operating system, it
must also implement a command set. Most mass storage devices use the SCSI Transparent
command set 1. The defined commands let the host read information about the attached
storage, such as its capacity, and check for media presence and readiness to write or detach.

The MSC class together with the SCSI command set are rather complicated, thankfully
a driver library is provided by ST Microelectronics that can be used as given, or customized.
The library also includes a CDC/ACM implementation.

In order to emulate a mass storage device without having a physical storage medium,
we need to generate and parse the filesystem on-the-fly, as the host OS tries to access it.
This will be discussed in chapter ??. chapter

num
chapter
num

4.3.2 CDC/ACM Class

Historically meant for modem communication, this class is now the de facto standard way
of making USB devices appear as serial ports on the host OS. The CDC (Communication
Device Class) class uses three endpoints: bulk IN and OUT, and an interrupt endpoint.

The interrupt endpoint is used for commands and notifications about the modem line,
while the bulk endpoints are used for useful data. ACM stands for Abstract Control Model
and it’s a CDC’s subclass that defines the control messages format. Since we don’t use any
physical serial port in this implementation and the line is virtual both on the PC and in
the end device, the interrupt endpoint can mostly be ignored.

1To confirm this assertion, the descriptors of five thumb drives and an external hard disk were analyzed
using lsusb. All but one device used the SCSI command set, one (incidentally the oldest) used SFF-8070i.
A list of possible different command sets can be found in TODO (usb spec overview)

13

4. Universal Serial Bus......................................
An interesting property of this class is that the bulk endpoints transport raw data

without any wrapping frames. By changing the device class in the descriptor table to
255 (Vendor Specific Class), we can retain the messaging functionality of the designated
endpoints and access the device directly using e.g. libUSB, whereas the OS will ignore the
device and won’t try to attach the serial port driver, which would otherwise interfere. The
same trick can be used to hide the mass storage class, when not needed.

4.3.3 Interface Association: Composite Class

Since it’s creation, the USB specification expected that each function will have only one
interface enabled at a time. After it became apparent that there is a need for having
multiple unrelated interfaces work in parallel, a workaround called the Interface Association
Descriptor (IAD) was devised. IAD is an entry in the descriptor table that defines which
interfaces belong together and should be handled by the same driver.

To use the IAD, the function’s class must be set to 239 (EFh), subclass 2, protocol 1 (in
the top level descriptor), so the OS knows to look for the presence of IADs before binding
drivers to any interfaces.

In GEX, the IAD is used to tie together the CDC and ACM interfaces while leaving
out the MSC interface which should be handled by a different driver. To make this work,
a new composite class had to be created as a wrapper for the library-provided MSC and
CDC/ACM implementations.

examples
of
descrip-
tors?

examples
of
descrip-
tors?

14

	Introduction
	Goals and Requirements
	Project Name
	Expected Use-Cases
	Supported Hardware Interfaces
	Direct Digital Input/Output
	Common Digital Buses
	Specialized Buses
	Analog Input/Output
	Frequency Measurement and Generation

	User Interface

	Existing Solutions
	Bus Pirate
	Raspberry Pi
	The Firmata protocol
	Professional DAQ modules

	Universal Serial Bus
	Basic Principles and Terminology
	USB Physical Layer
	USB Classes
	Mass Storage Class
	CDC/ACM Class
	Interface Association: Composite Class

