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Abstract

This thesis documents the development of a general purpose software and hardware
platform for interfacing low level hardware from high level programming languages and
applications run on a PC, using USB and also wirelessly.

The requirements of common engineering tasks and problems occurring in the university
environment were evaluated to design an extensible, reconfigurable hardware module that
would make a practical, versatile, and low cost tool that in some cases also eliminates the
need for professional measurement and testing equipment.

Several hardware prototypes and control libraries in programming languages C and
Python have been developed. The Python library additionally integrates with MATLAB
scripts. The devices provide access to a range of hardware buses and low level features
and can be reconfigured using configuration files stored inside its permanent memory.

Keywords:

Supervisor: doc. Ing. Radislav Smid, Ph.D.

Abstrakt

Tato prace popisuje vyvoj univerzalni softwarové a hardwarové platformy pro pristup
k hardwarovym sbérnicim a elektrickym obvodtm z prostredi vysokoturoviiovych progra-
movacich jazykt a aplikaci bézicich na PC, a to za vyuziti USB a také bezdratoveé.

Byly vyhodnoceny pozadavky typickych problému, vyskytujicich se v praxi pri praci
s vestavénymi systémy a ve vyuce, pro navrh snadno rozsitritelného a prenastavitleného
hardwarového modulu ktery bude praktickym, pohodlnym a dostupnym nastrojem ktery
navic v nékterych pripadech muze nahradit profesionédlni laboratorni pristroje.

Bylo navrzeno nékolik prototypa hardwarovych modulii, spolu s obsluznymi knihovnami
v jazycich C a Python; k modulu lze také pristupovat z prostiedi MATLAB. Pristroj
umoznuje pristup k vétsiné béznych hardwarovych sbérnic a umoznuje také napt. mérit
frekvenci a vzorkovat ¢i generovat analogové signaly.

Klicova slova:

Preklad nazvu: Vyukova a automatizacni GPIO platforma
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Chapter 1

Motivation

Prototyping, design evaluation and the measurement of physical properties in experiments
make a daily occurrence in the engineering praxis. Those tasks typically involve the
generation and sampling of electrical signals coming to and from sensors, actuators, and
other circuitry.

In the recent years a wide range of intelligent sensors became available thanks to the
drive for miniaturization in the consumer electronics industry. Those devices often provide
a sufficient accuracy and precision while keeping the circuit complexity and cost low. In
contrast to analog sensors, here the signal conditioning and processing circuits are built
into the sensor itself and we access it using a digital connection.

Figure 1.1: A collection of intelligent sensors and devices, most on breadboard adapters: (from
top left) a waveform generator, a gesture detector, a LoRa and two Bluetooth modules, an air
quality and pressure sensor, a CO5 sensor, a digital compass, an accelerometer, a GPS module,
a camera, an ultrasonic range finder, a humidity sensor, a 1-Wire thermometer, a color detector
and an RGB LED strip.

To conduct experiments with those integrated modules, or even just familiarize ourselves
with a device before using it in a project, we need a way to easily interact with them. It’s
also convenient to have a direct access to hardware, be it analog signal sampling, generation,
or even just logic level inputs and outputs. However, the drive for miniaturization and
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the advent of USB (Universal Serial Bus) lead to the disappearance of low level computer
ports, such as the printer port (LPT), that would provide an easy way of doing so.

Today, when one wants to perform measurements using a digital sensor, the usual route is
to implement an embedded firmware for a microcontroller that connects to the PC through
USB, or perhaps just shows the results on a display. This approach has its advantages,
but is time-consuming and requires knowledge entirely unrelated to the measurements we
wish to perform. It would be advantageous to have a way to interface hardware without
having to burden ourselves with the technicalities of the connection, even at the cost of
lower performance compared to a specialized device or a professional tool.

The design and implementation of such a universal instrument is the object of this work.
For technical reasons, such as naming the source code repositories, we need a name for the
project; it’ll be hereafter called GEX, a name originating from "GPIO Expander".

. 1.1  The Project’s Expected Outcome

It’s been a desire of the author to create an universal instrument connecting low level
hardware to a computer for many years, and with this project it is finally being realized.
Several related projects approaching this problem from different angles can be found on
the internet; those will be presented in chapter 3. This project should not end with yet
another tinkering tool that will be produced in a few prototypes and then forgotten. By
building an extensible, open-source platform, GEX can become the foundation for future
projects which others can expand, re-use and adapt to their specific needs.

powuL SOURCE +@ MJ .
9vzosvo4wo4)vos, ®
@"i@ ® O-DND -

m M()p(/éE }T(:f]mo
12C VAT SWD Wit

O
BN g

Figure 1.2: An early (2016) sketch of a universal bench device including a power supply,
electronic load, a signal generator and a bus module. The bottom half of the panel is in a large
part implemented by GEX.

Building on the experience with earlier embedded projects, a STM32 microcontroller
shall be used. Those are ARM Cortex M devices with a wide range of hardware peripherals
that appear be a good fit for the project. Low-cost evaluation boards are widely available
that could be used as a hardware platform instead of developing a custom PCB. In addition,
those chips are relatively cheap and popular in the embedded hardware community; there’s
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a good possibility of the project building a community around it and growing beyond what
will be presented in this paper.

Besides the use of existing development boards, custom PCBs will be developed in
different form factors. Those could use the Arduino connector or the Raspberry Pi Zero
GPIO header (and board shape) to exploit the cases and boxes available for the minicomputer
on the market, as well as add-on boards (shields and HATS5).

The possibilities of wireless connection should be evaluated. This feature should make
GEX useful e.g. in mobile robotics or when installed in poorly accessible locations.






Chapter 2

Requirement Analysis

We’ll now investigate some situations where GEX could be used, to establish its requirements
and desired features.

B 2.0.1 |Interfacing Intelligent Modules

When adding a new digital sensor or a module to a hardware project, we want to test it
first, learn how to properly communicate with it and confirm its performance. Based on
this evaluation we decide whether the module matches our expectations and learn how to
properly connect it, which is needed for a successful PCB layout.

In experimental setups, this may be the only thing we need. Data can readily be collected
after just connecting the module to a PC, same as commanding motor controllers or other
intelligent devices.

A couple well known hardware buses have established themselves as the standard ways
to interface digital sensors and modules: SPI, [2C and UART are the most used ones, often
accompanied by a few extra GPIO lines such as Reset, Chip Enable, Interrupt. There
are exceptions where silicon vendors have developed proprietary communication protocols
that are still used, either for historical reasons or because of their specific advantages. An
example is the 1-Wire protocol used by digital thermometers.

Moving to industrial and automotive environments, we can encounter various fieldbuses,
Ethernet, CAN, current loop, HART, LIN, DALI, RS485 (e.g. Modbus), mbus, PLCBUS
and others. Those typically use transceiver ICs and other circuitry, such as TVS, discrete
filters, galvanic isolation etc. They could be supported using add-on boards and additional
firmware modules handling the protocol. For simplicity and to meet time constraints, the
development of those boards and modules will be left for future expansions of the project.

B 2.0.2 Analog Signal Acquisition

Sometimes it’s necessary to use a traditional analog sensor, capture a transient waveform
or to just measure a voltage. GEX was meant to focus on digital interfaces, however giving
it this capability makes it much more versatile. Nearly all microcontrollers include an
analog-digital converter which we can use to measure input voltages and, paired with a
timer, to records signals varying in time.

Certain tasks, such as capturing transient effects on a thermocouple when inserted into
a flame (an example from developing fire-proof materials) demand level triggering similar
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to that of oscilloscopes. The converter continuously measures the input voltage and a
timed capture starts only after a set threshold is exceeded. This can be accompanied by a
pre-trigger feature where the timed capture is continuously running and the last sample is
always compared with the threshold, recording a portion of the historic records together
with the following samples.

B 2.0.3 Analog Signal Output

An analog signal can not only be measured, but it’s often necessary to also generate it.
This could serve as an excitation signal for an experiment, for instance to measure the
characteristic curves of a diode or a transistor. Conveniently, we can at the same time use
GEX’s analog input to record the output.

Generating an analog signal is possible using a pulse-width modulation (PWM) or by a
dedicated digital-analog converter included in many microcontrollers. Higher frequencies or
resolution can be achieved with a dedicated external IC.

B 2.0.4 Logic Level Input and Output

We’ve covered some more advanced features, but skipped the simplest feature: a direct
access to GPIO pins. Considering the latencies of USB and the PC’s operating system,
this can’t be reliably used for "bit banging", however we can still accomplish a lot with
just changing logic levels - e.g. to control character LCDs, or emulate some interfaces that
include a clock line, like SPI. As mentioned in 2.0.1, many digital sensors and modules use
plain GPIOs in addition to the communication bus for out-of-band signaling or features
like chip selection or reset.

B 2.0.5 Pulse Generation and Measurement

Some sensors have a variable frequency or a pulse-width modulated (PWM) output. To
capture those signals and convert them to a more useful digital value, we can use the
external input functions of a timer/counter in the microcontroller. Those timers have many
possible configurations and can also be used for pulse counting or a pulse train generation.

B 2.1 Connection to the Host Computer

B 211 Messaging

USB shall be the primary way of connecting the module to a host PC. Thanks to USB’s
flexibility, it can present itself as any kind of device or even multiple devices at once.

The most straightforward method of interfacing the board is by passing binary messages in
a fashion similar to USART (and plain UART can be available as well). We’ll need a duplex
connection to enable command confirmations, query-type commands and asynchronous
event reporting.
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This is possible either using a "Virtual COM port" driver (the CDC/ACM USB class),
or through a raw access to the corresponding USB endpoints. Using a raw access avoids
potential problems with the operating system’s driver interfering or not recognizing the
device correctly; on the other hand, having GEX appear as a serial port makes it easier to

integrate into existing platforms that have a good serial port support (such as National
Instruments LabWindows CVI or MATLAB).

A wireless attachment is also planned; after establishing a connection, the two-way link
should work in a similar manner to UART or USB.

B 2.1.2 Configuration Files

The module must be easily reconfigurable. Given the settings are almost always going to
be tied on the connected external hardware, it would be practical to have an option to
store them permanently in the microcontroller’s non-volatile memory.

We can load those settings into GEX using the serial interface, which also makes it
possible to reconfigure it remotely when the wireless connection is used. With USB, we can
additionally make the board appear as a mass storage device and expose the configuration
as text files. This approach, inspired by ARM mbed’s mechanism for flashing firmware
images to development kits, avoids the need to create a configuration GUI, instead using
the PC OS’s built-in applications like File Explorer and Notepad. We can expose additional
information, such as a README file with instructions or a pin-out reference, as separate
files on the virtual disk.

. 2.2 Planned Feature List
Let’s list the features we wish to initially support in the GEX firmware:

« Hardware interfacing functions

I/O pin direct access (read, write), pin change interrupt
Analog input: voltage measurement, sampled capture
Analog output: static level, waveform generation
Frequency, duty cycle, pulse length measurement

Single pulse and PWM generation

SPI, I2C, UART/USART

Dallas 1-Wire

NeoPixel (addressable LED strips)

e« Communication with the host computer

USB connection as virtual serial port or direct endpoint access
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Connection using plain UART

Wireless attachment
e Configuration

Fully reconfigurable, temporarily or permanently
Settings stored in INT files

File access through the communication API or using a virtual mass storage

B 2.3 Microcontroller Selection

The STM32Fo072 microcontroller was chosen for the built prototypes and the initial
firmware, owning to it’s low cost, advanced peripherals and the availability of development
boards. GEX can be later ported to other MCUs, like the STM32Lo72, STM32F103 or
STM32F303.

The STM32Fo072 is a Cortex Mo device with 128 KiB of flash memory, 16 KiB of RAM
and running at 48 MHz. It is equipped with a USB Full Speed peripheral block, a 12-bit
ADC and DAC, a number of general purpose timers/counters, SPI, I2C, and USART
peripherals, among others. It supports crystal-less USB, using the USB SOF packet for
synchronization of the internal 48 MHz RC oscillator; naturally, a real crystal resonator
will provide better timing accuracy.

To effectively utilize the time available for this work, only the STM32Fo72 firmware will
be developed while making sure the planned expansion is as straightforward as possible.

[ ] 2.4 Form Factor Considerations

It was mentioned in 1.1 that, while the GEX firmware can be used with existing evaluation
boards from ST Microelectronics (figure 2.1), we wish to design and realize a few custom
hardware prototypes that will be smaller, more convenient to use and hopefully also cheaper.
Three possible form factors are drawn in figure 2.2.

Several factors play a role when deciding what the GEX PCB should look like:

The device must be comfortable and easy to use, which affects the choice of the USB
connector, also with respect to cable availability: USB type A is not suitable for desktop
computers where it would have to be plugged in the rear of the computer or in the front
panel, but it may be usable with laptops; USB Mini-B and Micro-B connectors are both
a popular choice in existing kits (e.g. Discovery and Nucleo boards), but Micro-B has a
higher rated number of insertions and the cables are ubiquitous thanks to their use in
mobile phones, therefore this appears to be the better connector choice.

The PCB size should be kept minimal to save manufacturing costs. When a standard
connector shape and a pin assignment are used we gain the ability to install existing add-on
boards designed for other platforms, like the Arduino or Raspberry Pi. Lastly, when the
entire board shape is copied from an existing commercial product for which we can buy

10
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Figure 2.1: A Discovery board with STM32Fo072 that can be used to run the GEX firmware

official or after-market cases, we get an easy access to cases without having to design them
ourselves. This is the case of the Raspberry Pi Zero form factor.

11
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ArcLi wo sheld compatible

Figure 2.2: A sketch of three possible form factors for the GEX hardware prototype. Note the
ESP8266 module which was considered as an option for wireless access but was eventually not
used due to it’s high current usage, unsuitable for battery operation.

12



Chapter 3

Existing Solutions

The idea of making it easier to interact with low level hardware from a PC is not new.
Several solutions to this problem have been developed, each with its own advantages and
drawbacks. Some examples will be presented in this chapter.

[ ] 3.1 Bus Pirate

Figure 3.1: Bus Pirate v.4 (picture by Seeed Studio)

Bus Pirate, developed by Ian Lesnet at Dangerous Prototypes and manufactured by

Seeed Studio, is a USB-attached device providing access to hardware interfaces like SPI, -
I2C, USART and 1-Wire, as well as frequency measurement and direct pin access.

The board aims to make it easy for users to familiarize themselves with new chips and
modules; it also provides a range of programming interfaces for flashing microcontroller
firmwares and memories. It communicates with the PC using a FTDI USB-serial bridge.

Bus Pirate is open source and in scope it’s similar to GEX. It can be scripted and
controlled from languages like Python or Perl, connects to USB and provides a good
selection of hardware interfaces.

The board is based on a PIC16 microcontroller running at 32 MHz. Its analog/digital
converter (ADC) only has a resolution of 10 bits (1024 levels). There is no digital/analog

13
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converter (DAC) available on the chip, making applications that require a varied output
voltage more difficult. Another limitation of the board is its low number of GPIO pins
which may be insufficient for certain applications. The Bus Pirate, at the time of writing,
can be purchased for a price similar to some Raspberry Pi models.

. 3.2 Raspberry Pi

Figure 3.2: Raspberry Pi 2 (picture by Raspberry Pi Foundation)

The Raspberry Pi’s GPIO header, which can be directly controlled by user applications,
was one of the primary inspirations behind GEX. It can be controlled using C and Python
(among others) and offers general purpose 10, SPI, 12C, UART and PWM, with other
protocols being easy to emulate thanks to the high speed of the system processor.

The Raspberry Pi is commonly used in schools as a low-cost PC alternative that
encourage students’ interest in electronics, programming and science. The board is often
built into more permanent projects that make use of its powerful processor, such as wildlife
camera traps or home automation projects.

The Raspberry Pi could be used for the same quick evaluations or experiments we want
to perform with GEX, however they would either have to be performed directly on the
mini-computer itself with attached monitor and keyboard, or use some form of remote
access (e.g. SSH). When we have a more powerful computer available, a USB device like
GEX would be more convenient.

B 3.3 Professional DAQ Modules

Various professional tools that would fulfill our needs exist on the market, but their high price
makes them inaccessible for users with a limited budget, such as hobbyists or students who
would like to keep such a device for personal use. An example is the National Instruments
(NI) "I2C/SPI Interface Device" which also includes several GPIO lines, the NI USB DAQ
module, or some of the Total Phase I?C/SPI gadgets (figure 3.3). The performance GEX
can provide may not always match that of those professional tools, but in many cases it’ll
be a sufficient substitute at a fraction of the cost.

14
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(a) : NI I?C/SPI Interface Device
(b) : NI USB DAQ module

(c) : Total Phase SPI/I?C Host "Aardwark"

Figure 3.3: An example of professional tools that GEX could replace in less demanding scenarios
(pictures taken from marketing materials)

[ 3.4 The Firmata Protocol

Firmata is a communication protocol based on MIDI (Musical Instrument Digital
Interface) for passing data to and from embedded microcontrollers. MIDI is mainly used
for attaching electronic musical instruments, such as synthesizers, keyboards, mixers etc.,
to each other or to a PC. Firmata was designed for Arduino as a high level abstraction for
its connection to the PC, typically using a FTDI chip or equivalent.

Implementing Firmata in the GEX firmware would make it possible to use existing
Firmata libraries on the PC side. However, the protocol is limited by the encompassing
MIDI format and isn’t very flexible.

15
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Chapter 4

Universal Serial Bus

This chapter presents an overview of the Universal Serial Bus (USB) Full Speed interface,
with focus on the features used in the GEX firmware. USB is a versatile but complex
interface, thus explaining it in its entirety is beyond the scope of this text. References
to external material which explains the protocol in greater detail will be provided where

appropriate.
TYPICAL USB ARCHITECTURAL
CONFIGURATION
Hub/Function Hub/Function Host/Hub
KBD Monitor PC
ps=— Y
L 1 — 1
Pen Mouse Speaker Mic Phone Hub
Function Function Function Function Function Hub

Figure 4.1: A diagram from the USB specification rev. 1.1 showing the hierarchical structure of
the USB bus; The PC (Host) controls the bus and initiates all transactions.
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4. Universal Serial Bus

. 4.1 Basic Principles and Terminology

USB is a hierarchical bus with a single master (host) and multiple slave devices. A
USB device that provides functionality to the host is called a function. Communication
between the host and a function is organized into virtual channels called pipes. Each pipe
is identified by an endpoint number.

Host Interconnect Physical Device
T r T T I T L I I I I ITIII T I R TR TP TEE PP PEP PP RPEPEPRECRRER
" Function
Client SW .
Interface x a collection of
manages an interface interfaces
H ..~ !
i Pipe Bundle H
* to an interface :
| - : e
—% : 5
Buffers No USB : : ! Interface- No USB
J Format H | : speciic Format
Vv
: USB Logical
USB System SW : : Endpoint Device
. _ . Zero a collection of
manages devices :  Default Pipe : endpoints
to Endpﬁint Zero . SB Device
H F : y
. Transfers _USB R : : Data Per r Fr:?nBed
; Fromed S Endpoint | | Fore
USB Host USB Bus| i i |USBBus
H Interface | i | Interface
Host H H
Controller | USB Framed
Data
SIE || & SIE
tions Tt uss Wire

[T pipe: represents connection abstraction . ey

between two horizontal entities
Mechanical,

‘ Data transport mechanism Electrical,
Protocol
: USB-relevant format of transported data

Figure 4.2: A detailed view of the host-device connection (USB specification rev. 1.1)

Endpoints can be either unidirectional or bidirectional; the direction from the host to a
function is called OUT, the other direction (function the host) is called IN. A bidirectional
endpoint is technically composed of a IN and OUT endpoint with the same number. All
transactions (both IN and OUT) are initiated by the host; functions have to wait for their
turn. Endpoint o is bidirectional, always enabled, and serves as a control endpoint. The
host uses the control endpoint to read information about the device and configure it as

needed.

20



4.1. Basic Principles and Terminology

There are four types of transfers: control, bulk, isochronous, and interrupt. Each
endpoint is configured for a fixed transfer type.

e Control - initial configuration after device plug-in; also used for other aplication-specific
control messages that can affect other pipes.

e Bulk - used for burst transfers of large messages, commonly e.g. for mass storage
devices

e Isochronous - streaming with guaranteed low latency; designed for audio or video
streams where some data loss is preferred over stuttering

o Interrupt - low latency short messages, used for human interface devices like mice and
keyboards

The endpoint transfer type and other characteristics, together with other information
about the device, such as the serial number, are defined in a descriptor table. This is a
tree-like binary structure defined in the function’s memory. The descriptor table is loaded
by the host to learn about the used endpoints and to attach the right driver to it.

The function’s endpoints are grouped into interfaces. An interface describes a logical
connection of endpoints, such as the reception and transmission endpoint that belong
together. An interface is assigned a class defining how it should be used. Standard classes
are defined by the USB specification to provide a uniform way of interfacing devices of the
same type, such as human-interface devices (mice, keyboards, gamepads) or mass storage
devices. The use of standard classes makes it possible to re-use the same driver software
for devices from different manufacturers. The class used for the GEX’s "virtual COM port"
function was originally meant for telephone modems, a common way of connecting to the
Internet at the time the first versions of USB were developed. A device using this class will
show as /dev/ttyACMo on Linux and as a COM port on Windows, provided the system
supports it natively or the right driver is installed.

21



4. Universal Serial Bus

Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 239 Miscellaneous Device
bDeviceSubClass 2
bDeviceProtocol 1 Interface Association
bMaxPacketSizeo 64
idVendor 0x0483 STMicroelectronics
idProduct 0xX572a
bcdDevice 0.01
iManufacturer 1 MightyPork
iProduct 2 GEX
iSerial 3 0029002F-42365711-32353530
bNumConfigurations 1
Configuration Descriptor:
bLength 9
bDescriptorType 2
wTotalLength 98
bNumlInterfaces 3
bConfigurationValue 1
iConfiguration o
bmAttributes ox80
(Bus Powered)
MaxPower 500mA
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber o
bAlternateSetting o
bNumEndpoints 2
bInterfaceClass 8 Mass Storage

bInterfaceSubClass 6 SCSI
bInterfaceProtocol 8o Bulk-Only

iInterface 4 Settings VFS
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress ox81 EP 1 IN
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes
blnterval o
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpoint Address oxo1 EP 1 OUT
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0X0040 1X 64 bytes
binterval o
Interface Association:
bLength 8
bDescriptorType 11
bFirstInterface 1
blnterfaceCount 2
bFunctionClass 2 Communications
bFunctionSubClass 2 Abstract (modem)
bFunctionProtocol 1 AT-commands (v.25ter)
iFunction 5 Virtual Comport ACM

Interface Descriptor:

bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting o
bNumEndpoints 1
blnterfaceClass 2 Communications
bInterfaceSubClass 2 Abstract (modem)
bInterfaceProtocol 1 AT-commands (v.25ter)
iInterface 5 Virtual Comport ACM
CDC Header:

bcdCDC 1.10
CDC Call Management:

bmCapabilities 0X00

bDatalnterface 2
CDC ACM:

bmCapabilities oxo6

sends break
line coding and serial state
CDC Union:
bMasterInterface 1
bSlavelnterface 2
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpoint Address ox83 EP 3 IN
bmAttributes 3
Transfer Type Interrupt
Synch Type None
Usage Type Data
wMaxPacketSize 0x0008 1x 8 bytes
blnterval 255
Interface Descriptor:
bLength 9
bDescriptorType 4
blnterfaceNumber 2
bAlternateSetting o
bNumEndpoints 2
blnterfaceClass 10 CDC Data
bInterfaceSubClass o
blnterfaceProtocol o
iInterface 6 Virtual Comport CDC
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress oxo2 EP 2 OUT
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1Xx 64 bytes
blnterval o
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpoint Address ox82 EP 2 IN
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0X0040 1X 64 bytes
blnterval o

Figure 4.3: USB descriptors of a GEX prototype obtained using lsusb -vd vid:pid



4.2. USB Physical Layer

RPU
D+ D+
Full-speed or FuII-speed. use
Low-speed USB | Reo :@ ): Transceiver
Transceiver D- | D-
| Z,=90Q +15% |
Rp
Rpp=14.75 k() to 24.80 kQ Hub Upstream Port
Host or or
Hub Port Rpy=1.5KQ (typical) Full-speed Function

Figure 4.5: Pull-up and pull-down resistors of a Full Speed function, as prescribed by the USB
specification rev. 2.0

B 4.2 USB Physical Layer

USB uses differential signaling with NRZI encoding (Non Return to Zero Inverted, fig. 4.4)
and bit stuffing. The encoding, together with frame formatting, checksum verification,
retransmission, and other low level aspects of the USB connection are entirely handled by
the USB block in the microcontroller’s silicon; normally we do not need to worry about
those details. What needs more attention are the electrical characteristics of the bus, which
need to be understood correctly for a successful schematic and PCB design.

The USB cable contains 4 conductors:

+ Vous (55 o|r SRR
« D+ : N
D 10110010
e Ground Figure 4.4: NRZI encoding example

The data lines, D+ and D—, are also commonly labeled DP and DM. This differential
pair should be routed in parallel and kept at approximately the same length.

USB revisions are, where possible, backwards compatible, often even keeping the same
connector shape. The bus speed is negotiated by the device using a 1.5 k{2 pull-up resistor
to 3.3V on one of the data lines: for Full Speed, D+ is pulled high (fig. ), for Low Speed
it’s on D—. The polarity of the differential signals is inverted depending on the used speed.
Some microcontrollers integrate the correct pull-up resistor inside the USB block (including
out STM32Fo072), removing the need for an external resistor.

When a function wants to be re-enumerated by the host, which is needed to reload
the descriptors and re-attach the correct drivers, it can momentarily remove the pull-up
resistor, which the host will interpret as if the device was plugged out. With an internal
pull-up this can be done by flipping a bit in a control register. An external resistor can be
connected through a transistor controlled by a GPIO pin.
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4. Universal Serial Bus

The Vgus line supplies power to bus-powered devices. Self-powered devices can leave
this pin unconnected and instead use an external power supply. The maximal current
drawn from the Vgys line is configured using a descriptor and should not be exceeded, but
experiments suggest this is often not enforced.

B 4.3 USB Classes

This section explains the Mass Storage class and the CDC/ACM class that are used in the
GEX firmware. A list of all standard classes with a more detailed explanation can be found
on the USB.org website at http://www.usb.org/developers/defined_ class.

B 4.3.1 Mass Storage Class

The Mass Storage class (MSC) is supported by all modern operating systems (MS Windows,
MacOS, GNU/Linux, FreeBSD etc.) to support thumb drives, external disks, memory card
readers and other storage devices.

The MSC specification defines multiple transport protocols that can be selected using
the descriptors. For it’s simplicity, the Bulk Only Transport (BOT) will be used. BOT uses
two bulk endpoints for reading and writing blocks of data and for the exchange of control
commands and status messages. For the device to be recognized by the operating system, it
must also implement a command set. Most mass storage devices use the SCSI Transparent
command set *. The command set’s commands let the host read information about the
attached storage, such as its capacity, and check for media presence and readiness to write
or detach. This is used e.g. for the "Safely Remove" function which checks that all internal
buffers have been written to Flash.

The MSC class together with the SCSI command set are implemented in a USB Device
library provided by ST Microelectronics. The library also includes a basic CDC/ACM
implementation (see below).

In order to emulate a mass storage device without having a physical storage medium,
we need to generate and parse the filesystem on-the-fly as the host OS tries to access it.
This will be discussed in chapter 6.

*To confirm this assertion, the descriptors of five thumb drives and an external hard disk were analyzed
using lsusb. All but one device used the SCSI command set, one (the oldest thumb drive) used SFF-8o7oi.
A list of possible command sets can be found in TODO (usb spec overview)
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4.3. USB Classes

B 4.3.2 CDC/ACM Class

Historically meant for modem communication, this class is now the de facto standard way
of making USB devices appear as serial ports on the host OS. The CDC (Communication
Device Class) uses three endpoints: bulk IN and OUT, and an interrupt endpoint.

The interrupt endpoint is used for control commands and notifications while the bulk
endpoints are used for useful data. ACM stands for Abstract Control Model and it’s a
CDC’s subclass that defines the control messages format. Since we don’t use a physical
UART and the line is virtual both on the PC and in the end device, the control commands
can be ignored.

An interesting property of this class is that the bulk endpoints transport raw data
without any wrapping frames. By changing the device class in the descriptor table to
255 (Vendor Specific Class), we can retain the messaging functionality of the designated
endpoints and access the device directly using e.g. 1libUSB, while the OS will ignore it and
won’t try to attach any driver that could interfere otherwise. The same trick can be used
to hide the mass storage class when not needed.

B 4.3.3 Interface Association: Composite Class

Since it’s creation, the USB specification expected that each function will have only one
interface enabled at a time. After it became apparent that there is a need for having
multiple unrelated interfaces work in parallel, a workaround called the Interface Association
Descriptor (IAD) was introduced. IAD is an entry in the descriptor table that defines
which interfaces belong together and should be handled by the same software driver.

To use the TAD, the function’s class must be set to 239 (EFh), subclass 2 and protocol

1, so the OS knows to look for the presence of IADs before binding drivers to any interfaces.

In GEX, the IAD is used to tie together the CDC and ACM interfaces while leaving
out the MSC interface which should be handled by a different driver. To make this work,

a new composite class had to be created as a wrapper for the library-provided MSC and
CDC/ACM implementations.
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Chapter §

FreeRTOS

FreeRTOS is a free, open-source real time operating system kernel that has been ported
to over 30 microcontroller architectures. The kernel provides a scheduler and implements
queues, semaphores and mutexes that are used for message passing between concurrent
tasks and for synchronization. FreeRTOS is compact designed to be easy to understand;
it’s written in C with the exception of some architecture-specific routines that use assembly.

FreeRTOS is used in GEX for its synchronization objects and queues that make it easy
to safely pass messages from USB interrupts to a working thread that processes them and
sends back responses. Similar mechanism is used to handle external interrupts.

B 5.1 Basic FreeRTOS Concepts and Functions

B 511 Tasks

Threads in FreeRTOS are called tasks. Each task is assigned a memory area to use as its
stack space, and a structure with it’s name, saved context and other metadata used by the
kernel. A context includes the program counter, stack pointer and other register values.
Task switching is done by saving and restoring this context by manipulating the values on
stack before leaving and interrupt.

At start-up the firmware initializes the kernel, registers tasks to run and starts the
scheduler. From this point onward the scheduler is in control and runs the tasks using
a round robin scheme. Which task should run is primarily determined by their priority
numbers, but there are other factors. FreeRTOS supports both static and dynamic object
creation, including registering new tasks at run-time.

Il Task Run States

Tasks can be in one of four states: Suspended, Ready, Blocked, Running. The Suspended
state does not normally occur in a task’s life cycle, it’s entered and left using API calls on
demand. A task is in the Ready state when it can run, but is currently paused because a
higher priority task is running. It enters the Running state when the scheduler switches to
it. A Running task can wait for a synchronization object (e.g. a mutex) to be available. At
this point it enters a Blocked state and the scheduler runs the next Ready task. When no
tasks can run, the Idle Task takes control; it can either enter a sleep state to save power, or
wait in an infinite loop until another task is available.
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B Task Switching and Interrupts

Task switching occurs periodically in a SysTick interrupt, usually every 1ms. After one
tick of run time, the running task is paused (enters Ready state), or continues to run if
no higher priority task is available. If a high priority task waits for an object and this is
made available in an interrupt, the previously running task is paused and the waiting task
is resumed immediately (enters the Running state).

Only a subset of the FreeRTOS API can be accessed from interrupt routines, for example
it’s not possible to use the delay function or wait for an object with a timeout, because the
SysTick interrupt which increments the tick counter has the lowest priority and couldn’t
run. This is by design to prevent unexpected context switching in nested interrupts.

FreeRTOS uses a priority inheritance mechanism to prevent situations where a high
priority task waits for an object held by a lower priority task (called priority inversion).
The blocking task’s priority is temporarily raised to the level of the blocked high priority
task so it can finish faster and release the held object. Its priority is then degraded back to
the original value. When the lower priority task itself is blocked, the same process can be
repeated.

B 5.1.2 Synchronization Objects

FreeRTOS provides binary and counting semaphores, mutexes and queues.

Binary semaphores can be used for task notifications, e.g. a task waits for a semaphore
to be set by an interrupt when a byte is received on the serial port. This makes the task
Ready and if it has a higher priority than the previously running task, it’s immediately
resumed to process the event.

Counting semaphores are used to represent available resources. A pool of resources (e.g.
DMA channels) is accompanied by a counting semaphore, so that tasks can wait for a
resource to become available in the pool and then subtract the semaphore value. After
finishing with a resource, the semaphore is incremented again and another task can use it.

Mutexes, unlike semaphores, must be taken and released in the same thread (task).
They’re used to guard exclusive access to a resource, such as transmitting on the serial port.
When a mutex is taken, a task that wishes to use it enters Blocked state and is resumed
once the mutex becomes available and it can take it.

Queues are used for passing messages between tasks, or from interrupts to tasks. Both
sending and receiving queue messages can block until the operation becomes possible.

In GEX, mutexes and semaphores are used for sending messages to the PC, and a queue
is used for processing received bytes and to send messages from interrupts, because it’s not
possible to block on a mutex or semaphore while inside an interrupt routine.
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Chapter 6

The FAT16 Filesystem and Its Emulation
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Chapter 7

Supported Hardware Buses

B 71 UART and USART

The Universal Synchronous / Asynchronous Receiver Transmitter has a long history and is
still in widespread use today. It is the protocol used in RS-232, which can be considered
a predecessor of USB in some aspects. RS-232 was once a common way of connecting
modems, printers, mice and other devices to personal computers. UART framing is also
used in the industrial bus RS-485.

UART, as implemented by microcontrollers, is a two-wire full duplex interface that uses
3.3V or 5V logic levels. The data lines are high when idle. A frame starts by a start-bit
(low) followed by n data bits (typically eight), an optional parity bit and 0.5 to 2 stop bits
(high). Variants with fewer or more bits exist, especially in older hardware. The parity bit
can be odd, even, or missing entirely. A stop bit is usually 1 clock cycle long; other lengths
are used in protocols derived from UART, such as in the SmartCard interface.

UART and USART are two variants of the same interface. USART includes a clock
signal and should therefore support higher frequencies. UART timing relies on a well-known
clock speed and is synchronized by start bits. In RS-232 the two data lines (Rx and Tx)
are accompanied by RTS (Ready To Send), CTS (Clear To Send) and DTR (Data Terminal
Ready) that facilitate handshaking and hardware flow control.

B 7.2 sPI

SPI (Serial Peripheral Interface) is a point-to-point or multi-drop master-slave interface
based on shift registers. It uses at least 4 wires: SCK (Serial Clock), MOSI (Master Out
Slave In), MISO (Master In Slave Out) and SS (Slave Select). SS is often marked CSB
(Chip Select Bar) or NSS (Negated Slave Select) to indicate it’s active low. Slave devices
are addressed using their Slave Select input while the other wires are shared. A slave that’s
not addressed releases the MISO line to a high impedance state so it doesn’t interfere in
ongoing communication.
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7. Supported Hardware Buses

Transmission and reception on the SPI bus happen at the same time. A bus master
asserts the SS pin of a slave it wishes to address and then sends data on the MOSI line
while receiving a response on MISO. The slave doesn’t know the command before the first
byte is completed, so it usually responds with zeros or sends a status byte in this phase.

SPI devices often provide a number of control, configuration and status registers that
can be read and written by the bus master. The first byte of a command usually contains
one bit that determines if it’s a read or write access, and an address field selecting the
target register.

B 73 12C

Last of the three common protocols covered here is be 12C. It’s a two-wire, open-drain bus
that supports multi-master operation. 12C is more complicated than either UART or SPI;
it supports 3 speeds .

B 7.4 1-Wire

1-Wire uses a bi-directional data line that can also power the connected devices, giving the
bus its name. TODO ,,,,,

] 7-5 NeoPixel
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Chapter 8

Application Structure

GEX was designed to be modular and easy to extend. At its core lies a general framework
that provides services to the functional blocks configured and used by the user script
running on the host PC. Functional blocks, or internally called units, implement functions
like SPI, 12C, GPIO access etc.

In this chapter we’ll focus on the general function of the GEX module, look at imple-
mentation details of the core framework, and in the next chapter some space will be given
to each of the functional blocks.

A writing style note: This and the following parts were written after implementing and
evaluating the first hardware prototype and its firmware, therefore rather than describing
the development process, it tends to talk about the completed solution. All design choices
will nevertheless be explained as well as possible.

. 8.1 User’s View of GEX

Before going into implementation details, we’ll have a look at GEX from the outside, how
an end user will see it. This should give the reader some context to better orient themselves
in the following sections and chapters investigating the internal structure of the firmware
and the communication protocol.

The GEX firmware can be flashed to a STM32 Nucleo or Discovery board or a custom
PCB. It’s equipped with a USB connector to connect to the host PC. GEX loads its
configuration from the non-volatile memory, configures its peripherals, sets up the function
blocks and enables the selected communication interface(s). When USB is connected to
the board, the PC enumerates it and either recognizes the communication interface as
CDC/ACM (Virtual serial port), or leaves it without a software driver attached, to be
accessed directly as raw USB endpoints. This can be configured. The user can now access
the functional blocks using the client library and the serial protocol, as well as modify the
configuration files.

The board is equipped with a button or a jumper labeled LOCK. When the button is
pressed or the jumper removed, the Mass Storage USB interface is enabled. For the user
this means a new disk will be detected by their PC’s operating system that they can open
in a file manager. This disk provides read and write access to configuration INI files and
other files with useful information, like a list of supported features and available hardware
resources. The user now edits a configuration file and saves it back to the disk. GEX
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processes the new content, tries to apply the changes and generates an updated version of
the file that includes error messages if there was a problem. For the PC OS to recognize
this change, the Mass Storage device momentarily reports that the media is unavailable to
force the OS to reload it. This is a similar mechanism to what happens when a memory
card is removed from a reader. Now the user must reload the file in their editor, inspect the
updated content and perform any changes needed. The settings, when applied successfully,
should now be available to test using the communication interface. When everything is
to the user’s satisfaction, the updated settings are committed to the device’s non-volatile
memory by pressing the LOCK button again, or replacing the jumper.

For boards without a USB re-enumeration capability (notably with older microcontrollers
like the STM32F103) that use a jumper, this must be removed before plugging the board
to the host USB so that the Mass Storage is enabled immediately at start-up and a
re-enumeration is not needed.

In the case when a wireless communication module is installed on the PCB and GEX
is configured to use it, this will be used as a fallback when the USB peripheral does not
receive an address (get enumerated) within a short time after start-up. The wireless link
works in the same way as any other communication interface: it can be used to read and
modify the configuration files and to access the functional blocks. To use it, the user needs
to connect a wireless gateway module to their host PC and use the radio link instead of a
USB cable. The gateway could support more than once GEX board at once.

Now that GEX is connected and configured, the user can start using it. This involves
writing a program in C or Python that uses the GEX client library, using the Python
library from MATLAB, or controlling GEX using a GUI front-end built on those libraries.
The configuration can be stored in the module, but it’s also possible to temporarily (or
permanently) replace it using the communication API. This way the settings can be loaded
automatically when the user’s program starts.

B 8.2 The Core Framework Functions

The core framework forms the skeleton of the firmware and usually doesn’t need any changes
when new user-facing features are added. It provides:

o Hardware resource allocation

e Settings storage and loading

e Functional block initialization

o Communication port with different back-ends (USB, UART, wireless)

e Message sending and delivery

e Interrupt management and routing to functional blocks

o Virtual mass storage to allow editing of the configuration files
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When the firmware needs to be ported to a different STM32 microcontroller, the core
framework is relatively straightforward to adapt and the whole process can be accomplished
in a few hours. The time consuming part is modifying the functional blocks to work
correctly with the new device’s hardware.

B 8.2.1 Source Code Layout

Looking at the source code repository, at the root we’ll find device specific driver libraries
and files provided by ST Microelectronics, the FreeRTOS middleware, and a folder User
containing the GEX firmware. This folder is a git submodule. The GEX core framework
consists of everything in User, excluding the units folder. The USB Device library, which
had to be modified to support a composite class, is stored inside the User folder as well.
Hardware configuration, such as the status LED position or clock settings, are defined using
compile flags set in the top level Makefile.

B 8.3 Functional Blocks

GEX’s functional blocks, internally called units, have been mentioned a few times but until
now haven’t been properly explained. GEX’s user-facing functions are implemented in unit
drivers. Those are stand-alone modules that the user can enable and configure using the
configuration file. In principle, there can be multiple instances of each unit type. However,
in practice, we have to work with hardware constraints: there is only one ADC peripheral,
two SPI ports and so on. This limitation is handled using resource allocation, as explained
below.

Each unit is defined by a section in the configuration file UNITS.INI. It is given a name
and a callsign, a number which serves as an address for messages from the host PC, or,
conversely, to indicate which unit sent an event report (such as a pin change interrupt). A
unit is internally represented by an object that holds its configuration, internal state, and a
link to the unit driver. The driver handles commands sent from the host PC, initializes
and de-initializes the unit based on its settings and implements other aspects of a unit’s
function, such as periodic updates and interrupt handling.

B 8.4 Resource Allocation

The microcontroller provides a number of hardware resources that require exclusive access:
GPIO pins, peripheral blocks (SPI, I2C, UART...), and DMA channels. When two units
tried to control the same pin, the results would be unpredictable; worse, with a multiple
access to a serial port, the output would be a mix of the data streams and completely
useless.

To prevent multiple access, the firmware includes a resource registry. Fach individual
resource is represented by a field in a resource table together with its owner. Initially, all
resources are free, except those not available on the particular platform (i.e. a GPIO port E
may be disabled if not present on the microcontroller’s package). On start-up, the resources
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used by the core framework are taken by a virtual unit SYSTEM to prevent interference
by user’s units. This is the case of the status LED, the LOCK button, GPIO pins used for
connecting USB, communication UART, the wireless module and the crystal oscillator, as
well as the timer/counter which keeps the system timebase.

[] 8.5 Settings Storage

The system and unit settings are written, in a binary form, into designated pages of the
microcontroller’s Flash memory. The unit settings serialization and parsing is implemented
by the respective unit drivers.

As the settings persist after a firmware update, it’s important to maintain backwards
compatibility. This is achieved by prefixing the unit’s settings by a version number. When
the settings are loaded by a new version of the firmware, it first checks the version and
decides whether to use the old or new format. When the settings are next changed, the
new format will be used.

The mentioned INI files that can be edited through the communication API or using a
text editor with the virtual mass storage, are parsed and generated on demand and are
never stored in the Flash or RAM, other than in short temporary buffers. The INI parser
processes the byte stream on-the-fly as it is received, and a similar method is used to build
a INI file from the configured units and system settings.

B 8.6 Communication Ports

The firmware supports three different communication ports: hardware UART, USB (virtual
serial port), and a wireless connection. Each interface is configured and accessed in a
different way, but for the rest of the firmware (and for the PC-side application) they all
appear as a full duplex serial port. To use interfaces other than USB, the user must
configure those in the system settings (a file SYSTEM.INI on the configuration disk).

At start-up, the firmware enables the USB peripheral, configures the device library and
waits for enumeration by the host PC. When not enumerated, it concludes the USB cable
is not connected, and tries some other interface. The UART interface can’t be tested as
reliably, but it’s possible to measure the voltage on the Rx pin. When idle, a UART Rx
line should be high (here 3.3 V). The wireless module, when connected using SPI, can be
detected by reading a register with a known value and comparing those.

38



8.7. Message Passing

B 8.6.1 USB Connection

GEX uses vid:pid 1209:4c60 and the wireless gateway 1209:4c61. The USB interface uses
the CDC/ACM USB class (4.3.2) and consists of two bulk endpoints with a payload size of
up to 64 bytes.

B 8.6.2 Communication UART

The parameters of the communication UART (such as the baud rate) are defined in
SYSTEM.INI. It’s mapped to pins PA2 and PA3; this is useful with STM32 Nucleo
boards that don’t include a User USB connector, but provide a USB-serial bridge using the
on-board ST-Link programmer, connected to those pins.

This is identical to the USB connection from the PC application’s side, except a physical
UART is necessarily slower and does not natively support flow control. The use of the Xon
and Xoff software flow control is not practical with binary messages that could include
those bytes by accident, and the ST-Link USB-serial adapter does not implement hadware
flow control.

B 8.6.3 Wireless Connection

The wireless connection uses an on-board communication module and a separate device, a
wireless gateway, that connects to the PC. The wireless gateway is interfaced differently
from the GEX board itself, but it also shows as a virtual serial port on the host PC. This is
required to allow communicating with the gateway itself through the CDC/ACM interface
in addition to addressing the end devices.

This interface will be explained in more detail in chapter XX.

[] 8.7 Message Passing

One of the key functions of the core framework is to deliver messages from the host PC
to the right units. This functionality resides above the framing protocol, which will be
described in chapter XX .

A message that is not a response in a multi-part session (this is handled by the framing
library) is identified by its Type field. Two main groups of messages exist: system messages
and unit messages. System messages can access the INI files, query a list of the available
units, restart the module etc. Unit messages are addressed to a particular unit by their
callsign (see 8.3), and their payload format is defined by the unit driver. The framework
reads the message type, then the callsign byte, and tries to find a matching unit in the unit
list. If no unit with the callsign is found, an error response is sent back, otherwise the unit
driver is given the message to handle it as required.

The framework provides one more messaging service to the units: event reporting. An
asynchronous event, such as an external interrupt, an ADC trigger or an UART data
reception needs to be reported to the host. This message is annotated by the unit callsign
so the user application knows it’s origin.
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