
Master Thesis

Czech

Technical

University

in Prague

F3 Faculty of Electrical Engineering

Department of Measurement

Learning and automation GPIO platform

Ondřej Hruška

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Sensors and Instrumentation
2018

ii

iv

Declaration

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze, 27. května 2018

...

v

Acknowledgements

blabla

vi

Abstract
This thesis documents the development of a general purpose software and hardware
platform for interfacing low level hardware from high level programming languages and
applications run on a PC, using USB and also wirelessly.

The requirements of common engineering tasks and problems occurring in the university
environment were evaluated to design an extensible, reconfigurable hardware module that
would make a practical, versatile, and low cost tool that in some cases also eliminates the
need for professional measurement and testing equipment.

Several hardware prototypes and control libraries in programming languages C and
Python have been developed. The Python library additionally integrates with MATLAB
scripts. The devices provide access to a range of hardware buses and low level features
and can be reconfigured using configuration files stored inside its permanent memory.

Keywords:

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.

Abstrakt
Tato práce popisuje vývoj univerzální softwarové a hardwarové platformy pro přístup
k hardwarovým sběrnicím a elektrickým obvodům z prostředí vysokoúrovňových progra-
movacích jazyků a aplikací běžících na PC, a to za využití USB a také bezdrátově.

Byly vyhodnoceny požadavky typických problémů, vyskytujících se v praxi při práci
s vestavěnými systémy a ve výuce, pro návrh snadno rozšiřitelného a přenastavitleného
hardwarového modulu který bude praktickým, pohodlným a dostupným nástrojem který
navíc v některých případech může nahradit profesionální laboratorní přístroje.

Bylo navrženo několik prototypů hardwarových modulů, spolu s obslužnými knihovnami
v jazycích C a Python; k modulu lze také přistupovat z prostředí MATLAB. Přístroj
umožňuje přístup k většině běžných hardwarových sběrnic a umožňuje také např. měřit
frekvenci a vzorkovat či generovat analogové signály.

Klíčová slova:

Překlad názvu: Výuková a automatizační GPIO platforma

vii

Contents
Part I

Introduction

1 Motivation 3

1.1 The Project’s Expected Outcome . 4

2 Requirement Analysis 7

2.0.1 Interfacing Intelligent Modules . 7

2.0.2 Analog Signal Acquisition . 7

2.0.3 Analog Signal Output . 8

2.0.4 Logic Level Input and Output . 8

2.0.5 Pulse Generation and Measurement . 8

2.1 Connection to the Host Computer . 8

2.1.1 Messaging . 8

2.1.2 Configuration Files . 9

2.2 Planned Feature List . 9

2.3 Microcontroller Selection . 10

2.4 Form Factor Considerations . 10

3 Existing Solutions 13

3.1 Bus Pirate . 13

3.2 Raspberry Pi . 14

3.3 Professional DAQ Modules . 14

3.4 The Firmata Protocol . 15

Part II
Theoretical Background

4 Universal Serial Bus 19

4.1 Basic Principles and Terminology . 20

4.2 USB Physical Layer . 23

4.3 USB Classes . 23

4.3.1 Mass Storage Class . 24

4.3.2 CDC/ACM Class . 24

4.3.3 Interface Association: Composite Class . 25

viii

5 FreeRTOS 27

5.1 Basic FreeRTOS Concepts and Functions . 27

5.1.1 Tasks . 27

5.1.2 Synchronization Objects . 28

6 The FAT16 Filesystem and Its Emulation 29

7 Supported Hardware Buses 31

7.1 UART and USART . 31

7.1.1 Examples of Devices Using UART . 31

7.2 SPI . 32

7.2.1 Examples of Devices Using SPI . 32

7.3 I2C . 33

7.3.1 Examples of Devices Using I2C . 34

7.4 1-Wire . 34

7.4.1 Examples of Devices Using 1-Wire . 35

7.5 NeoPixel . 35

8 Additional Hardware Functions 39

8.1 Frequency Measurement . 39

8.2 Waveform Generation . 41

8.2.1 Waveform Generation with DMA and a Timer . 41

8.2.2 Direct Digital Synthesis . 42

Part III
Firmware Implementation

9 Application Structure 47

9.1 User’s View of GEX. 47

9.2 Functions of the Core Framework . 48

9.3 Resource Allocation . 49

9.4 Settings Storage . 49

9.5 Functional Blocks . 50

9.6 Source Code Layout . 51

9.7 Communication Ports . 51

ix

9.7.1 USB Connection . 52

9.7.2 Communication UART . 52

9.7.3 Wireless Connection . 52

9.8 Message Passing . 52

9.9 Interrupt Routing . 53

10 Communication Protocol 55

10.1 Frame Structure . 55

10.2 Message Listeners . 56

10.3 Designated Frame Types in GEX . 56

10.4 Bulk Read and Write Transactions . 57

10.4.1 Bulk Read . 57

10.4.2 Bulk Write . 58

10.4.3 Persisting the Changed Configuration to Flash . 58

10.5 Reading a List of Units . 58

10.6 Unit Requests and Reports . 59

10.6.1 Unit Requests . 59

10.6.2 Unit Reports . 59

11 Wireless Interface 61

Part IV
Hardware Design

Appendices

x

Figures
1.1 A collection of intelligent sensors and devices . 3

1.2 An early sketch of a universal bench device . 4

2.1 A Discovery board with STM32F072 . 11

2.2 Form factor sketches . 11

3.1 Bus Pirate v.4 (picture by Seeed Studio) . 13

3.2 Raspberry Pi 2 (picture by Raspberry Pi Foundation) . 14

3.3 Professional tools that GEX can replace . 15

4.1 USB hierarchical structure . 19

4.2 A detailed view of the host-device connection (USB specification rev. 1.1) 20

4.3 USB descriptors of a GEX prototype obtained using lsusb -vd vid:pid 22

4.4 NRZI encoding example . 23

4.5 USB pull-ups . 24

7.1 UART frame structure . 32

7.2 SPI master with multiple slaves . 33

7.3 I2C message diagram . 35

7.4 1-Wire topology (by Dallas Semiconductor) . 35

7.5 The 1-Wire DIO pulse timing (by Dallas Semiconductor) 36

7.6 A close-up photo of the WS2812B package, showing the LED driver IC 37

7.7 NeoPixel pulse timing diagram and time constraints table (WS2812 datasheet) 37

8.1 Direct frequency measurement method . 40

8.2 Reciprocal frequency measurement method . 40

8.3 Frequency measurement methods comparison . 41

8.4 A simple implementation of the waveform generator . 42

8.5 A block diagram of a direct digital synthesis waveform generator 42

9.1 An example allocation in the resource registry . 49

9.2 Structure of the settings subsystem . 50

9.3 The general structure of the source code repository . 51

xi

Part I

Introduction

1

2

Chapter 1

Motivation

Prototyping, design evaluation and the measurement of physical properties in experiments
make a daily occurrence in the engineering praxis. Those tasks typically involve the
generation and sampling of electrical signals coming to and from sensors, actuators, and
other circuitry.

In the recent years a wide range of intelligent sensors became available thanks to the
drive for miniaturization in the consumer electronics industry. Those devices often provide
a sufficient accuracy and precision while keeping the circuit complexity and cost low. In
contrast to analog sensors, here the signal conditioning and processing circuits are built
into the sensor itself and we access it using a digital connection.

Figure 1.1: A collection of intelligent sensors and devices, most on breadboard adapters: (from
top left) a waveform generator, a gesture detector, a LoRa and two Bluetooth modules, an air
quality and pressure sensor, a CO2 sensor, a digital compass, an accelerometer, a GPS module,
a camera, an ultrasonic range finder, a humidity sensor, a 1-Wire thermometer, a color detector
and an RGB LED strip.

To conduct experiments with those integrated modules, or even just familiarize ourselves
with a device before using it in a project, we need a way to easily interact with them. It’s
also convenient to have a direct access to hardware, be it analog signal sampling, generation,
or even just logic level inputs and outputs. However, the drive for miniaturization and

3

1. Motivation..
the advent of USB (Universal Serial Bus) lead to the disappearance of low level computer
ports, such as the printer port (LPT), that would provide an easy way of doing so.

Today, when one wants to perform measurements using a digital sensor, the usual route is
to implement an embedded firmware for a microcontroller that connects to the PC through
USB, or perhaps just shows the results on a display. This approach has its advantages,
but is time-consuming and requires knowledge entirely unrelated to the measurements we
wish to perform. It would be advantageous to have a way to interface hardware without
having to burden ourselves with the technicalities of the connection, even at the cost of
lower performance compared to a specialized device or a professional tool.

The design and implementation of such a universal instrument is the object of this work.
For technical reasons, such as naming the source code repositories, we need a name for the
project; it’ll be hereafter called GEX, a name originating from "GPIO Expander".

1.1 The Project’s Expected Outcome

It’s been a desire of the author to create an universal instrument connecting low level
hardware to a computer for many years, and with this project it is finally being realized.
Several related projects approaching this problem from different angles can be found on
the internet; those will be presented in chapter 3. This project should not end with yet
another tinkering tool that will be produced in a few prototypes and then forgotten. By
building an extensible, open-source platform, GEX can become the foundation for future
projects which others can expand, re-use and adapt to their specific needs.

Figure 1.2: An early (2016) sketch of a universal bench device including a power supply,
electronic load, a signal generator and a bus module. The bottom half of the panel is in a large
part implemented by GEX.

Building on the experience with earlier embedded projects, a STM32 microcontroller
shall be used. Those are ARM Cortex M devices with a wide range of hardware peripherals
that appear be a good fit for the project. Low-cost evaluation boards are widely available
that could be used as a hardware platform instead of developing a custom PCB. In addition,
those chips are relatively cheap and popular in the embedded hardware community; there’s

4

............................... 1.1. The Project’s Expected Outcome

a good possibility of the project building a community around it and growing beyond what
will be presented in this paper.

Besides the use of existing development boards, custom PCBs will be developed in
different form factors. Those could use the Arduino connector or the Raspberry Pi Zero
GPIO header (and board shape) to exploit the cases and boxes available for the minicomputer
on the market, as well as add-on boards (shields and HATs).

The possibilities of wireless connection should be evaluated. This feature should make
GEX useful e.g. in mobile robotics or when installed in poorly accessible locations.

5

6

Chapter 2

Requirement Analysis

We’ll now investigate some situations where GEX could be used, to establish its requirements
and desired features.

2.0.1 Interfacing Intelligent Modules

When adding a new digital sensor or a module to a hardware project, we want to test it
first, learn how to properly communicate with it and confirm its performance. Based on
this evaluation we decide whether the module matches our expectations and learn how to
properly connect it, which is needed for a successful PCB layout.

In experimental setups, this may be the only thing we need. Data can readily be collected
after just connecting the module to a PC, same as commanding motor controllers or other
intelligent devices.

A couple well known hardware buses have established themselves as the standard ways
to interface digital sensors and modules: SPI, I2C and UART are the most used ones, often
accompanied by a few extra GPIO lines such as Reset, Chip Enable, Interrupt. There
are exceptions where silicon vendors have developed proprietary communication protocols
that are still used, either for historical reasons or because of their specific advantages. An
example is the 1-Wire protocol used by digital thermometers.

Moving to industrial and automotive environments, we can encounter various fieldbuses,
Ethernet, CAN, current loop, HART, LIN, DALI, RS485 (e.g. Modbus), mbus, PLCBUS
and others. Those typically use transceiver ICs and other circuitry, such as TVS, discrete
filters, galvanic isolation etc. They could be supported using add-on boards and additional
firmware modules handling the protocol. For simplicity and to meet time constraints, the
development of those boards and modules will be left for future expansions of the project.

2.0.2 Analog Signal Acquisition

Sometimes it’s necessary to use a traditional analog sensor, capture a transient waveform
or to just measure a voltage. GEX was meant to focus on digital interfaces, however giving
it this capability makes it much more versatile. Nearly all microcontrollers include an
analog-digital converter which we can use to measure input voltages and, paired with a
timer, to records signals varying in time.

Certain tasks, such as capturing transient effects on a thermocouple when inserted into
a flame (an example from developing fire-proof materials) demand level triggering similar

7

2. Requirement Analysis
to that of oscilloscopes. The converter continuously measures the input voltage and a
timed capture starts only after a set threshold is exceeded. This can be accompanied by a
pre-trigger feature where the timed capture is continuously running and the last sample is
always compared with the threshold, recording a portion of the historic records together
with the following samples.

2.0.3 Analog Signal Output

An analog signal can not only be measured, but it’s often necessary to also generate it.
This could serve as an excitation signal for an experiment, for instance to measure the
characteristic curves of a diode or a transistor. Conveniently, we can at the same time use
GEX’s analog input to record the output.

Generating an analog signal is possible using a pulse-width modulation (PWM) or by a
dedicated digital-analog converter included in many microcontrollers. Higher frequencies or
resolution can be achieved with a dedicated external IC.

2.0.4 Logic Level Input and Output

We’ve covered some more advanced features, but skipped the simplest feature: a direct
access to GPIO pins. Considering the latencies of USB and the PC’s operating system,
this can’t be reliably used for "bit banging", however we can still accomplish a lot with
just changing logic levels - e.g. to control character LCDs, or emulate some interfaces that
include a clock line, like SPI. As mentioned in 2.0.1, many digital sensors and modules use
plain GPIOs in addition to the communication bus for out-of-band signaling or features
like chip selection or reset.

2.0.5 Pulse Generation and Measurement

Some sensors have a variable frequency or a pulse-width modulated (PWM) output. To
capture those signals and convert them to a more useful digital value, we can use the
external input functions of a timer/counter in the microcontroller. Those timers have many
possible configurations and can also be used for pulse counting or a pulse train generation.

2.1 Connection to the Host Computer

2.1.1 Messaging

USB shall be the primary way of connecting the module to a host PC. Thanks to USB’s
flexibility, it can present itself as any kind of device or even multiple devices at once.

The most straightforward method of interfacing the board is by passing binary messages in
a fashion similar to USART (and plain UART can be available as well). We’ll need a duplex
connection to enable command confirmations, query-type commands and asynchronous
event reporting.

8

..................................... 2.2. Planned Feature List

This is possible either using a "Virtual COM port" driver (the CDC/ACM USB class),
or through a raw access to the corresponding USB endpoints. Using a raw access avoids
potential problems with the operating system’s driver interfering or not recognizing the
device correctly; on the other hand, having GEX appear as a serial port makes it easier to
integrate into existing platforms that have a good serial port support (such as National
Instruments LabWindows CVI or MATLAB).

A wireless attachment is also planned; after establishing a connection, the two-way link
should work in a similar manner to UART or USB.

link to where this is better explained

2.1.2 Configuration Files

The module must be easily reconfigurable. Given the settings are almost always going to
be tied on the connected external hardware, it would be practical to have an option to
store them permanently in the microcontroller’s non-volatile memory.

We can load those settings into GEX using the serial interface, which also makes it
possible to reconfigure it remotely when the wireless connection is used. With USB, we can
additionally make the board appear as a mass storage device and expose the configuration
as text files. This approach, inspired by ARM mbed’s mechanism for flashing firmware
images to development kits, avoids the need to create a configuration GUI, instead using
the PC OS’s built-in applications like File Explorer and Notepad. We can expose additional
information, such as a README file with instructions or a pin-out reference, as separate
files on the virtual disk.

2.2 Planned Feature List

Let’s list the features we wish to initially support in the GEX firmware:

• Hardware interfacing functions. I/O pin direct access (read, write), pin change interrupt. Analog input: voltage measurement, sampled capture. Analog output: static level, waveform generation. Frequency, duty cycle, pulse length measurement. Single pulse and PWM generation. SPI, I2C, UART/USART. Dallas 1-Wire. NeoPixel (addressable LED strips)

• Communication with the host computer. USB connection as virtual serial port or direct endpoint access

9

2. Requirement Analysis
. Connection using plain UART.Wireless attachment

• Configuration. Fully reconfigurable, temporarily or permanently. Settings stored in INI files. File access through the communication API or using a virtual mass storage

2.3 Microcontroller Selection

The STM32F072 microcontroller was chosen for the built prototypes and the initial firmware,
owning to it’s low cost, advanced peripherals and the availability of development boards.
GEX can be later ported to other MCUs, like the STM32L072, STM32F103 or STM32F303.

The STM32F072 is a Cortex M0 device with 128KiB of flash memory, 16KiB of RAM
and running at 48MHz. It is equipped with a USB Full Speed peripheral block, a 12-bit
ADC and DAC, a number of general purpose timers/counters, SPI, I2C, and USART
peripherals, among others. It supports crystal-less USB, using the USB SOF packet for
synchronization of the internal 48MHz RC oscillator; naturally, a real crystal resonator
will provide better timing accuracy.

To effectively utilize the time available for this work, only the STM32F072 firmware will
be developed while making sure the planned expansion is as straightforward as possible.

2.4 Form Factor Considerations

It was mentioned in 1.1 that, while the GEX firmware can be used with existing evaluation
boards from ST Microelectronics (figure 2.1), we wish to design and realize a few custom
hardware prototypes that will be smaller, more convenient to use and hopefully also cheaper.
Three possible form factors are drawn in figure 2.2.

Several factors play a role when deciding what the GEX PCB should look like:

The device must be comfortable and easy to use, which affects the choice of the USB
connector, also with respect to cable availability: USB type A is not suitable for desktop
computers where it would have to be plugged in the rear of the computer or in the front
panel, but it may be usable with laptops; USB Mini-B and Micro-B connectors are both
a popular choice in existing kits (e.g. Discovery and Nucleo boards), but Micro-B has a
higher rated number of insertions and the cables are ubiquitous thanks to their use in
mobile phones, therefore this appears to be the better connector choice.link to

the in-
sertion
count
spec

link to
the in-
sertion
count
spec

The PCB size should be kept minimal to save manufacturing costs. When a standard
connector shape and a pin assignment are used we gain the ability to install existing add-on
boards designed for other platforms, like the Arduino or Raspberry Pi. Lastly, when the
entire board shape is copied from an existing commercial product for which we can buy
official or after-market cases, we get an easy access to cases without having to design them
ourselves. This is the case of the Raspberry Pi Zero form factor.

10

.................................. 2.4. Form Factor Considerations

Figure 2.1: A Discovery board with STM32F072 that can be used to run the GEX firmware

Figure 2.2: A sketch of three possible form factors for the GEX hardware prototype. Note the
ESP8266 module which was considered as an option for wireless access but was eventually not
used due to it’s high current usage, unsuitable for battery operation.

11

12

Chapter 3

Existing Solutions

The idea of making it easier to interact with low level hardware from a PC is not new.
Several solutions to this problem have been developed, each with its own advantages and
drawbacks. Some examples will be presented in this chapter.

3.1 Bus Pirate

Figure 3.1: Bus Pirate v.4 (picture by Seeed Studio)

link to pic source page

Bus Pirate, developed by Ian Lesnet at Dangerous Prototypes and manufactured by linklink
Seeed Studio, is a USB-attached device providing access to hardware interfaces like SPI, linklinkI2C, USART and 1-Wire, as well as frequency measurement and direct pin access.

The board aims to make it easy for users to familiarize themselves with new chips and
modules; it also provides a range of programming interfaces for flashing microcontroller
firmwares and memories. It communicates with the PC using a FTDI USB-serial bridge.

Bus Pirate is open source and in scope it’s similar to GEX. It can be scripted and
controlled from languages like Python or Perl, connects to USB and provides a good
selection of hardware interfaces.

The board is based on a PIC16 microcontroller running at 32MHz. Its analog/digital
converter (ADC) only has a resolution of 10 bits (1024 levels). There is no digital/analog

13

3. Existing Solutions.......................................
converter (DAC) available on the chip, making applications that require a varied output
voltage more difficult. Another limitation of the board is its low number of GPIO pins
which may be insufficient for certain applications. The Bus Pirate, at the time of writing,
can be purchased for a price similar to some Raspberry Pi models.

3.2 Raspberry Pi

Figure 3.2: Raspberry Pi 2 (picture by Raspberry Pi Foundation)

The Raspberry Pi’s GPIO header, which can be directly controlled by user applications,
was one of the primary inspirations behind GEX. It can be controlled using C and Python
(among others) and offers general purpose IØ, SPI, I2C, UART and PWM, with other
protocols being easy to emulate thanks to the high speed of the system processor.

The Raspberry Pi is commonly used in schools as a low-cost PC alternative that
encourage students’ interest in electronics, programming and science. The board is often
built into more permanent projects that make use of its powerful processor, such as wildlife
camera traps or home automation projects.

The Raspberry Pi could be used for the same quick evaluations or experiments we want
to perform with GEX, however they would either have to be performed directly on the
mini-computer itself with attached monitor and keyboard, or use some form of remote
access (e.g. SSH). When we have a more powerful computer available, a USB device like
GEX would be more convenient.

3.3 Professional DAQ Modules

Various professional tools that would fulfill our needs exist on the market, but their high price
makes them inaccessible for users with a limited budget, such as hobbyists or students who
would like to keep such a device for personal use. An example is the National Instruments
(NI) "I2C/SPI Interface Device" which also includes several GPIO lines, the NI USB DAQ
module, or some of the Total Phase I2C/SPI gadgets (figure 3.3). The performance GEX
can provide may not always match that of those professional tools, but in many cases it’ll
be a sufficient substitute at a fraction of the cost.

14

.................................... 3.4. The Firmata Protocol

(a) : NI I2C/SPI Interface Device
(b) : NI USB DAQ module

(c) : Total Phase SPI/I2C Host "Aardwark"

Figure 3.3: An example of professional tools that GEX could replace in less demanding scenarios
(pictures taken from marketing materials)

3.4 The Firmata Protocol

links

Firmata is a communication protocol based on MIDI (Musical Instrument Digital
Interface) for passing data to and from embedded microcontrollers. MIDI is mainly used
for attaching electronic musical instruments, such as synthesizers, keyboards, mixers etc.,
to each other or to a PC. Firmata was designed for Arduino as a high level abstraction for
its connection to the PC, typically using a FTDI chip or equivalent.

Implementing Firmata in the GEX firmware would make it possible to use existing
Firmata libraries on the PC side. However, the protocol is limited by the encompassing
MIDI format and isn’t very flexible.

15

16

Part II

Theoretical Background

17

18

Chapter 4

Universal Serial Bus

This chapter presents an overview of the Universal Serial Bus (USB) Full Speed interface,
with focus on the features used in the GEX firmware. USB is a versatile but complex
interface, thus explaining it in its entirety is beyond the scope of this text. References
to external material which explains the protocol in greater detail will be provided where
appropriate. add

those
refs

add
those
refs

Figure 4.1: A diagram from the USB specification rev. 1.1 showing the hierarchical structure
of the USB bus; The PC (Host) controls the bus and initiates all transactions.

19

4. Universal Serial Bus......................................
4.1 Basic Principles and Terminology

review and correct inaccuracies

USB is a hierarchical bus with a single master (host) and multiple slave devices. A
USB device that provides functionality to the host is called a function. Communication
between the host and a function is organized into virtual channels called pipes. Each pipe
is identified by an endpoint number.

Figure 4.2: A detailed view of the host-device connection (USB specification rev. 1.1)

Endpoints can be either unidirectional or bidirectional; the direction from the host to a
function is called OUT, the other direction (function the host) is called IN. A bidirectional
endpoint is technically composed of a IN and OUT endpoint with the same number. All
transactions (both IN and OUT) are initiated by the host; functions have to wait for their
turn. Endpoint 0 is bidirectional, always enabled, and serves as a control endpoint. The
host uses the control endpoint to read information about the device and configure it as
needed.

20

............................... 4.1. Basic Principles and Terminology

There are four types of transfers: control, bulk, isochronous, and interrupt. Each
endpoint is configured for a fixed transfer type.

• Control - initial configuration after device plug-in; also used for other aplication-specific
control messages that can affect other pipes.

• Bulk - used for burst transfers of large messages, commonly e.g. for mass storage
devices

• Isochronous - streaming with guaranteed low latency; designed for audio or video
streams where some data loss is preferred over stuttering

• Interrupt - low latency short messages, used for human interface devices like mice and
keyboards

The endpoint transfer type and other characteristics, together with other information
about the device, such as the serial number, are defined in a descriptor table. This is a
tree-like binary structure defined in the function’s memory. The descriptor table is loaded
by the host to learn about the used endpoints and to attach the right driver to it.

The function’s endpoints are grouped into interfaces. An interface describes a logical
connection of endpoints, such as the reception and transmission endpoint that belong
together. An interface is assigned a class defining how it should be used. Standard classes
are defined by the USB specification to provide a uniform way of interfacing devices of the
same type, such as human-interface devices (mice, keyboards, gamepads) or mass storage
devices. The use of standard classes makes it possible to re-use the same driver software
for devices from different manufacturers. The class used for the GEX’s "virtual COM port"
function was originally meant for telephone modems, a common way of connecting to the
Internet at the time the first versions of USB were developed. A device using this class will
show as /dev/ttyACM0 on Linux and as a COM port on Windows, provided the system
supports it natively or the right driver is installed.

add reference to the document

21

4. Universal Serial Bus......................................
Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 239 Miscellaneous Device
bDeviceSubClass 2
bDeviceProtocol 1 Interface Association
bMaxPacketSize0 64
idVendor 0x0483 STMicroelectronics
idProduct 0x572a
bcdDevice 0.01
iManufacturer 1 MightyPork
iProduct 2 GEX
iSerial 3 0029002F-42365711-32353530
bNumConfigurations 1
Configuration Descriptor:

bLength 9
bDescriptorType 2
wTotalLength 98
bNumInterfaces 3
bConfigurationValue 1
iConfiguration 0
bmAttributes 0x80

(Bus Powered)
MaxPower 500mA
Interface Descriptor:

bLength 9
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 8 Mass Storage
bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk-Only
iInterface 4 Settings VFS
Endpoint Descriptor:

bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Interface Association:
bLength 8
bDescriptorType 11
bFirstInterface 1
bInterfaceCount 2
bFunctionClass 2 Communications
bFunctionSubClass 2 Abstract (modem)
bFunctionProtocol 1 AT-commands (v.25ter)
iFunction 5 Virtual Comport ACM

Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass 2 Communications
bInterfaceSubClass 2 Abstract (modem)
bInterfaceProtocol 1 AT-commands (v.25ter)
iInterface 5 Virtual Comport ACM
CDC Header:

bcdCDC 1.10
CDC Call Management:

bmCapabilities 0x00
bDataInterface 2

CDC ACM:
bmCapabilities 0x06

sends break
line coding and serial state

CDC Union:
bMasterInterface 1
bSlaveInterface 2

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x83 EP 3 IN
bmAttributes 3

Transfer Type Interrupt
Synch Type None
Usage Type Data

wMaxPacketSize 0x0008 1x 8 bytes
bInterval 255

Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 10 CDC Data
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface 6 Virtual Comport CDC
Endpoint Descriptor:

bLength 7
bDescriptorType 5
bEndpointAddress 0x02 EP 2 OUT
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x82 EP 2 IN
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Figure 4.3: USB descriptors of a GEX prototype obtained using lsusb -vd vid:pid

22

..................................... 4.2. USB Physical Layer

4.2 USB Physical Layer

USB uses differential signaling with NRZI encoding (Non Return to Zero Inverted, fig. 4.4)
and bit stuffing. The encoding, together with frame formatting, checksum verification,
retransmission, and other low level aspects of the USB connection are entirely handled by
the USB block in the microcontroller’s silicon; normally we do not need to worry about
those details. What needs more attention are the electrical characteristics of the bus, which
need to be understood correctly for a successful schematic and PCB design.

Figure 4.4: NRZI encoding example

The USB cable contains 4 conductors:

• VBUS (+5V)

• D+

• D–

• Ground

The data lines, D+ and D–, are also commonly labeled DP and DM. This differential
pair should be routed in parallel and kept at approximately the same length.

USB revisions are, where possible, backwards compatible, often even keeping the same
connector shape. The bus speed is negotiated by the device using a 1.5 kΩ pull-up resistor
to 3.3V on one of the data lines: for Full Speed, D+ is pulled high (fig. 4.5), for Low Speed
it’s on D–. The polarity of the differential signals is inverted depending on the used speed.
Some microcontrollers integrate the correct pull-up resistor inside the USB block (including
out STM32F072), removing the need for an external resistor.

When a function wants to be re-enumerated by the host, which is needed to reload
the descriptors and re-attach the correct drivers, it can momentarily remove the pull-up
resistor, which the host will interpret as if the device was plugged out. With an internal
pull-up this can be done by flipping a bit in a control register. An external resistor can be
connected through a transistor controlled by a GPIO pin.

https://www.eevblog.com/forum/projects/driving-the-1k5-usb-pull-up-resistor-on-d/

http://www.beyondlogic.org/usbnutshell/usb2.shtml

The VBUS line supplies power to bus-powered devices. Self-powered devices can leave
this pin unconnected and instead use an external power supply. The maximal current
drawn from the VBUS line is configured using a descriptor and should not be exceeded, but
experiments suggest this is often not enforced.

4.3 USB Classes

This section explains the Mass Storage class and the CDC/ACM class that are used in the
GEX firmware. A list of all standard classes with a more detailed explanation can be found
on the USB.org website at http://www.usb.org/developers/defined_class.

23

http://www.usb.org/developers/defined_class

4. Universal Serial Bus......................................

Figure 4.5: Pull-up and pull-down resistors of a Full Speed function, as prescribed by the USB
specification rev. 2.0

4.3.1 Mass Storage Class

The Mass Storage class (MSC) is supported by all modern operating systems (MS Windows,
MacOS, GNU/Linux, FreeBSD etc.) to support thumb drives, external disks, memory card
readers and other storage devices.

references

The MSC specification defines multiple transport protocols that can be selected using
the descriptors. For it’s simplicity, the Bulk Only Transport (BOT) will be used. BOT uses
two bulk endpoints for reading and writing blocks of data and for the exchange of control
commands and status messages. For the device to be recognized by the operating system, it
must also implement a command set. Most mass storage devices use the SCSI Transparent
command set 1. The command set’s commands let the host read information about the
attached storage, such as its capacity, and check for media presence and readiness to write
or detach. This is used e.g. for the "Safely Remove" function which checks that all internal
buffers have been written to Flash.

links

The MSC class together with the SCSI command set are implemented in a USB Device
library provided by ST Microelectronics. The library also includes a basic CDC/ACM
implementation (see below).

In order to emulate a mass storage device without having a physical storage medium,
we need to generate and parse the filesystem on-the-fly as the host OS tries to access it.
This will be discussed in chapter 6.

4.3.2 CDC/ACM Class

Historically meant for modem communication, this class is now the de facto standard way
of making USB devices appear as serial ports on the host OS. The CDC (Communication
Device Class) uses three endpoints: bulk IN and OUT, and an interrupt endpoint.

1To confirm this assertion, the descriptors of five thumb drives and an external hard disk were analyzed
using lsusb. All but one device used the SCSI command set, one (the oldest thumb drive) used SFF-8070i.
A list of possible command sets can be found in TODO (usb spec overview)

24

...4.3. USB Classes

The interrupt endpoint is used for control commands and notifications while the bulk verify
this vvv
verify
this vvvendpoints are used for useful data. ACM stands for Abstract Control Model and it’s a

CDC’s subclass that defines the control messages format. Since we don’t use a physical
UART and the line is virtual both on the PC and in the end device, the control commands
can be ignored.

An interesting property of this class is that the bulk endpoints transport raw data
without any wrapping frames. By changing the device class in the descriptor table to
255 (Vendor Specific Class), we can retain the messaging functionality of the designated
endpoints and access the device directly using e.g. libUSB, while the OS will ignore it and
won’t try to attach any driver that could interfere otherwise. The same trick can be used
to hide the mass storage class when not needed.

4.3.3 Interface Association: Composite Class

Since it’s creation, the USB specification expected that each function will have only one
interface enabled at a time. After it became apparent that there is a need for having
multiple unrelated interfaces work in parallel, a workaround called the Interface Association
Descriptor (IAD) was introduced. IAD is an entry in the descriptor table that defines
which interfaces belong together and should be handled by the same software driver.

To use the IAD, the function’s class must be set to 239 (EFh), subclass 2 and protocol 1,
so the OS knows to look for the presence of IADs before binding drivers to any interfaces.

In GEX, the IAD is used to tie together the CDC and ACM interfaces while leaving
out the MSC interface which should be handled by a different driver. To make this work,
a new composite class had to be created as a wrapper for the library-provided MSC and
CDC/ACM implementations.

25

26

Chapter 5

FreeRTOS

FreeRTOS is a free, open-source real time operating system kernel that has been ported
to over 30 microcontroller architectures. The kernel provides a scheduler and implements
queues, semaphores and mutexes that are used for message passing between concurrent
tasks and for synchronization. FreeRTOS is compact designed to be easy to understand;
it’s written in C with the exception of some architecture-specific routines that use assembly.

FreeRTOS is used in GEX for its synchronization objects and queues that make it easy
to safely pass messages from USB interrupts to a working thread that processes them and
sends back responses. Similar mechanism is used to handle external interrupts.

5.1 Basic FreeRTOS Concepts and Functions

5.1.1 Tasks

Threads in FreeRTOS are called tasks. Each task is assigned a memory area to use as its
stack space, and a structure with it’s name, saved context and other metadata used by the
kernel. A context includes the program counter, stack pointer and other register values.
Task switching is done by saving and restoring this context by manipulating the values on
stack before leaving and interrupt.

At start-up the firmware initializes the kernel, registers tasks to run and starts the
scheduler. From this point onward the scheduler is in control and runs the tasks using
a round robin scheme. Which task should run is primarily determined by their priority
numbers, but there are other factors. FreeRTOS supports both static and dynamic object
creation, including registering new tasks at run-time.

Task Run States

Tasks can be in one of four states: Suspended, Ready, Blocked, Running. The Suspended
state does not normally occur in a task’s life cycle, it’s entered and left using API calls on
demand. A task is in the Ready state when it can run, but is currently paused because a
higher priority task is running. It enters the Running state when the scheduler switches to
it. A Running task can wait for a synchronization object (e.g. a mutex) to be available. At
this point it enters a Blocked state and the scheduler runs the next Ready task. When no
tasks can run, the Idle Task takes control; it can either enter a sleep state to save power, or
wait in an infinite loop until another task is available.

27

5. FreeRTOS ..
Task Switching and Interrupts

Task switching occurs periodically in a SysTick interrupt, usually every 1ms. After one
tick of run time, the running task is paused (enters Ready state), or continues to run if
no higher priority task is available. If a high priority task waits for an object and this is
made available in an interrupt, the previously running task is paused and the waiting task
is resumed immediately (enters the Running state).

Only a subset of the FreeRTOS API can be accessed from interrupt routines, for example
it’s not possible to use the delay function or wait for an object with a timeout, because the
SysTick interrupt which increments the tick counter has the lowest priority and couldn’t
run. This is by design to prevent unexpected context switching in nested interrupts.

FreeRTOS uses a priority inheritance mechanism to prevent situations where a high
priority task waits for an object held by a lower priority task (called priority inversion).
The blocking task’s priority is temporarily raised to the level of the blocked high priority
task so it can finish faster and release the held object. Its priority is then degraded back to
the original value. When the lower priority task itself is blocked, the same process can be
repeated.

5.1.2 Synchronization Objects

FreeRTOS provides binary and counting semaphores, mutexes and queues.

Binary semaphores can be used for task notifications, e.g. a task waits for a semaphore
to be set by an interrupt when a byte is received on the serial port. This makes the task
Ready and if it has a higher priority than the previously running task, it’s immediately
resumed to process the event.

Counting semaphores are used to represent available resources. A pool of resources (e.g.
DMA channels) is accompanied by a counting semaphore, so that tasks can wait for a
resource to become available in the pool and then subtract the semaphore value. After
finishing with a resource, the semaphore is incremented again and another task can use it.

Mutexes, unlike semaphores, must be taken and released in the same thread (task).
They’re used to guard exclusive access to a resource, such as transmitting on the serial port.
When a mutex is taken, a task that wishes to use it enters Blocked state and is resumed
once the mutex becomes available and it can take it.

Queues are used for passing messages between tasks, or from interrupts to tasks. Both
sending and receiving queue messages can block until the operation becomes possible.

In GEX, mutexes and semaphores are used for sending messages to the PC, and a queue
is used for processing received bytes and to send messages from interrupts, because it’s not
possible to block on a mutex or semaphore while inside an interrupt routine.

28

Chapter 6

The FAT16 Filesystem and Its Emulation

...

29

30

Chapter 7

Supported Hardware Buses

Hardware buses implemented in GEX are presented in this chapter. The description of
each bus is accompanied by several examples of devices that can be interfaced with it. The
reader is advised to consult the official specifications and particular devices’ datasheets for
additional technical details.

7.1 UART and USART

The Universal Synchronous / Asynchronous Receiver Transmitter has a long history and is
still in widespread use today. It is the protocol used in RS-232, which was once a common
way of connecting modems, printers, mice and other devices to personal computers. UART
framing is also used in the industrial bus RS-485.

UART and USART are two variants of the same interface. USART includes a separate
clock signal, while the UART timing relies on a well-known clock speed and the bit clock
is synchronized by start bits. USART was historically used in modems to achieve higher
bandwidth, but is now mostly obsolete.

USART, as implemented by microcontrollers such as the STM32 family, is a two-wire
full duplex interface that uses 3.3V or 5V logic levels. The data lines are in the high logical
level when idle. A frame, pictured in figure 7.1 starts by a start-bit (low level for the period
of one bit) followed by n data bits (typically eight), an optional parity bit and a period of
high level called a stop bit or stop bits, usually between one and two bits long.

RS-232 uses the UART framing, but its logic levels are different: logical 1 is represented
by negative voltages −3 to −25V and logical 0 uses the same range, but positive. To
convert between RS232 levels and TTL (5V) levels, a level-shifting circuit such as the
MAX232 can be used. In RS232, the two data lines (Rx and Tx) are accompanied by RTS
(Ready To Send), CTS (Clear To Send) and DTR (Data Terminal Ready) which facilitate
handshaking and hardware flow control. In practice, those additional signals are often
unused or their function differs; for instance, Arduino boards (using a USB-serial converter)
use the DTR line as a reset signal to automatically enter their bootloader for firmware
flashing.

7.1.1 Examples of Devices Using UART

• MH-Z19B - NDIR CO2 concentration sensor

31

7. Supported Hardware Buses...................................

Figure 7.1: UART frame, as shown by the STM32F072 Reference Manual. Break frames are
used by some UART based protocols, like LIN (Local Interconnect Network).

• NEO-M8 - uBlox GPS module

• ESP8266 with AT firmware - a WiFi module

• MFRC522 - NFC MIFARE reader/writer IC (also supports other interfaces)

7.2 SPI

SPI (Serial Peripheral Interface) is a point-to-point or multi-drop master-slave interface
based on shift registers. The SPI connection with multiple slave devices is depicted in
figure 7.2. It uses at least 4 wires: SCK (Serial Clock), MOSI (Master Out Slave In),
MISO (Master In Slave Out) and SS (Slave Select). SS is often marked CSB (Chip Select
Bar) or NSS (Negated Slave Select) to indicate it’s active low. Slave devices are addressed
using their Slave Select input while the data connections are shared. A slave that’s not
addressed releases the MISO line to a high impedance state so it doesn’t interfere in ongoing
communication.

Transmission and reception on the SPI bus happen simultaneously. A bus master asserts
the SS pin of a slave it wishes to address and then sends data on the MOSI line while
receiving a response on MISO. It’s customary that the slave responds with zeros or a status
byte as the first byte of the response.

SPI devices often provide a number of control, configuration and status registers that
can be read and written by the bus master. The first byte of a command usually contains
one bit that determines if it’s a read or write access, and an address field selecting the
target register.

7.2.1 Examples of Devices Using SPI

• SX1276 - LoRa transceiver

• nRF24L01+ - 2.4GHz ISM band radio module

32

.. 7.3. I2C

Figure 7.2: A SPI bus with 1 master and 3 slaves, each enabled by its own Slave Select signal
(STM32F072 Reference Manual)

• L3GD20 - 3-axis gyroscope

• BMP280 - pressure sensor

• BME680 - air quality sensor

• ENC28J60 - Ethernet controller

• L6470 - intelligent stepper motor driver

• AD9833 - DDS-based DAC / waveform generator (MOSI only)

• ADE7912 - triple Σ-∆ ADC for power metering applications

• SD cards

• SPI-interfaced EEPROMs and Flash memories

7.3 I2C

I2C is a two-wire (SDA–Serial Data, SCL–Serial Clock), open-drain bus that supports
multi-master operation. The protocol was developed by Philips Semiconductor (now NXP

33

7. Supported Hardware Buses...................................
Semiconductors) and until 2006 implementors were required to pay licensing fees, leading
to the development of compatible implementations with different names, such as Atmel’s
Two Wire Interface (TWI) or Dallas Semiconductor’s "Serial 2-wire Interface" (e.g. used in
the DS1307 RTC chip). I2C is the basis of the SMBus and PMBus protocols which add
additional constraints and rules for a more robust operation.

I2C uses two addressing modes: 7-bit and 10-bit. Due to the small address space,
exacerbated by many devices implementing only the 7-bit addressing, collisions between
chips from different manufacturers are common; many devices thus offer several pins to let
the board designer choose a few bits of the address by connecting them to different logic
levels. I2C allows slow slave devices to stop the master from sending more data by holding
the SCL line low at the end of a byte. As the bus is open-drain, the line can’t go high until
all participants release it. This function is called Clock Stretching.

The bus supports multi-master operation, which leads to the problem of collisions.
Multi-master capable devices must implement a bus arbitration scheme as specified by the
I2C standard. This feature is not often used in intelligent sensors and modules; the most
common topology is multi-drop single-master, similar to SPI, with the advantage of using
only two pins on the microcontroller.

7.3.1 Examples of Devices Using I2C

• APDS-9960 - ambient light, proximity and gesture sensor

• L3GD20, BMP280, BME680 - listed as SPI devices, those also support I2C

• DS1307 - RTC; I2C is not mentioned in the entire datasheet, presumably to avoid
paying license fees, but it is fully compatible

• IS31FL3730 - LED matrix driver

• Cameras with an SCCB port can be accessed through I2C

7.4 1-Wire

The 1-Wire bus, developed by Dallas Semiconductor, uses a single bi-directional data line
which can also power the slave devices, reducing the number of required wires to just two
(compare with 3 in I2C and 5 in SPI, all including GND).

1-Wire is open-drain and the communication consists of short pulses sent by the master
and (for bit reading) the line continuing to be held low by the slave. The pulse timing (fig.
7.5) defines if it’s a read or write operation and what bit value it carries. A transaction is
started by a 480us long "reset" pulse send by master and ended by a 1-byte CRC checksum.

1-Wire is a master-slave multi-drop bus. Devices are addressed by their unique 64-bit ID
numbers (called ROMs); those IDs are found by the bus master with the cooperation from
slaves using a ROM search protocol. If only one device is connected, a special command
set can be used to skip addressing.

34

.. 7.5. NeoPixel

Figure 7.3: An I2C message diagram. The frame starts with a start condition and stops with a
stop condition, defined by an SDA edge while SCL is high. The address and data bytes are
acknowledged by the slave by sending a 0 on the open-drain SDA line in the following clock
cycle. A slave can terminate the transaction by sending 1 in place of the acknowledge bit.
(Diagram taken from the I2C specification UM10204 by NXP Semiconductors)

Figure 7.4: 1-Wire topology (by Dallas Semiconductor)

7.4.1 Examples of Devices Using 1-Wire

• DS1820, DS18S20, DS18B20 - digital thermometers

• iButton - contact-read access tokens, temperature loggers etc.

Since 1-Wire is a proprietary protocol, there is a much smaller choice of available devices
and they also tend to be more expensive. The DS18x20 thermometers are, however, popular
enough to warrant the bus’s inclusion in GEX.

7.5 NeoPixel

NeoPixel is a marketing name of the WS2811, WS2812 and compatible intelligent LED
drivers that is commonly used in "addressable LED strips". Those chips include the control
logic, PWM drivers and usually the LED diodes all in one miniature package.

The NeoPixel protocol is unidirectional, using only one data pin. The LED drivers are
chained together. Ones and zeros are encoded by a pulse length on the data pin; after
loading the color data to the LED string, a longer "reset" pulse is issued by the bus master

35

7. Supported Hardware Buses...................................

Figure 7.5: The 1-Wire DIO pulse timing (by Dallas Semiconductor)

and the set colors are displayed. The timing diagram and constraints are shown in figure
7.7.

The NeoPixel timing is very sensitive to pulse length accuracy. Reliable ways to
implement it use DMA with a hardware timer, or a I2S peripheral. An easier method that
does not use any additional hardware resources is implementing the protocol as delay loops
in the firmware; care must be taken to disable interrupts in the sensitive parts of the timing.

36

.. 7.5. NeoPixel

Figure 7.6: A close-up photo of the WS2812B package, showing the LED driver IC

Figure 7.7: NeoPixel pulse timing diagram and time constraints table (WS2812 datasheet)

37

38

Chapter 8

Additional Hardware Functions

In addition to communication buses, described in chapter 7, GEX implements several
measurement and output functions that take advantage of the microcontroller’s peripheral
blocks, such as timers/counters and DAC. The more complicated ones are described here;
simpler functions, such as the raw GPIO access, will be described later together with their
control API.

8.1 Frequency Measurement

Applications like motor speed measurement and the reading of a VCO (voltage-controlled-
oscillator) or VCO-based sensor’s output demand a tool capable of measuring frequency.
This can be done using a laboratory instrument such as the Agilent 53131A. A low cost
solution is to use a timer/counter peripheral of a microcontroller, such as the STM32F072
used in GEX.

Two basic methods to measure frequency exist, each with it’s advantages and drawbacks:

• The direct method (fig. 8.1) is based on the definition of frequency as a number of
cycles n in a fixed-length time window τ (usually 1 s); the frequency is then calculated
as f = n/τ .
One timer generates the time window and its output gates the input of another,
configured as a pulse counter. At the end of the measurement window an interrupt is
generated and we can read the pulse count from the counter’s register.
The direct method has a resolution of 1Hz with a sampling window of 1 s (only a
whole number of pulses can me counted). The resolution can be increased by using a
longer time window, provided the measured signal is stable enough to make averaging
possible without distorting the result.

• The indirect or reciprocal method (fig. 8.2) measures one period T as the time interval
between two pulses and this is then converted to frequency as f = 1/T .
This method needs only one timer/counter. Cycles of the system clock are counted
for the duration of one period on the input pin (between two rising edges). If we
additionally detect the falling edge in between, the counter’s value gives us the duty
cycle when related to the overall period length.
Te reciprocal method’s resolution depends on the counter’s clock speed; if driven
at 48MHz, the tick period is 20.83 ns, which defines the granularity of our time

39

8. Additional Hardware Functions

read data

Pulse counter

gate

timeoutReference
interval timer ISR

Input pin

Figure 8.1: Direct frequency measurement method

read data

Pulse counter

gate

pulse end ISR
Input pin

System clock

Figure 8.2: Reciprocal frequency measurement method

measurement. It is common to measure several pulses and average the obtained values
to further increase the precision.
We can easily achieve a sub-hertz resolution with this method, but its performance
degrades at high frequencies where the time measurement precision becomes insufficient.
The input frequency range can be extended using a hardware prescaller1, which is also
applicable to the direct method, should the measurement of frequencies outside the
counter’s supported range be required. A duty cycle measurement available in this
method can be used to read the output of sensors that use a pulse-width modulation.

Which method to use depends on the frequency we want to measure; the worst-case
measurement errors of both methods, assuming an ideal 48MHz system clock, are plotted
in figure 8.3. It can be seen that the reciprocal method leads in performance up to 7 kHz
where the direct method overtakes it. If a higher error is acceptable, the reciprocal method
could be used also for higher frequencies to avoid a reconfiguration and to take advantage
of its higher speed.

A good approach to a universal measurement, when we don’t know the expected
frequency beforehand, could be to first obtain an estimate using the direct method, and
if the frequency is below the worst-case error crossing point (here 7 kHz), to take a more
precise measurement using the reciprocal method.

The system clock’s frequency, which we use to measure pulse lengths and to gate the
pulse counter, will be affected by tolerances of the used components, the layout of the PCB,
temperature effects etc., causing measurement errors. A higher accuracy could be achieved
using a temperature-compensated oscillator (TCO), or, in the direct method, by using the
synchronization pulse provided by a GPS receiver to time the measurement interval.

1Prescaller is a divider implemented as part of the timer/counter peripheral block that can be optionally
enabled and configured to a desired division factor.

40

.................................... 8.2. Waveform Generation

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

Input frequency [Hz]

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2
W

o
rs

t-
c
a

s
e

 m
e

a
s
u

rm
e

e
n

t
e

rr
o

r
[%

]

Direct method

Reciprocal method

Figure 8.3: Worst-case error using the two frequency measurement methods with an ideal
48MHz timer clock. The crossing lies at 7 kHz with an error of 0.015%, or 1.05Hz.

8.2 Waveform Generation

A waveform generator is a useful tool in many experiments and measurements. A sine
stimulus is the basis of a lock-in amplifier; it can be used to measure impedance; with a
frequency sweep, we can obtain the frequency response of an analog filter, etc. We can, of
course, generate other waveforms, such as a triangle, ramp, or rectangle wave.

The DAC peripheral can produce a DC level on the output pin based on a control word.
When we periodically change its digital input, it produces an analog waveform.

8.2.1 Waveform Generation with DMA and a Timer

A straightforward implementation of the waveform generator is illustrated in figure 8.4.
This approach has its advantages: it’s simple and works entirely in the background, with
no interrupt handling required. It could even be implemented entirely in software, using a
loop periodically updating the DAC values, of course such approach is less flexible and we
would run into problems with asynchronous interrupts.

The highest achievable output frequency largely depends on the size of our look-up table.
For instance, assuming a timer frequency of 48MHz and a 8192-word table, holding one
period of the waveform, the maximum frequency would be short of 6 kHz, whereas if we
shorten the table to just 1024 words, we can get almost 47 kHz on the analog output. The
downside of a shorter table is a lower resolution, which will appear as DC plateaus or steps

41

8. Additional Hardware Functions

 waveform
 look-up
 table

request

DACDMA
circular

trigger

Timer

Output pin

Figure 8.4: A simple implementation of the waveform generator

when observed with an oscilloscope, producing harmonic components similar to those of a
square wave.

A major disadvantage of this simple generation method is given by the limitations
of the used timer, which defines the output frequency. Its output trigger fires when the
internal counter reaches a pre-defined value, after which the counting register is reset.
The counting speed is derived from the system clock frequency fc using a prescaller P
and the set maximum value N . Only output frequencies that can be exactly expressed as
f = fc/(P ·N ·TableSize) can be accurately produced. Still, this simple and efficient method
may be used where fine tuning is not required to take advantage of its fully asynchronous
operation.

8.2.2 Direct Digital Synthesis

There are situations where the simple waveform generation method is not sufficient, partic-
ularly when a fine tuning or on-line frequency and phase changes are required. Those are
the strengths of a signal generation method called Direct Digital Synthesis (DDS).

 waveform
 look-up
 table

DAC

Phase accumulator
32 bits

addressing

n highest bits

Tuning word

trigger
Timer

ISR

Output pin

Figure 8.5: A block diagram of a direct digital synthesis waveform generator

A diagram of a possible DDS implementation in the STM32 firmware is shown in figure
8.5. It is based on a numerically controlled oscillator (NCO). NCO consists of a phase
accumulator register and a tuning word which is periodically added to it at a constant rate
in a timer interrupt handler. The value of the tuning word determines the output waveform

42

.................................... 8.2. Waveform Generation

frequency. The look-up table must have a power-of-two length so that it can be addressed
by the n most significant bits of the phase accumulator. An additional control word could
be added to this address to implement a phase offset for applications like a phase-shift
modulation.

The output frequency is calculated as fout = M · fc
2n

, where M is the tuning word, n
is the bit length of the phase accumulator, and fc is the frequency of the phase-updating
interrupt. The number of bits used to address the look-up table does not affect the output
frequency; the table can be as large as the storage space allows. A tuning word value
exceeding the lower part of the phase accumulator (including bits which directly enter the
look-up address) will cause some values from the table to be skipped. A smaller tuning
word, conversely, makes some values appear on the output more than once. This can be
observed as steps or flat areas on the output. When the tuning word does not evenly divide
2n, that is, the modulo is non-zero, we can also observe jitter.

DDS Implemented in Hardware

DDS may be implemented in hardware, including the look-up table, often together with
the DAC itself, which is then called a Complete DDS. That is the case of e.g. AD9833 from
Analog Devices. As the software implementation depends on a periodic interrupt, it’s often
advantageous to use a component like this when we need higher output frequencies where
the use of an interrupt is not possible. GEX can control an external waveform generator
like the AD9833 using an SPI port.

screenshots of a real demo, also reference to all-about-direct-digital-synthesis.pdf

43

44

Part III

Firmware Implementation

45

46

Chapter 9

Application Structure

GEX is designed to be modular and easy to extend. It’s composed of a set of functional
blocks, sometimes available in more than one instance, which can be configured by the
user to fit their application needs. The firmware is built around a core framework which
provides services to the functional blocks, such as a settings storage, resource allocation,
message delivery and periodic updates.

In this chapter, we will focus on the general function of the GEX module and will look at
the services provided by the core framework. Individual functional blocks and the control
API will be described in the following chapters. referencesreferences

A writing style note: This and the following parts were written after implementing and
evaluating the first hardware prototype and its firmware, therefore rather than describing
the development process, it tends to talk about the completed solution and the decisions
taken.

9.1 User’s View of GEX

Before going into implementation details, we’ll have a look at GEX from the outside, how
an end user will see it. This should give the reader some context to better orient themselves
in the following sections and chapters investigating the internal structure of the firmware
and the communication protocol.

The GEX firmware can be flashed to a STM32 Nucleo or Discovery board or a custom
PCB. It’s equipped with a USB connector to connect to the host PC. GEX loads its
configuration from the non-volatile memory, configures its peripherals, sets up the function
blocks and enables the selected communication interface(s). When USB is connected to
the board, the PC enumerates it and either recognizes the communication interface as
CDC/ACM (Virtual serial port), or leaves it without a software driver attached, to be
accessed directly as raw USB endpoints. This can be configured. The user can now access
the functional blocks using the client library and the serial protocol, as well as modify the
configuration files.

The board is equipped with a button or a jumper labeled LOCK. When the button is
pressed or the jumper removed, the Mass Storage USB interface is enabled. For the user
this means a new disk will be detected by their PC’s operating system that they can open
in a file manager. This disk provides read and write access to configuration INI files and
other files with useful information, like a list of supported features and available hardware

47

9. Application Structure
resources. The user now edits a configuration file and saves it back to the disk. GEX
processes the new content, tries to apply the changes and generates an updated version of
the file that includes error messages if there was a problem. For the PC OS to recognize
this change, the Mass Storage device momentarily reports that the media is unavailable to
force the OS to reload it. This is a similar mechanism to what happens when a memory
card is removed from a reader. Now the user must reload the file in their editor, inspect the
updated content and perform any changes needed. The settings, when applied successfully,
should now be available to test using the communication interface. When everything is
to the user’s satisfaction, the updated settings are committed to the device’s non-volatile
memory by pressing the LOCK button again, or replacing the jumper.

For boards without a USB re-enumeration capability (notably with older microcontrollers
like the STM32F103) that use a jumper, this must be removed before plugging the board
to the host USB so that the Mass Storage is enabled immediately at start-up and a
re-enumeration is not needed.

In the case when a wireless communication module is installed on the PCB and GEX
is configured to use it, this will be used as a fallback when the USB peripheral does not
receive an address (get enumerated) within a short time after start-up. The wireless link
works in the same way as any other communication interface: it can be used to read and
modify the configuration files and to access the functional blocks. To use it, the user needs
to connect a wireless gateway module to their host PC and use the radio link instead of a
USB cable. The gateway could support more than once GEX board at once.

Now that GEX is connected and configured, the user can start using it. This involves
writing a program in C or Python that uses the GEX client library, using the Python
library from MATLAB, or controlling GEX using a GUI front-end built on those libraries.
The configuration can be stored in the module, but it’s also possible to temporarily (or
permanently) replace it using the communication API. This way the settings can be loaded
automatically when the user’s program starts.

9.2 Functions of the Core Framework

The core framework forms the skeleton of the firmware and usually doesn’t need any changes
when new user-facing features are added. It provides the following services:

• Hardware resource allocation (9.3)

• Settings storage and loading (9.4)

• Functional block (units) initialization (9.5)

• The communication port with different back-ends: USB, UART, wireless (9.7)

• Message sending and delivery (9.8)

• Interrupt management and routing to functional blocks (9.9)

• Virtual mass storage for configuration file editing

48

..................................... 9.3. Resource Allocation

When the firmware needs to be ported to a different STM32 microcontroller, the core
framework is relatively straightforward to adapt and the whole process can be accomplished
in a few hours. The time consuming part is modifying the functional blocks to work
correctly with the new device’s hardware.

9.3 Resource Allocation

SPI unit
0x01

PA5

PA6

PA7

PA8

SPI1

DI unit
0x02

PB0

DO unit
0x03

PC0

PC1

PC2

Resource registry

SPI1 0x01

SPI2 -

PA5 0x01

PA6 0x01

PA7 0x01

PA8 0x01

PB0 0x02

PC0 0x03

PC1 0x03

PC2 0x03

PD0 SYSTEM

PD1 N.C.

PD0 - lock button
PD1 - not available

Figure 9.1: An example allocation in the resource registry

The microcontroller provides a number of hardware resources that require exclusive
access: GPIO pins, peripheral blocks (SPI, I2C, UART. . .), DMA channels. If two units
tried to control the same pin, the results would be unpredictable; similarly, with a multiple
access to a serial port, the output would be a mix of the data streams and completely
useless.

To prevent a multiple access, the firmware includes a resource registry (fig. 9.1). Each
individual resource is represented by a field in a resource table together with its owner’s
callsign. Initially all resources are free, except for those not available on the particular
platform (i.e. a GPIO pin PD1 may be disabled if not present on the microcontroller’s
package).

The resources used by the core framework are taken by a virtual unit SYSTEM on start-up
to prevent conflicts with the user’s units. This is the case of the status LED, the LOCK
button, USB pins, the communication UART, the pins and an SPI peripheral connecting
the wireless module, pins used for the crystal oscillator, and the timer/counter which
provides the system timebase.

9.4 Settings Storage

The system and unit settings are written, in a binary form, into designated pages of the
microcontroller’s Flash memory. The unit settings serialization and parsing is implemented
by the respective unit drivers.

As the settings persist after a firmware update, it’s important to maintain backwards
compatibility. This is achieved by prefixing the unit’s settings by a version number. When
the settings are loaded by a new version of the firmware, it first checks the version and

49

9. Application Structure
Binary settings storage

Settings manager
binary storage / INI file
parsing and generation

System settings
options not tied to

individual units

Unit settings

DO driver

SPI driver

ADC driver

UNITS.INI SYSTEM.INI

Unit
Unit
Unit
Unit
Unit

Unit

Drivers create, load and
serialize unit instances,
generate and parse
UNITS.INI sections

Figure 9.2: Structure of the settings subsystem

decides whether to use the old or new format. When the settings are next changed, the
new format will be used.

The INI files, which can be edited through the communication API or using a text editor
with the virtual mass storage, are parsed and generated on demand and are never stored in
the Flash or RAM, other than in short temporary buffers. The INI parser processes the
byte stream on-the-fly as it is received, and a similar method is used to build a INI file
from the configured units and system settings.

add a sample large INI file as an attachment

9.5 Functional Blocks

GEX’s user-facing functions, also called functional blocks or units, are implemented in
unit drivers. Those are independent modules in the firmware that the user can enable and
configure using the GEX configuration files. In principle, there can be multiple instances of
each unit type. However, we are limited by hardware constraints: there may be only one
ADC peripheral, two SPI ports and so on. The mutually exclusive assignment of resources
to units is handled by the resource registry (9.3).

Each unit is defined by a section in the configuration file UNITS.INI. It is given a name
and a callsign, which is a number that serves as an address for message delivery. A unit is
internally represented by a data object with the following structure:

• Name

• Callsign

• Configuration parameters loaded from the unit settings

• State variables updated at run-time by user commands or internal functions

• A reference to the unit driver

The unit driver handles commands sent from the host PC, initializes and de-initializes
the unit based on its settings, and implements other aspects of the unit’s function, such as

50

..................................... 9.6. Source Code Layout

periodic updates and interrupt handling. Unit drivers may expose public API functions to
make it possible to control the unit from a different driver, allowing the creation of "macro
units".

9.6 Source Code Layout

build
firmware.bin
firmware.dfu

Drivers
CMSIS

Device / ST / STM32F0xx
STM32F0xx_HAL_Driver

Middlewares / Third_Party / FreeRTOS
Src

main.c
User

USB / STM32_USB_Device_Library
Class

CDC
MSC
MSC_CDC

Core
platform

plat_compat.h
platform.c

units
adc
digital_out

...
FreeRTOSConfig.h
gex.mk

Makefile

Figure 9.3: The general structure
of the source code repository

Looking at the source code repository (fig. 9.3), at
the root we’ll find device specific driver libraries and
files provided by ST Microelectronics, the FreeRTOS
middleware, and a folder called User containing the
GEX application code. This division is useful when
porting the firmware to a different microcontroller,
as the GEX folder is mostly platform-independent
and can be simply copied (of course, adjustments are
needed to accompany different hardware peripheral
versions etc.). The GEX core framework consists of
everything in the User folder, excluding the units
directory in which the individual units are imple-
mented. Each unit driver must be registered in the
file platform.c to be available for the user to select.
The file plat_compat.c includes platform-specific
headers and defines e.g. which pin to use for a status
LED or the LOCK button.

The USB Device library, which had to be modified
to support a composite class, is stored inside the
User folder too, as it is compatible with all STM32
microcontrollers that support USB.

9.7 Communication Ports

The firmware supports three different communication ports: hardware UART, USB (virtual
serial port), and a wireless connection. Each interface is configured and accessed in a
different way, but for the rest of the firmware (and for the PC-side application) they all
appear as a full duplex serial port. To use interfaces other than USB, the user must
configure those in the system settings (a file SYSTEM.INI on the configuration disk).

At start-up, the firmware enables the USB peripheral, configures the device library and
waits for enumeration by the host PC. When not enumerated, it concludes the USB cable
is not connected, and tries some other interface. The UART interface can’t be tested as
reliably, but it’s possible to measure the voltage on the Rx pin. When idle, a UART Rx
line should be high (here 3.3V). The wireless module, when connected using SPI, can be
detected by reading a register with a known value and comparing those.

51

9. Application Structure
9.7.1 USB Connection

GEX uses vid:pid 1209:4c60 and the wireless gateway 1209:4c61. The USB interface uses
the CDC/ACM USB class (4.3.2) and consists of two bulk endpoints with a payload size of
up to 64 bytes.

9.7.2 Communication UART

The parameters of the communication UART (such as the baud rate) are defined in
SYSTEM.INI. It’s mapped to pins PA2 and PA3; this is useful with STM32 Nucleo boards
that don’t include a User USB connector, but provide a USB-serial bridge using the on-board
ST-Link programmer, connected to those pins.

This is identical to the USB connection from the PC application’s side, except a physical
UART is necessarily slower and does not natively support flow control. The use of the Xon
and Xoff software flow control is not practical with binary messages that could include
those bytes by accident, and the ST-Link USB-serial adapter does not implement hadware
flow control.

9.7.3 Wireless Connection

The wireless connection uses an on-board communication module and a separate device, a
wireless gateway, that connects to the PC. The wireless gateway is interfaced differently
from the GEX board itself, but it also shows as a virtual serial port on the host PC. This is
required to allow communicating with the gateway itself through the CDC/ACM interface
in addition to addressing the end devices.

This interface will be explained in more detail in chapter XX .Link to
tinyframe
descrip-
tion

Link to
tinyframe
descrip-
tion 9.8 Message Passing

One of the key functions of the core framework is to deliver messages from the host PC
to the right units. This functionality resides above the framing protocol, which will be
described in chapter 10.

A message that is not a response in a multi-part session (this is handled by the framing
library) is identified by its Type field. Two main groups of messages exist: system messages
and unit messages. System messages can access the INI files, query a list of the available
units, restart the module etc. Unit messages are addressed to a particular unit by their
callsign (see 9.5), and their payload format is defined by the unit driver. The framework
reads the message type, then the callsign byte, and tries to find a matching unit in the unit
list. If no unit with the callsign is found, an error response is sent back, otherwise the unit
driver is given the message to handle it as required.

The framework provides one more messaging service to the units: event reporting. An
asynchronous event, such as an external interrupt, an ADC trigger or an UART data
reception needs to be reported to the host. This message is annotated by the unit callsign
so the user application knows it’s origin.

52

...................................... 9.9. Interrupt Routing

9.9 Interrupt Routing

Interrupts are an important part of almost any embedded application. They provide a
way to rapidly react to asynchronous external or internal events, temporarily leaving the
main program, jumping to an interrupt handler routine, and then returning back after the
event is handled. Interrupts are also the way FreeRTOS implements multitasking without
a multi-core processor.

In the Cortex-M0-based STM32F072, used in the initial GEX prototypes, the interrupt
handlers table, defining which routine is called for which interrupt, is stored in the program
memory and can’t be changed at run-time. This is a complication for the modular structure
of GEX where different unit drivers may use the same peripheral, and we would want to
dynamically assign the interrupt handlers based on the active configuration. Let’s have
a look at an interrupt handler, in this case handling four different DMA channels, as is
common in STM32 microcontrollers:

void DMA1_Channel4_5_6_7_IRQHandler(void)
{

if (LL_DMA_IsActiveFlag_GI4(DMA1)) { /* handle DMA1 channel 4 */ }
if (LL_DMA_IsActiveFlag_GI5(DMA1)) { /* handle DMA1 channel 5 */ }
if (LL_DMA_IsActiveFlag_GI6(DMA1)) { /* handle DMA1 channel 6 */ }
if (LL_DMA_IsActiveFlag_GI7(DMA1)) { /* handle DMA1 channel 7 */ }

}

It is evident that multiple units might need to use the same interrupt handler, even at
the same time, since each DMA channel is configured, and works, independently. GEX
implements a redirection scheme to accomplish such interrupt sharing: All interrupt handlers
are defined in one place, accompanied by a table of function pointers. When a unit driver
wants to register an interrupt handler, it stores a pointer to it in this redirection table.
Then, once an interrupt is invoked, the common handler checks the corresponding entry in
the table and calls the referenced routine, if any. Conversely, when a unit driver deinitializes
a unit, it removes all interrupt handlers it used, freeing the redirection table slots for other
use.

53

54

Chapter 10

Communication Protocol

GEX can be controlled through a hardware UART, the USB or over a wireless link. To
minimize the firmware complexity, all the three connection methods are handled by the
same protocol stack and are interchangeable.

The communication is organized in transactions. A transaction consists of one or more
messages going in either direction. Messages can be stand-alone, or chained with a response
or a follow-up message using the transaction ID. Both peers, GEX and the client application
running on the PC, are equal in the communication: either side can independently initiate
a transaction at any time.

GEX uses a framing library TinyFrame, developed likewise by the author, but kept
as a separate project for easier re-use in different applications. The library implements
frame building and parsing, checksum calculation and a system of message listeners. An
interested reader may find more technical details and the API in its documentation.

10.1 Frame Structure

Message frames have the following structure:

Header Body

Field SOF Frame ID
Payload
Length

Frame
type

Header
checksum Payload Payload

checksum

Bytes 1 2 2 1 1 ... 1

The field widths shown here are those used in GEX; TinyFrame is flexible and the data
type of all fields can be customized, as well as the checksum type. The SOF byte is always
0x01.

Frame ID, which could be better described as Transaction ID, uniquely identifies each
transaction. The most significant bit is set to a different value in each peer to avoid ID
conflicts, and the rest of the ID field is incremented with each initiated transaction.

55

10. Communication Protocol
10.2 Message Listeners

After sending a message that should receive a response, the peer registers an ID listener
with the ID of the sent message. A response reuses the original frame ID and when it
is received, this listener is called to process it. ID listeners can also be used to receive
multi-part messages re-using the original ID.

Frame type describes the payload and does not have any prescribed format; the values
are defined by application (here, GEX). A type listener may be registered to handle all
incoming messages with a given frame type. It works in a similar way to an ID listener and
has a lower priority.

Each message can be handled by only one listener, unless it explicitly requests the
message to be passed on to a lower priority one. Messages unhandled by any listener are
given to a default listener, which can e.g. write an error to a debug log.

10.3 Designated Frame Types in GEX

The following table lists all frame types used by GEX. It is divided into four logical sections:
General, Bulk Read/Write, Unit Access, and Settings.

Frame type Function Note

0x00 Success Payload depends on context

0x01 Ping GEX responds with Success and its version string

0x02 Error Payload contains the error message

0x03 Bulk Read Offer An offer of data to read using 0x04

0x04 Bulk Read Poll Requesting to read a block of data

0x05 Bulk Write Offer An offer to receive a bulk write transaction

0x06 Bulk Data Used for both reading and writing

0x07 Bulk End Marks the last "Bulk Data" frame

0x08 Bulk Abort

0x10 Unit Request Request from PC to a unit

0x11 Unit Report Spontaneous event generated by a unit

0x20 List Units Read a list of all instantiated units

0x21 INI Read Request a bulk read transaction of an INI file

0x22 INI Write Request a bulk write transaction of an INI file

0x23 Persist Config Write updated configuration to Flash

56

.............................. 10.4. Bulk Read and Write Transactions

10.4 Bulk Read and Write Transactions

The bulk read and write transactions are generic, multi-message exchanges which are used
to transfer the INI configuration files. They could possibly be used by some future unit
requiring to transfer a large amount of data (e.g. to read image data from a camera).

The reason for splitting a long file into multiple messages, rather than sending it all
in one, lies in the hardware limitations of the platform, specifically its small amount of
RAM (the STM32F072 has only 16 kB). A message cannot be processed until its payload
checksum is received and verified; however, the configuration file can have several kilobytes,
owning to the numerous explanatory comments, which would require a prohibitively large
buffer. Further, the GEX module may need some time to process a part of the message
before it can receive more data, which is easily achieved by this multi-part transport where
each chunk must be confirmed before proceeding to the next.

A read or write transaction can be aborted by a frame 0x08 (Bulk Abort) at any time,
though aborting a write transaction may leave the configuration in a corrupt state. As
hinted in the introduction of this chapter, a transaction is defined by sharing a common
frame ID. Thus, all frames in a bulk transaction must have the same ID, otherwise the ID
listeners won’t be called and the transaction will fail.

10.4.1 Bulk Read

To read an INI file, we first send a frame 0x21 (INI Read), specifying the target file in the
payload:

struct Payload_INI_Read {
uint8_t filenum; // 0 - UNITS.INI, 1 - SYSTEM.INI

};

What follows is a standard bulk read transaction with the requested file. GEX offers
the file for reading with a frame 0x03 (Bulk Read Offer):

struct Payload_BulkReadOffer {
uint32_t total_length; // full size of the file in bytes
uint32_t max_chunk_size; // largest chunk that can be read at once

};

Now we can proceed to read the file using 0x04 (Bulk Read Poll), which is always
responded to with 0x06 (Bulk Data), or 0x07 (Bulk End) if this was the last frame. Data
frames have only the useful data as their payload.

The 0x04 (Bulk Read Poll) payload specifies how many bytes we want to read:

struct Payload_BulkReadPoll {
uint32_t max_chunk_size; // how many bytes to read

};

57

10. Communication Protocol
10.4.2 Bulk Write

To overwrite an INI file, we first send a frame 0x22 (INI Write), specifying its size in the
payload. Which file is written is detected automatically from the first INI section.

struct Payload_INI_Write {
uint32_t total_length; // file size in bytes

};

The write request is confirmed by a frame 0x05 (Bulk Write Offer):

struct Payload_BulkWriteOffer {
uint32_t total_length; // the expected file size in bytes
uint32_t max_chunk_size; // largest chunk that can be written at once

};

We can now send the file as a series of frames 0x06 (Bulk Data), or 0x07 (Bulk End) in
the last frame. Each written chunk is confirmed by 0x00 (Success).

10.4.3 Persisting the Changed Configuration to Flash

The written INI file is immediately parsed and the settings are applied. However, those
changes are not persistent: they exist only in RAM and will be lost when the module
restarts. To save the current state to Flash, issue a frame 0x23 (Persist Config). This has
the same effect as pressing the LOCK button (or replacing the LOCK jumper) when the
INI files are edited using the virtual mass storage.

It should be noted that after flashing a firmware, the Flash control registers may remain
in an unexpected state and the module must first be manually restarted before attempting
to persist settings. Otherwise an assertion will fail and the module is restarted by a
watchdog, losing the temporary changes.

10.5 Reading a List of Units

The frame 0x20 (List Units) requests a list of all available units in the GEX module. The
list includes all units’ callsigns, names and types. The response payload has the following
format (in pseudocode, as it can’t be expressed as a C struct like the previous examples):

struct {
uint8_t count;
for all units {

uint8_t callsign;
cstring unit_name; // 0-terminated char array
cstring driver_name;

}
}

58

..................................10.6. Unit Requests and Reports

10.6 Unit Requests and Reports

Frame types 0x10 (Unit Request) and 0x11 (Unit Report) are dedicated to messages sent to
and by unit instances. Each has a fixed header (inside the payload) followed by unit-specific
data.

10.6.1 Unit Requests

Unit requests deliver a message from the host to a unit instance. Unit drivers implements
different commands, each with its own payload structure. The frame 0x10 (Unit Request)
has the following structure:

struct Payload_UnitRequest {
uint8_t callsign;
uint8_t command; // handled by the unit driver
uint8_t payload[]; // size and content depend on the command

};

The most significant bit of the command byte (0x80) has a special meaning: when set,
the message delivering routine responds with 0x00 (Success) after the command completes,
unless an error occurred. That is used to get a confirmation that the message was delivered
and the module operates correctly (as opposed to e.g. a lock-up resulting in a watchdog
reset). Requests which normally generate a response (e.g. reading a value from the unit)
should not be sent with this bit set. As a result of this special treatment of the highest bit,
there can be only 127 different commands per unit.

10.6.2 Unit Reports

Several unit types can produce asynchronous events, such as reporting a pin change or a
triggering condition. The event is timestamped and sent with a frame type 0x11 (Unit
Report):

struct Payload_UnitRequest {
uint8_t callsign;
uint8_t report_type; // defines the payload structure
uint64_t timestamp; // microseconds since power-on
uint8_t payload[]; // size and content depend on the report type

};

59

60

Chapter 11

Wireless Interface

Four methods of a wireless connection have been considered: bluetooth (e.g. CC2541), WiFi
with ESP8266, LoRA or GFSK with SX1276, and a 2.4GHz radio link with NRF24L01+.
Bluetooth was dismissed early for its complexity and ESP8266 for its high consumption in
continuous reception mode, although both solutions might be viable for certain applications
and with more time for evaluation. The SX1276 and NRF24L01+ have both been tested
using the first GEX prototype, confirming its usefulness as a hardware development tool.

11.1 Comparing SX1276 vs. NRF24L01+

61

62

Part IV

Hardware Design

63

64

Appendices

65

66

	Introduction
	Motivation
	The Project's Expected Outcome

	Requirement Analysis
	Interfacing Intelligent Modules
	Analog Signal Acquisition
	Analog Signal Output
	Logic Level Input and Output
	Pulse Generation and Measurement

	Connection to the Host Computer
	Messaging
	Configuration Files

	Planned Feature List
	Microcontroller Selection
	Form Factor Considerations

	Existing Solutions
	Bus Pirate
	Raspberry Pi
	Professional DAQ Modules
	The Firmata Protocol

	Theoretical Background
	Universal Serial Bus
	Basic Principles and Terminology
	USB Physical Layer
	USB Classes
	Mass Storage Class
	CDC/ACM Class
	Interface Association: Composite Class

	FreeRTOS
	Basic FreeRTOS Concepts and Functions
	Tasks
	Synchronization Objects

	The FAT16 Filesystem and Its Emulation
	Supported Hardware Buses
	UART and USART
	Examples of Devices Using UART

	SPI
	Examples of Devices Using SPI

	I2C
	Examples of Devices Using I2C

	1-Wire
	Examples of Devices Using 1-Wire

	NeoPixel

	Additional Hardware Functions
	Frequency Measurement
	Waveform Generation
	Waveform Generation with DMA and a Timer
	Direct Digital Synthesis

	Firmware Implementation
	Application Structure
	User's View of GEX
	Functions of the Core Framework
	Resource Allocation
	Settings Storage
	Functional Blocks
	Source Code Layout
	Communication Ports
	USB Connection
	Communication UART
	Wireless Connection

	Message Passing
	Interrupt Routing

	Communication Protocol
	Frame Structure
	Message Listeners
	Designated Frame Types in GEX
	Bulk Read and Write Transactions
	Bulk Read
	Bulk Write
	Persisting the Changed Configuration to Flash

	Reading a List of Units
	Unit Requests and Reports
	Unit Requests
	Unit Reports

	Wireless Interface

	Hardware Design
	Appendices

