

USB Interface Association Descriptor
Device Class Code and Use Model

Revision 1.0

July 23, 2003

Copyright © 2003, Intel Corporation

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States
and other countries.
* Other names and brands may be claimed as the property of others.

Contributors

John S. Howard Intel Corporation

Brad W. Hosler Intel Corporation

Abdul R. Ismail Intel Corporation

Geert Knapen Philips

Table of Contents

Rev. [1.0] i

Table of Contents

1. OVERVIEW .. 1

2. IAD USE MODEL EXAMPLE ... 2

1. Overview

Rev. [1.0] 1

1. Overview
From day 1 (of the USB specification) there has been ambiguity with respect to whether multi-function devices
should be allowed to use more than one interface per logical function. The core specification did not provide
any specific framework support for multiple interfaces per function, but several Device Working Groups
(DWG) defined device classes using them, with different methods for identifying how the interfaces should be
grouped together. There was a trailing effort in the DWG Common Class group to define a standard method, but
it was late in definition and was never adopted and eventually was decommissioned.

The recent USB 2.0 ECN Interface Association Descriptor (IAD) solves the problem by defining a standard
method in the USB device framework for describing associations of interfaces (and their alternate settings) that
should be bound to the same instance of a device driver.

There exists a legacy issue for new devices that use the IAD (implying interface level binding to device drivers
as opposed to device-level binding) when connected to systems where USB system software does not
understand the IAD. Although the IAD will be ignored, the device may not work as expected because the USB
system software will not properly bind the interfaces with drivers.

The USB core team has allocated a device-level class code that must be included with device implementations
that use the IAD. This provides for the easiest detection of IAD-enabled devices during device enumeration that
will allow installation of a special-purpose function driver that has the capability of correctly parsing the
configuration and locating the appropriate drivers for IAD-enabled devices.

Devices that use the IAD must use the device class, subclass and protocol codes as defined in the example
device descriptor illustrated in Table 1-1. This set of class codes is defined as the Multi-Interface Function
Device Class Codes.

Table 1-1. Example Device Descriptor Using Class Codes for IAD

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant See Table 9-8, USB Specification, Revision 2.0
2 bcdUSB 2 BCD See Table 9-8, USB Specification, Revision 2.0
4 bDeviceClass 1 EFH Miscellaneous Device Class
5 bDeviceSubClass 1 02H Common Class
6 bDeviceProtocol 1 01H Interface Association Descriptor
7 bMaxPacketSize0 1 Number See Table 9-8, USB Specification, Revision 2.0
8 idVendor 2 ID See Table 9-8, USB Specification, Revision 2.0

10 idProduct 2 ID See Table 9-8, USB Specification, Revision 2.0
12 bcdDevice 2 BCD See Table 9-8, USB Specification, Revision 2.0
14 iManufacturer 1 Index See Table 9-8, USB Specification, Revision 2.0
15 iProduct 1 Index See Table 9-8, USB Specification, Revision 2.0
16 iSerialNumber 1 Index See Table 9-8, USB Specification, Revision 2.0
17 bNumConfigurations 1 Index See Table 9-8, USB Specification, Revision 2.0

Section 2 illustrates how the IAD and Multi-Interface Function Class Codes should be used in the device
framework of IAD-enabled devices.

2. IAD Use Model Example

 2

2. IAD Use Model Example
This section provides an illustrative example of how the IAD should be used in a typical device implementation.
The core USB specification does not specify many organizational (positional relationship) requirements on how
the set of descriptors that are returned from a GetDescriptor(Configuration) request should be constructed.
Figure 2-1 illustrates the recommended layout for organizing these descriptors so that host software can easily
parse them and definitively know which descriptors to provide to each function driver. The general
methodology for organizing the descriptor sets is to group them ‘by device function’. This basically means that
all descriptors for a particular device function should always be located ‘together’ (see Figure 2-1 for an
example).

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Device

Config

IAD

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Interface

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Alt Set 0
Alt Set 1

Alt Set 2

Alt Set 0
Alt Set 1

Interface 0

Interface 1

Interface 2
Alt Set 0

Standard Descriptor

Class-Specific (CS)
Descriptor

Interface Association 0

Function Device Driver
X

Function Device Driver
Z

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

IAD

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Interface

CS Interface
CS Interface

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Endpoint

CS Endpoint
CS Endpoint

CS Endpoint

Alt Set 0
Alt Set 1

Alt Set 0
Alt Set 1

Interface 3

Interface 4

Interface Association 1

General
General

General

Function Device Driver
Y

bDeviceClass EFH (Misc)
bDeviceSubClass 02H (Common Class)
bDeviceProtocol 01H (IAD)

Multi-Interface
Function Class Code

bFunctionClass XXH
bFunctionSubClass XXH
bFunctionProtocol XXH

bInterfaceClass XXH
bInterfaceSubClass XXH
bInterfaceProtocol XXH bFunctionClass XXH

bFunctionSubClass XXH
bFunctionProtocol XXH

CS Interface
CS Interface

CS Interface
CS Interface

CS Interface CS Interface
CS Interface

CS Interface
CS Interface

Figure 2-1. Example Device Framework Using Interface Association Descriptors

2. IAD Use Model Example

Rev. [1.0] 3

Additionally, Figure 2-1illustrates how the sets of descriptors should be bound to device drivers. Note there may be
specific (additional) requirements for how class-specific descriptors should be grouped with IAD associations.
Those would be specified in specific device class documents.

At the top of the framework example, the Device Descriptor includes device class, subclass and protocol codes for a
Multi-Interface Function Device Class device.
Next is the configuration descriptor set. At a high level, this particular configuration includes three device functions.
Any descriptors between the configuration descriptor and the first interface or IAD descriptor should be considered
as “global” and be delivered to every function device driver (see example).

The first functional association includes two interfaces (including all class-specific descriptors and alternate
settings). The second device function is a single-interface function and does not require an IAD. The third device
function is similar to the first. For each device function, system software must provide the device driver all of the
descriptors in the ‘association’ as well as the ‘global’ descriptors described above.

The value in the bInterfaceCount field must include all of the interfaces in the intended set. For example, assume a
multi-interface function with interfaces numbered N through M. The bFirstInterface field gets the value of N and
bInterfaceCount gets the value of (M-N)+1.1 Note that each interface can have zero or more alternate settings, but
alternate settings don’t figure into the calculation for bInterfaceCount.

For device functions that use an IAD (like the 1st and 3rd functions in the example), USB system software should
construct ‘hardware identifiers’ used to locate and load a device driver using the idVendor and idProduct from the
Device Descriptor and the bFirstInterface field from the IAD. Further, system software should construct
‘compatibility identifiers’ using the class code fields (bFunctionClass, bFunctionSubClass, bFunctionProtocol) from
the IAD.

1 Recall that all of the interfaces in the association must be number contiguously, so (M-N)+1 arithmetic always
works.

