FAT32 Structure Information - Written by Jack Dobiash
Updated : December 4th, 2005
Looking for FAT16 info? Go here.
Looking for Information on how to Read and Write to your Hard Drive? Go here.
Microsoft has Released Information on the FAT32 File System! Go here to get it!
I've written this page for anyone who wishes to write software that can do low-level reading and writing of a hard drive, and needs to know what the underlying structure of a FAT32 Drive is, in order to interpret the information properly. Basically I've searched all over the web, and have compiled this information in one spot. Hopefully it can be of use to someone. I don't guarantee that all of this information is correct or complete, but so far is seems to have been working for me.
A lot of the number references I've made in this document are in Hexadecimal. Any that are have an 'h' after them. Also, just in case my terminology may be different from yours; a 'WORD' is 2 Bytes and a 'DOUBLE WORD' is 4 Bytes.
Master Boot Record
The Master Boot Record is the same for pretty much all Operating Systems. It is located on the first Sector of the Hard Drive, at Cylinder 0, Head 0, Sector 1. It is the first piece of code that your computer runs after it has checked all of your hardware (POST) and turned control of loading software over the hard drive. It also contains the partition table, which defines the different sections of your hard drive. Basically if anything happens to this little 512 byte section, your hard drive is brain dead. Kinda scary, eh? :)
Offset |
Description |
Size |
000h |
Executable Code (Boots Computer) |
446 Bytes |
1BEh |
1st Partition Entry (See Next Table) |
16 Bytes |
1CEh |
2nd Partition Entry |
16 Bytes |
1DEh |
3rd Partition Entry |
16 Bytes |
1EEh |
4th Partition Entry |
16 Bytes |
1FEh |
Boot Record Signature (55h AAh) |
2 Bytes |
Partition Entry (Part of MBR)
Offset |
Description |
Size |
00h |
Current State of Partition (00h=Inactive, 80h=Active) |
1 Byte |
01h |
Beginning of Partition - Head |
1 Byte |
02h |
Beginning of Partition - Cylinder/Sector (See Below) |
1 Word |
04h |
Type of Partition (See List Below) |
1 Byte |
05h |
End of Partition - Head |
1 Byte |
06h |
End of Partition - Cylinder/Sector |
1 Word |
08h |
Number of Sectors Between the MBR and the First Sector in the Partition |
1 Double Word |
0Ch |
Number of Sectors in the Partition |
1 Double Word |
Cylinder/Sector Encoding
I guess back in the days of 10MB hard drives and 8086's, code was at a premium. So they did everything they could to preserve space. Unfortunately now we have to live with it, but luckily they created new ways of translating the system so the 1024 Cylinder Limit (2^10) isn't too big of a problem, for newer computers, at least. Older ones usually need some sort of Disk Overlay program to make them see the whole hard drive.
Anyway, to get the Sector out of this, you need to apply an AND mask ($3F) to it. To get the Cylinder, you take the high byte and OR it with the low byte that has been AND masked with ($C0) and then Shifted Left Two. It's not very easy to explain, so I'll just show you how I did it with two routines I made (In Pascal) for Encoding and Decoding the Cylinder/Sector. Hopefully even if you don't know Pascal you'll be able to read it.
Function CylSecEncode(Cylinder, Sector : Word) : Word;
Begin
CylSecEncode := (Lo(Cylinder) shl 8) or (Hi(Cylinder) shl 6) or Sector;
End;
Procedure CylSecDecode(Var Cylinder, Sector : Word; CylSec : Word);
Begin
Cylinder := Hi(CylSec) or ((Lo(CylSec) and $C0) shl 2);
Sector := (CylSec and $3F);
End;
15 |
14 |
13 |
12 |
11 |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
Cylinder Bits 7 to 0 |
Cylinder Bits 9+8 |
Sector Bits 5 to 0 |
Partition Type Listing
There are more than just these shown, but I've only included that ones relevant to MS Operating Systems.
Value |
Description |
00h |
Unknown or Nothing |
01h |
12-bit FAT |
04h |
16-bit FAT (Partition Smaller than 32MB) |
05h |
Extended MS-DOS Partition |
06h |
16-bit FAT (Partition Larger than 32MB) |
0Bh |
32-bit FAT (Partition Up to 2048GB) |
0Ch |
Same as 0BH, but uses LBA1 13h Extensions |
0Eh |
Same as 06H, but uses LBA1 13h Extensions |
0Fh |
Same as 05H, but uses LBA1 13h Extensions |
Reading Multiple Partitions
Although having multiple partitions in FAT32 isn't as likely as in FAT16, it still works the same way. The first partition is the Primary Partition, and everything else is stored in the Extended Partition. It's a little tricky when it comes to reading those extra partitions though (not a lot, just a little). The first record in the partition table shows where the Primary partition is (how big it is, where it starts, and where it ends). The second entry in the partition table shows where the Entire Extended Partition is (which may include more than just one partition). To read any more partitions, you go to the where it says the Extended Partition starts, and read the first sector. It acts just like the MBR. It'll have blank where the code is supposed to be, and in the partition table it will have for it's first entry the next Partition in the Drive, and if there are anymore, there will be another Extended partition, just like before. However, all references to Sector Numbers are made using the that new MBR point as the reference, making it a virtual drive. Just incase this doesn't make much sense (and by the way I explain things I can understand if it doesn't), let me show you how a drive with three partitions is setup.
MBR of Whole Drive
Entry #1 - Points to Partition #1
Entry #2 - Points to the Entire Extended PartitionYou would read the first sector of that Extended Partition, and see another MBR Structure.
MBR of Extended Partition
Entry #1 - Points to Partition #2
Entry #2 - Points to Rest of Extended Partition after Partition #2Now, all references to Sector Numbers (most specifically the entry at Offset 08h) in those Entries wouldn't be referenced from the start of the drive, but from the start of the Extended Partition. However, the CHS (Cylinder, Head, Sector) numbers would still be right.
Once again, you would read the first sector of that Extended Partition, and see the next MBR.
MBR of Rest of Extended Partition
Entry #1 - Points to Partition #3
No Entry #2, since this was the Last PartitionIf there were another partition, the pattern would continue just like before, until the last one was reached.
FAT32 Boot Record
This information is located in the first sector of every partition.
Offset |
Description |
Size |
00h |
Jump Code + NOP |
3 Bytes |
03h |
OEM Name (Probably MSWIN4.1) |
8 Bytes |
0Bh |
Bytes Per Sector |
1 Word |
0Dh |
Sectors Per Cluster |
1 Byte |
0Eh |
Reserved Sectors |
1 Word |
10h |
Number of Copies of FAT |
1 Byte |
11h |
Maximum Root Directory Entries (N/A for FAT32) |
1 Word |
13h |
Number of Sectors in Partition Smaller than 32MB (N/A for FAT32) |
1 Word |
15h |
Media Descriptor (F8h for Hard Disks) |
1 Byte |
16h |
Sectors Per FAT in Older FAT Systems (N/A for FAT32) |
1 Word |
18h |
Sectors Per Track |
1 Word |
1Ah |
Number of Heads |
1 Word |
1Ch |
Number of Hidden Sectors in Partition |
1 Double Word |
20h |
Number of Sectors in Partition |
1 Double Word |
24h |
Number of Sectors Per FAT |
1 Double Word |
28h |
Flags (Bits 0-4 Indicate Active FAT Copy) (Bit 7 Indicates whether FAT Mirroring is Enabled or Disabled <Clear is Enabled>) (If FAT Mirroring is Disabled, the FAT Information is only written to the copy indicated by bits 0-4) |
1 Word |
2Ah |
Version of FAT32 Drive (High Byte = Major Version, Low Byte = Minor Version) |
1 Word |
2Ch |
Cluster Number of the Start of the Root Directory |
1 Double Word |
30h |
Sector Number of the File System Information Sector (See Structure Below) (Referenced from the Start of the Partition) |
1 Word |
32h |
Sector Number of the Backup Boot Sector (Referenced from the Start of the Partition) |
1 Word |
34h |
Reserved |
12 Bytes |
40h |
Logical Drive Number of Partition |
1 Byte |
41h |
Unused (Could be High Byte of Previous Entry) |
1 Byte |
42h |
Extended Signature (29h) |
1 Byte |
43h |
Serial Number of Partition |
1 Double Word |
47h |
Volume Name of Partition |
11 Bytes |
52h |
FAT Name (FAT32) |
8 Bytes |
5Ah |
Executable Code |
420 Bytes |
1FEh |
Boot Record Signature (55h AAh) |
2 Bytes |
File System Information Sector
Usually this is the Second Sector of the partition, although since there is a reference in the Boot Sector to it, I'm assuming it can be moved around. I never got a complete picture of this one. Although I do know where the important fields are at.
Offset |
Description |
Size |
00h |
First Signature (52h 52h 61h 41h) |
1 Double Word |
04h |
Unknown, Currently (Might just be Null) |
480 Bytes |
1E4h |
Signature of FSInfo Sector (72h 72h 41h 61h) |
1 Double Word |
1E8h |
Number of Free Clusters (Set to -1 if Unknown) |
1 Double Word |
1ECh |
Cluster Number of Cluster that was Most Recently Allocated. |
1 Double Word |
1F0h |
Reserved |
12 Bytes |
1FCh |
Unknown or Null |
2 Bytes |
1FEh |
Boot Record Signature (55h AAh) |
2 Bytes |
FAT32 Drive Layout
Offset |
Description |
Start of Partition |
Boot Sector |
Start + # of Reserved Sectors |
Fat Tables |
Start + # of Reserved + (# of Sectors Per FAT * 2) <Assuming that FAT Mirroring is Enabled, I personally haven't seen a case where it wasn't, but I guess there is always the possibility> |
Data Area (Starts with Cluster #2) |
Cluster Meaning
A Cluster is a Group of Sectors on the Hard Drive that have information in them. A 4K Cluster has 8 Sectors in it (512*8=4096). Each Cluster is given a spot in the FAT Table. When you look at an Entry in the FAT, the number there tells you whether or not that cluster has data in it, and if so, if it is the end of the data or there is another cluster after it. All Data on a Partition starts with Cluster #2. If the FAT Entry is 0, then there is no data in that cluster. If the FAT Entry is 0FFFFFFFh, then it is the last entry in the chain.
This is one of my biggest holes in my information. I am unable to find anyplace that shows what numbers mean what when it comes to the FAT table. I was able to tell the end of the chain just by looking at a FAT32 Drive, but I don't know what stands for a BAD Cluster or what the maximum valid number for showing data is.
For now, you can calculate the maximum valid cluster in a partition with this formula:
( (# of Sectors in Partition) - (# of Sectors per Fat * 2) - (# of Reserved Sectors) ) / (# of Sectors per Cluster)
If there is any remainder in the answer to that formula, it just means that there were a few extra clusters at the end of the partition (probably not enough to make another cluster), so you can just get rid of anything after the decimal point.
Thanks to Andrew Clausen for pointing this formula out to me.
Directory Table
Another aspect when looking at a File System at Low Level is the Directory Table. The Directory Table is what stores all of the File and Directory Entries. Basically there is only one difference between the Directory Table of FAT16 and FAT32, so go here to look at FAT16's Structure. The Difference is : the Reserved OS/2 Byte (Offset 20 [14h]) in the Short Filename Structure is replaced with the High Word of the Cluster Number (since it's now 4 bytes instead of 2).
Footnotes
1 - LBA = Logical Block Addressing - Uses the Int 13h Extensions built into newer BIOS's to access data above the 8GB barrier, or to access strictly in LBA mode, instead of CHS (Cylinder, Head, Sector).
To support disk drives larger than 137 GB, modern
BIOSs
have extensions for "48-bit LBA" (a/k/a "LBA48")
disk
access. The specifications are here:
http://www.t13.org/Documents/UploadedDocuments/docs2004/d1572r3-EDD3.pdf
or
http://www.t13.org/Documents/UploadedDocuments/docs2004/d1572r3-EDD3.doc
(Thanks to Dave Burton for this Information)
Home Reference Point Software
FAT32 Structure Information FAT16
Structure Information Disk Access Information
About Me Links Dobiash?