
DRAFT

Master Thesis

Czech

Technical

University

in Prague

F3 Faculty of Electrical Engineering

Department of Measurement

Learning and automation GPIO platform

Bc. Ondřej Hruška

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Sensors and Instrumentation
2018

ii

iv

Declaration

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze, 27. května 2018

...

v

Acknowledgements

TODO

vi

Abstract
This thesis documents the development of a general-purpose software and hardware
platform for the interfacing of low-level hardware from high-level programming languages
and applications run on the PC, using USB and also wirelessly.

The requirements of common engineering tasks and problems occurring in the university
environment were evaluated to design an extensible, reconfigurable hardware module that
would make a practical, versatile, and low-cost tool that in some cases eliminates the
need for professional measurement and testing equipment.

Two hardware prototypes were designed and realized, accompanied by control libraries
for programming languages C and Python. The Python library additionally integrates
with MATLAB scripts. The devices provide access to hardware buses (I2C, SPI, USART,
1-Wire) and microcontroller peripherals (ADC, DAC), implement frequency measurement
and other useful features. The device is parametrised by a configuration file on a virtual
disk accessible through USB, or written programmatically.

Keywords:

Supervisor: doc. Ing. Radislav Šmíd, Ph.D.

Abstrakt
Tato práce popisuje vývoj univerzální softwarové a hardwarové platformy pro přístup
k hardwarovým sběrnicím a elektrickým obvodům z prostředí vysokoúrovňových progra-
movacích jazyků a aplikací běžících na PC, a to za využití USB a také bezdrátově.

Byly vyhodnoceny požadavky typických problémů, vyskytujících se v praxi při práci
s vestavěnými systémy a ve výuce, pro návrh snadno rozšiřitelného a přenastavitleného
hardwarového modulu který bude praktickým, pohodlným a dostupným nástrojem který
navíc v některých případech může nahradit profesionální laboratorní přístroje.

Bylo navrženo několik prototypů hardwarových modulů, spolu s obslužnými knihovnami
v jazycích C a Python; k modulu lze také přistupovat z prostředí MATLAB. Přístroj
umožňuje přístup k většině běžných hardwarových sběrnic a umožňuje také např. měřit
frekvenci a vzorkovat či generovat analogové signály.

Klíčová slova:

Překlad názvu: Výuková a automatizační GPIO platforma

vii

Contents
Part I

Introduction

1 Motivation 3

1.1 Expected Outcome . 4

2 Requirement Analysis 5

2.1 Desired Features . 5

2.1.1 Interfacing Intelligent Modules . 5

2.1.2 Analog Signal Acquisition . 6

2.1.3 Analog Signal Output . 6

2.1.4 Logic Level Input and Output . 6

2.1.5 Pulse Generation and Measurement . 6

2.2 Connection to the Host Computer . 7

2.2.1 Communication Interface . 7

2.2.2 Configuration Files . 7

2.3 An Overview of Planned Features . 7

2.4 Microcontroller Selection . 8

2.5 Form Factor Considerations . 8

3 Existing Solutions 11

3.1 Raspberry Pi . 11

3.2 Bus Pirate . 12

3.3 Professional DAQ Modules . 12

Part II
Theoretical Background

4 Universal Serial Bus 17

4.1 Basic Principles and Terminology . 17

4.1.1 Pipes and Endpoints . 17

4.1.2 Transfer Types . 18

4.1.3 Interfaces and Classes . 18

4.1.4 Descriptors . 19

4.2 USB Physical Layer . 21

viii

4.3 USB Classes . 22

4.3.1 Mass Storage Class . 22

4.3.2 CDC/ACM Class . 22

4.3.3 Interface Association: Composite Class . 23

5 FreeRTOS 25

5.1 Basic FreeRTOS Concepts and Functions . 25

5.1.1 Tasks . 25

5.1.2 Synchronization Objects . 26

5.2 Stack Overflow Protection . 27

6 The FAT16 File System and Its Emulation 29

6.1 The General Structure of the FAT File System . 29

6.1.1 Boot Sector . 30

6.1.2 File Allocation Table . 30

6.1.3 Root Directory . 30

6.2 FAT16 Emulation . 32

6.2.1 DAPLink Emulator . 32

6.2.2 Read Access . 32

6.2.3 Write Access . 33

6.2.4 File Name Change . 33

6.2.5 File Creation . 34

6.2.6 File Content Change . 34

7 Supported Hardware Buses 35

7.1 UART and USART . 35

7.1.1 Examples of Devices Using UART . 36

7.2 SPI . 36

7.2.1 Examples of Devices Using SPI . 37

7.3 I2C . 38

7.3.1 Examples of Devices Using I2C . 39

7.4 1-Wire . 39

7.4.1 Examples of Devices Using 1-Wire . 40

ix

7.5 NeoPixel . 40

8 Non-communication Hardware Functions 43

8.1 Frequency Measurement . 43

8.2 Analog Signal Acquisition . 45

8.3 Waveform Generation . 46

8.3.1 Waveform Generation with DMA and a Timer . 46

8.3.2 Direct Digital Synthesis . 47

8.4 Touch Sensing . 48

Part III
Implementation

9 Conceptual Overview 53

9.1 Physical User Interface . 54

9.2 GEX-PC Connection . 54

9.3 Controlling GEX . 55

9.4 Device Configuration . 56

9.4.1 INI File Format . 56

9.4.2 Configuration Files Structure . 56

10 Internal Application Structure 61

10.1 Internal Structure Block Diagram . 61

10.2 Unit Life Cycle and Internal Structure . 61

10.3 Resource Allocation . 63

10.4 Settings Storage . 63

10.5 Message Passing . 64

10.6 Interrupt Routing . 64

10.7 FreeRTOS Synchronization Objects Usage . 65

10.7.1 Message and Job Queue . 65

10.8 Source Code Layout . 65

11 Communication Protocol 67

11.1 Binary Payload Structure Notation . 67

11.2 Frame Structure . 68

x

11.3 Message Listeners . 68

11.4 Designated Frame Types . 68

11.5 Bulk Read and Write Transactions . 69

11.5.1 Bulk Read . 70

11.5.2 Bulk Write . 70

11.5.3 Persisting the Changed Configuration to Flash . 71

11.6 Reading a List of Units . 72

11.7 Unit Requests and Reports . 72

11.7.1 Unit Requests . 72

11.7.2 Unit Reports . 73

12 Wireless Interface 75

12.1 Modulations Overview . 75

12.1.1 On-Off Keying (OOK) . 76

12.1.2 Frequency Shift Keying (FSK) . 76

12.1.3 Gaussian Frequency Shift Keying (GFSK) . 76

12.1.4 Minimum-Shift Keying (MSK) . 76

12.1.5 Gaussian Minimum-Shift Keying (GMSK) . 76

12.1.6 LoRa Modulation . 76

12.2 Comparing SX1276 and nRF24L01+ . 76

12.3 Integration of the nRF24L01+ into GEX . 77

12.3.1 The Wireless Gateway Protocol . 78

12.3.2 Gateway Initialization Procedure . 79

13 Hardware Realization 81

13.1 Using a Discovery Board . 81

13.1.1 Discovery F072 Configuration and Pin Mapping . 81

13.2 GEX Hub . 82

13.3 GEX Zero . 83

13.3.1 Finding the Best Pin Assignment . 83

13.4 Wireless Gateway . 83

14 Units Overview, Commands and Events Description 87

14.1 General Notes . 87

xi

14.1.1 Unit Naming . 87

14.1.2 Packed Pin Access . 87

14.2 Digital Output . 88

14.2.1 Digital Output Configuration . 88

14.2.2 Digital Output Commands . 88

14.3 Digital Input . 89

14.3.1 Digital Input Configuration . 89

14.3.2 Digital Input Events . 90

14.3.3 Digital Input Commands . 90

14.4 SIPO (Shift Register) Unit . 90

14.4.1 SIPO Configuration . 91

14.4.2 SIPO Commands . 91

14.5 NeoPixel Unit . 92

14.5.1 NeoPixel Configuration . 92

14.5.2 NeoPixel Commands . 92

14.6 SPI Unit . 93

14.6.1 SPI Configuration . 93

14.6.2 SPI Commands . 94

14.7 I2C Unit . 94

14.7.1 I2C Configuration . 95

14.7.2 I2C Commands . 95

14.8 USART Unit . 96

14.8.1 USART Configuration . 96

14.8.2 USART Events . 97

14.8.3 USART Commands . 97

14.9 1-Wire Unit . 97

14.9.1 1-Wire Configuration . 98

14.9.2 1-Wire Commands . 98

14.10 Frequency Capture Unit . 99

14.10.1 Value Conversion Formulas . 99

14.10.2 Frequency Capture Configuration . 100

xii

14.10.3 Frequency Capture Commands . 100

14.11 ADC Unit . 102

14.11.1 ADC Configuration . 102

14.11.2 ADC Events . 103

14.11.3 ADC Commands . 104

14.12 DAC Unit . 105

14.12.1 DAC Configuration . 106

14.12.2 DAC Commands. 106

14.13 PWM Unit . 107

14.13.1 PWM Configuration . 107

14.13.2 PWM Commands . 108

14.14 Touch Sense Unit . 108

14.14.1 Touch Sense Configuration . 108

14.14.2 Touch Sense Events . 109

14.14.3 Touch Sense Commands . 109

15 Client Software 111

15.1 General Library Structure . 111

15.2 Python Library . 111

15.2.1 Example Python Script . 112

15.3 MATLAB integration . 113

15.4 C Library . 113

15.4.1 Structure-based Payload Construction . 114

15.4.2 Using the Payload Builder Utility . 114

Part IV
Results

16 Conclusion 119

Appendices

A Bibliography 123

xiii

Figures
1.1 A collection of intelligent sensors and devices . 3

2.1 A Discovery board with STM32F072 . 9

2.2 Form factor sketches . 9

3.1 Raspberry Pi minicomputers . 11

3.2 Bus Pirate v.4 (photo taken from [1]) . 12

3.3 Professional tools that GEX can replace . 13

4.1 USB hierarchical structure . 17

4.2 The logical structure of USB . 18

4.3 USB descriptors of a GEX prototype obtained using “lsusb” 20

4.4 USB pull-ups . 21

6.1 An example of the GEX virtual file system . 31

7.1 UART frame format . 35

7.2 SPI timing diagram . 37

7.3 SPI master with multiple slaves . 37

7.4 I2C message diagram . 38

7.5 1-Wire connection topology with four slave devices . 39

7.6 A close-up photo of a WS2812B pixel, showing the LED driver IC 40

8.1 Direct frequency measurement method . 44

8.2 Reciprocal frequency measurement method . 44

8.3 Frequency measurement methods comparison . 45

8.4 A diagram of the SAR type ADC . 46

8.5 A simple implementation of the waveform generator . 47

8.6 A block diagram of a DDS-based waveform generator . 48

8.7 The touch slider on a STM32F072 Discovery board . 49

8.8 A simplified schematic of the touch sensing circuit . 49

8.9 TSC operation oscilloscope screenshots . 50

9.1 GEX conceptual overview . 53

xiv

9.2 Physical user interface of a GEX module . 54

9.3 Configuration file editor GUI . 59

10.1 Block diagram showing the internal logic in the GEX firmware 62

10.2 An example allocation in the resource registry . 63

10.3 Structure of the settings subsystem . 64

10.4 The general structure of the source code repository . 66

11.1 TinyFrame API . 67

11.2 A diagram of the bulk read and write transaction. 71

12.1 Test setup with a GEX prototype controlling two nRF24L01+ modules 75

12.2 A block diagram of the wireless connection . 78

13.1 The GEX Hub module . 82

13.2 The GEX Zero module . 84

13.3 The GEX Zero module . 85

13.4 The wireless gateway module (top and bottom side) . 86

14.1 Pin packing . 88

14.2 SPI transaction using the QUERY command . 94

15.1 GEX Zero with the Micro Dot pHAT add-on board . 112

xv

Tables
6.1 Areas of a FAT-formatted disk . 29

6.2 Structure of a FAT16 directory entry . 31

7.1 NeoPixel pulse timing . 41

11.1 Frame types used by GEX . 69

12.1 Comparison of the SX1276 and nRF24L01+ wireless transceivers 77

xvi

Acronyms
AC alternating current
ACM Abstract Control Model
ADC Analog/Digital Converter
API application programming interface

BFSK binary frequency-shift keying
BOT Bulk Only Transport

CAN Controller Area Network
CDC Communication Devices Class
CDC/ACM Communication Devices

Class / Abstract Control Model
CPHA clock phase
CPOL clock polarity
CRC cyclic redundancy check
CSB Chip Select Bar
CTS Clear To Send

DAC Digital/Analog Converter
DALI Digital Addressable Lighting Inter-

face
DC direct current
DDS Direct Digital Synthesis
DE Driver Enable
DFU Device Firmware Update
DMA Direct Memory Access
DTR Data Terminal Ready

FAT File Allocation Table
FS file system
FSK frequency-shift keying

GFSK Gaussian frequency-shift keying
GMSK Gaussian minimum-shift keying
GND ground
GPIO general purpose input/output
GPS Global Positioning System
GSM Global System for Mobile commu-

nications
GUI graphical user interface

HART Highway Addressable Remote
Transducer

I2C Inter-Integrated Circuit
I2S Inter-IC Sound
IAD Interface Association Descriptor

IC integrated circuit
IDE integrated development environment
IRQ interrupt request
ISR interrupt service routine

LCD liquid crystal display
LED light emitting diode
LFN Long File Name
LIN Local Interconnect Network

MBR master boot record
M-Bus Meter Bus
MCU microcontroller unit
MISO Master In, Slave Out
MOSI Master Out, Slave In
MSC Mass Storage Class
MSK minimum-shift keying

NCO numerically controlled oscillator
NDIR nondispersive infrared
NFC near-field communication
NRZI Non Return to Zero Inverted
NSS Negated Slave Select
NVIC Nested Vectored Interrupt Con-

troller

OOK on-off keying
OS operating system

PC personal computer
PCB printed circuit board
PMBus Power Management Bus
PWM pulse width modulation

RAM random-access memory
ROM read-only memory
RTC real-time clock
RTS Ready To Send

SAR successive approximation register
SCCB Serial Camera Control Bus
SCK Serial Clock
SCL Serial Clock Line
SCSI Small Computer System Interface
SDA Serial Data Line
SMBus System Management Bus
SPI Serial Peripheral Interconnect
SS Slave Select
SSH Secure Shell

xvii

STEM Science, Technology, Engineering
and Mathematics

TCO temperature-compensated oscilla-
tor

TSC Touch Sensing Controller
TTL transistor-transistor logic
TVS transiet-voltage suppressor

TWI Two-Wire Interface

UART Universal Asynchronous Re-
ceiver/Transmitter

USART Universal Synchronous/Asynchronous
Receiver/Transmitter

USB Universal Serial Bus

VCO voltage-controlled oscillator

xviii

Part I

Introduction

1

2

Chapter 1

Motivation

Prototyping, design evaluation, and the measurement of physical properties in experiments
make a daily occurrence in the engineering praxis. Those tasks often involve the generation
and sampling of electrical signals coming to and from sensors, actuators, and other circuitry.

Recently, a wide range of intelligent sensors became available thanks to the drive to
miniaturization in the consumer electronics industry. Those devices often provide sufficient
accuracy and precision while keeping the circuit complexity and cost low. In contrast to
analog sensors, here the signal conditioning and processing circuits are built into the sensor
itself, and we access it using a digital connection.

Figure 1.1: A collection of intelligent sensors and devices, most on breadboard adapters: (from
the top left) a waveform generator, a gesture detector, a LoRa and two Bluetooth modules,
an air quality and pressure sensor, a CO2 sensor, a digital compass, an accelerometer, a GPS
module, a camera, an ultrasonic range finder, a humidity sensor, a 1-Wire thermometer, a color
detector, and an RGB LED strip

If we wish to conduct experiments with those integrated modules, or just familiarize
ourselves with a device before using it in a project, we need an easy way to interact with
them. It would also be convenient to have direct access to low-level hardware, be it analog
signal sampling, generation, or even just the access to logic inputs and outputs. However,
advances in computer technology, namely the advent of the Universal Serial Bus (USB),

3

1. Motivation..
lead to the disappearance of low-level computer ports, such as the printer port (LPT), that
would provide an easy way of doing so.

Today, when we want to perform measurements using a digital sensor, the usual route is
to implement an embedded firmware for a microcontroller that connects to the personal
computer (PC) through USB, or perhaps shows the results on a display. This approach
has its advantages, but is time-consuming and requires specific knowledge unrelated to
the measurements we wish to perform. It would be advantageous to have a way to access
hardware without having to burden ourselves with the technicalities of this connection,
even at the cost of lower performance compared to specialized devices or professional tools.

The design and implementation of such a universal instrument is the object of this work.
For technical reasons, such as naming the source code repositories, we need a name for the
project; it shall be, hereafter, called GEX, a name originating from “GPIO Expander”.

1.1 Expected Outcome

It has been a long-time desire of the author to create a universal instrument connecting
low-level hardware to a computer, and, with this project, it is finally being realized. Several
related projects approaching this problem from different angles can be found on the internet;
some of these will be presented in Chapter 3.

Our project is not meant to end with a tinkering tool that will be produced in a few
prototypes and then forgotten. By creating an extensible, open-source platform, GEX can
become the foundation for future projects which others can expand, re-use and adapt to
their specific needs.

Building on the experience with earlier embedded projects, an STM32 microcontroller
shall be used. Those are Arm Cortex-M devices with a wide range of hardware peripherals
that appear be a good fit for the project. Low-cost evaluation boards are widely available
that could be used as a hardware platform instead of developing a custom printed circuit
board (PCB). STM32 microcontrollers are relatively cheap and already popular in the
embedded hardware community; there is a real possibility of the project gathering a
community around it and growing beyond what will be presented in this paper.

4

Chapter 2

Requirement Analysis

We’ll now investigate some situations where GEX could be used, to establish its requirements
and desired features.

2.1 Desired Features

2.1.1 Interfacing Intelligent Modules

When adding a new digital sensor or a module to a hardware project, we want to test it
first, learn how to properly communicate with it, and confirm its performance. Based on
this evaluation we decide whether the module matches our expectations and learn how to
properly connect it, which is needed for a successful PCB layout.

In experimental setups, this may be the only thing we need. Data can readily be collected
after just connecting the module to a PC, same as commanding motor controllers or other
intelligent devices.

A couple of well known hardware buses have established themselves as the standard
ways to interface digital sensors and modules: Serial Peripheral Interconnect (SPI), Inter-
Integrated Circuit (I2C) and Universal Synchronous/Asynchronous Receiver/Transmitter
(USART) (UART in asynchronous mode) are some of the most common ones, often
accompanied by a few extra general purpose input/output (GPIO) lines for features such as
Reset, Chip Enable, or Interrupt. There are exceptions where silicon vendors have developed
proprietary communication protocols that continue to be used either for historical reasons,
or because of their specific advantages. An example is the Dallas Semiconductor 1-Wire
bus used in digital thermometers.

Moving to industrial and automotive environments, we encounter various fieldbuses,
Ethernet, Controller Area Network (CAN), current loop, Highway Addressable Remote
Transducer (HART), Local Interconnect Network (LIN), Digital Addressable Lighting
Interface (DALI), RS-485 (e.g., for Modbus), Meter Bus (M-Bus), PLC-BUS, and others.
Those typically use transceiver integrated circuits (ICs) and other circuitry, such as transiet-
voltage suppressors (TVSs), signal filters, or galvanic isolation. They could be supported
using add-on boards and additional firmware modules handling the protocol. For simplicity
and to meet time constraints, the development of those boards and modules will be left for
future expansions of the project.

5

2. Requirement Analysis
2.1.2 Analog Signal Acquisition

Sometimes it is necessary to use a traditional analog sensor, capture a transient waveform,
or to just measure voltage. GEX is meant to focus on digital interfaces, however giving
it this capability makes it much more versatile. Nearly all microcontrollers include an
Analog/Digital Converter (ADC) which we can use to measure input voltages and, paired
with a timer, to records signals varying in time.

Certain tasks, such as capturing transient effects on a thermocouple when inserted into
a flame (an example from developing fire-proof materials) demand level triggering similar
to that of oscilloscopes. The converter continuously measures the input voltage and a
timed capture starts only after a set threshold is exceeded. This can be accompanied by a
pre-trigger feature where the timed capture is continuously running and the last sample is
always compared with the threshold, recording a portion of the historic records together
with the following samples.

2.1.3 Analog Signal Output

An analog signal can not only be measured, but it is often necessary to also generate it.
This could serve as an excitation signal for an experiment, for instance to measure the
characteristic curves of a diode or a transistor. Conveniently, we can at the same time use
GEX’s analog input to record the output.

Generating an analog signal is possible using a pulse width modulation (PWM) or by a
dedicated digital-analog converter included in many microcontrollers. Higher frequencies or
resolution can be achieved with a dedicated external IC.

2.1.4 Logic Level Input and Output

We have covered some more advanced features, but skipped the simplest feature: direct
access to GPIO pins. Considering the latencies of USB and the PC’s operating system
(OS), this cannot be used reliably for “bit banging”; however, we can still accomplish a lot
with just changing logic levels—e.g., to control character liquid crystal displays (LCDs), or
emulate some interfaces that include a clock line, like SPI. As mentioned in Section 2.1.1,
many digital sensors and modules use plain GPIOs in addition to the communication bus
for out-of-band signaling or features like chip selection or reset.

2.1.5 Pulse Generation and Measurement

Some sensors have a variable frequency or a PWM output. To capture those signals and
convert them to a more useful digital value, we can use the external input functions of a
timer/counter in the microcontroller. Those timers have many possible configurations and
can also be used for pulse counting or waveform generation.

6

............................... 2.2. Connection to the Host Computer

2.2 Connection to the Host Computer

2.2.1 Communication Interface

USB shall be the primary way of connecting the module to a host PC. Thanks to USB’s
flexibility, it can present itself as any kind of device or even multiple devices at once.

The most straightforward method of interfacing the board is by passing binary messages in
a fashion similar to UART. We’ll need a duplex connection to enable command confirmations,
query-type commands and asynchronous event reporting. This is possible either using a
“Virtual COM port” driver, or through raw access to the corresponding USB endpoints.
Using raw access avoids potential problems with the OS’s driver interfering or not recognizing
the device correctly; on the other hand, having GEX appear as a serial port makes it easier
to integrate into existing platforms that have good serial port support (such as National
Instruments LabWindows CVI or MATLAB).

A connection using a hardware UART is also planned, as a fallback for boards without
an USB connector or for platforms with no USB connectivity. A wireless connection to the
host PC should also be possible and work transparently in a similar way to the USB or
UART connection.

2.2.2 Configuration Files

The module must be easily reconfigurable. Given the settings are almost always going to
be tied to the connected external hardware, it would be practical to have an option to store
them permanently in the microcontroller’s non-volatile memory.

We can load those settings into GEX using the serial interface, which also makes it
possible to reconfigure it remotely when the wireless connection is used. With USB, we can
additionally make the board appear as a mass storage device and expose the configuration as
text files. This approach, inspired by Arm Mbed’s mechanism for flashing firmware images
to development kits, avoids the need to create a configuration graphical user interface
(GUI), instead using the built-in applications of the PC OS to view and edit files. Besides
the configuration files, we can expose additional information, such as a README file with
instructions, or a pin-out reference, as separate files on the virtual disk.

2.3 An Overview of Planned Features

Summarizing the preceding discussion, we obtain the following list of features to implement
in the GEX firmware:

• Hardware interfacing functions

– I/O pin direct access (read, write), pin change interrupt
– Analog input: voltage measurement, sampled capture
– Analog output: static level, waveform generation

7

2. Requirement Analysis
– Frequency, duty cycle, pulse length measurement
– Single pulse and PWM generation
– SPI, I2C, UART/USART, 1-Wire

• Communication with the host computer

– USB connection as virtual serial port or direct endpoint access
– Connection using plain UART
– Wireless attachment

• Configuration

– Fully reconfigurable, temporarily or permanently
– Settings stored in INI files
– File access through the communication interface or using a virtual mass storage

2.4 Microcontroller Selection

As discussed in Section 1.1, this project will be based on microcontrollers from the STM32
family. The STM32F072 model was selected for the initial hardware and firmware design
due to its low cost, advanced peripherals, and the availability of development boards. The
firmware can be ported to other microcontroller units (MCUs) later (e.g., to STM32L072,
STM32F103 or STM32F303).

The STM32F072 is an Arm Cortex-M device with 128KiB of flash memory, 16KiB of
random-access memory (RAM) and running at 48MHz. It is equipped with a USB Full
Speed peripheral block, a 12-bit ADC and Digital/Analog Converter (DAC), a number
of general-purpose timers/counters, SPI, I2C, and USART peripherals, among others. It
supports crystal-less USB, using the USB SOF packet for synchronization of the internal
48MHz RC oscillator; naturally, a real crystal resonator will provide better timing accuracy.

To effectively utilize the time available for this work, only the STM32F072 firmware will
be developed while making sure the planned expansion is as straightforward as possible.

2.5 Form Factor Considerations

While the GEX firmware can be used with existing evaluation boards from ST Microelec-
tronics (see Figure 2.1 for an example of one such board), we wish to design and realize a
few custom hardware prototypes that will be smaller and more convenient to use.

Three possible form factors are drawn in Figure 2.2. The use of a common connector
layout and pin assignments, here Arduino and Raspberry Pi, makes it possible to reuse
add-on boards from those platforms. When we copy the physical form factor of another
product, in this example the Raspberry Pi Zero, we can further take advantage of existing
enclosures designed for it.

8

.................................. 2.5. Form Factor Considerations

Figure 2.1: A Discovery development board with the STM32F072 microcontroller

Figure 2.2: A sketch of three possible form factors for a GEX hardware realization

9

10

Chapter 3

Existing Solutions

The idea of making it easier to interact with low-level hardware from a PC is not new.
Several solutions to this problem have been developed, each with its own advantages and
drawbacks. Some examples will be presented in this chapter.

3.1 Raspberry Pi

(a) : Raspberry Pi 3 Model B
(b) : Raspberry Pi Zero W

Figure 3.1: Raspberry Pi minicomputers

The Raspberry Pi’s GPIO header, a row of pins which can be directly controlled by user
applications running on the minicomputer, was one of the inspirations behind GEX. It can
be controlled using C and Python (among others) and offers GPIO, SPI, I2C, UART, and
PWM, with other protocols and functions easy to emulate thanks to the high speed of the
system processor.

The Raspberry Pi is used in schools as a low-cost PC alternative that encourage students’
interest in Science, Technology, Engineering and Mathematics (STEM). The board is often
built into more permanent projects that make use of its powerful processor, such as wildlife
camera traps, fish feeders etc.

The Raspberry Pi could be used for the same quick evaluations or experiments we want
to perform with GEX, however they would either have to be performed directly on the
minicomputer, with an attached monitor and a keyboard, or use some form of remote access
(e.g., Secure Shell (SSH), or screen sharing).

11

3. Existing Solutions.......................................
3.2 Bus Pirate

Figure 3.2: Bus Pirate v.4 (photo taken from [1])

Bus Pirate, a project by Ian Lesnet, is a USB-attached device providing access to hardware
interfaces like SPI, I2C, USART, and 1-Wire, as well as frequency measurement and direct
pin access. The board aims to make it easy for users to familiarize themselves with new chips
and modules; it also provides a range of programming interfaces for flashing microcontroller
firmwares and memories. It communicates with the PC using a FTDI USB-serial bridge.

Bus Pirate is open source and is, in its scope, similar to GEX. It can be scripted
and controlled from the PC, connects to USB and provides a wide selection of hardware
interfaces.

The board is based on a PIC16 microcontroller running at 32MHz. Its ADC only has a
resolution of 10 bits (1024 levels). There is no DAC available on the chip, which makes
applications that require a varied output voltage more difficult to implement. Another
limitation of the board is its low number of GPIO pins, which may be insufficient for
certain applications. The Bus Pirate is available for purchase at around 30USD, a price
comparable to some Raspberry Pi models.

3.3 Professional DAQ Modules

Various professional tools that would fulfill our needs exist on the market, but their high price
makes them inaccessible for users with a limited budget, such as hobbyists or students who
would like to keep such a device for personal use. An example is the National Instruments
I2C/SPI Interface Device which also includes several GPIO lines, their USB DAQ module,
or some of the Total Phase I2C/SPI gadgets (Figure 3.3).

The performance GEX can provide may not always match that of those professional
tools, but in many cases it will be a sufficient substitute at a fraction of the cost.

12

.................................. 3.3. Professional DAQ Modules

(a) : NI I2C/SPI Interface Device

(b) : NI USB DAQ module

(c) : Total Phase SPI/I2C Host “Aardwark”

Figure 3.3: An example of professional tools that GEX could replace in less demanding scenarios
(pictures taken from marketing materials: [2, 3, 4])

13

14

Part II

Theoretical Background

15

16

Chapter 4

Universal Serial Bus

This chapter presents an overview of the Universal Serial Bus (USB) Full Speed interface,
with focus on the features used in the GEX firmware. USB is a versatile and powerful
interface which replaces several older technologies; for this reason its specification is very
complex and going into all details is hardly possible. We will cover the basic principles and
terminology of USB and focus on the parts relevant for the GEX project. More information
about the bus can be found in the official specification [5], related documents published by
the USB Implementers Forum, and other on-line resources [6, 7].

4.1 Basic Principles and Terminology

Host (PC)

 Embedded
Hub Hub Hub

Drawing
tablet MouseKeyboardFlash disk CameraGEX Scanner

Figure 4.1: The hierarchical structure of the USB bus

USB is a hierarchical bus with a single master (host) and multiple slave devices. A USB
device that provides functionality to the host is called a function [8].

4.1.1 Pipes and Endpoints

Communication between the host and a function is organized into virtual channels called
pipes connecting to the device’s endpoints, identified by endpoint numbers.

Endpoints can be either unidirectional or bidirectional; the direction from the host to a
function is called OUT, the other direction (function to host) is called IN. A bidirectional
endpoint is technically composed of IN and OUT endpoints with the same number. All
transactions (both IN and OUT) are initiated by the host; functions have to wait for their
turn. Endpoint 0 is bidirectional, always enabled, and serves as a control endpoint. The

17

4. Universal Serial Bus......................................
USB host USB device

USB cableUSB host phy USB device phy

Default pipeOS USB stack Low level
USB driver

Application software
USB driver (libUSB)

GEX library

Function
USB Device library

GEX core framework

Interface
pipes

Dashed lines: virtual connection

Figure 4.2: The logical structure of USB

host uses the control endpoint to read information about the device and configure it as
needed.

4.1.2 Transfer Types

There are four types of data transfers defined in USB: control, bulk, isochronous, and
interrupt. Each endpoint is configured for a fixed transfer type:

• Control – initial configuration after device plug-in; also used for other application-
specific control messages that can affect other pipes.

• Bulk – used for burst transfers of large messages

• Isochronous – streaming with guaranteed low latency; designed for audio or video
streams where some data loss is preferred over stuttering

• Interrupt – low latency short messages, used for human interface devices like mice
and keyboards

4.1.3 Interfaces and Classes

The function’s endpoints are grouped into interfaces. An interface describes a logical
connection of endpoints, such as the reception and transmission endpoints that belong
together. An interface is assigned a class defining how it should be used.

Standard classes are defined by the USB specification [9] to provide a uniform way of
interfacing devices of the same type, such as human-interface devices (mice, keyboards,
gamepads) or mass storage devices. The use of standard classes makes it possible to re-use
the same driver software for devices from different manufacturers.

18

............................... 4.1. Basic Principles and Terminology

The class used for the GEX’s “virtual COM port” function was originally meant for
telephone modems, a common way of connecting to the Internet at the time the first
versions of USB were developed. A device using this class will show as /dev/ttyACM0 on
Linux and as a COM port on Windows, provided the system supports it natively or the
right driver is installed.

4.1.4 Descriptors

USB devices are introspectable, that is, the host can learn about a newly connected device
automatically by probing it, without any user interaction. This is accomplished using a
descriptor table, a binary structure stored in the function and read by the host through the
control endpoint (default pipe) after the device is attached.

Each descriptor starts with a declaration of its length (in bytes), followed by its type,
allowing the host to skip unknown descriptors without having to discard the rest of the
table. The descriptors are logically nested and form a tree-like structure, but they are
stored sequentially in the descriptor table and the lengths do no include sub-descriptors.

The topmost descriptor holds information about the entire function, including the
vendor and product IDs which uniquely identifies the device model. It is followed by a
Configuration descriptor, grouping a set of interfaces. More than one configuration may be
present and available for the host to choose from; however, this is rarely used or needed.
Each configuration descriptor is followed by one or more interface descriptors, each with its
class-specific sub-descriptors and/or endpoint descriptors.

The descriptor table used by GEX is captured in Figure 4.3 for illustration. The vendor
and product IDs were obtained from the pid.codes repository [10] providing free product
codes to open source projects. The official way of obtaining the unique code involves high
recurring fees ($4000 per annum) to the USB Implementers Forum, Inc. and is therefore
not affordable for non-commercial use; alternatively, a product code may be obtained from
some MCU vendors if their product is used in the device.

19

4. Universal Serial Bus......................................
Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 239 Miscellaneous Device
bDeviceSubClass 2
bDeviceProtocol 1 Interface Association
bMaxPacketSize0 64
idVendor 0x1209 InterBiometrics
idProduct 0x4c60
bcdDevice 0.01
iManufacturer 1 MightyPork
iProduct 2 GEX
iSerial 3 0029002F-42365711-32353530
bNumConfigurations 1
Configuration Descriptor:

bLength 9
bDescriptorType 2
wTotalLength 98
bNumInterfaces 3
bConfigurationValue 1
iConfiguration 0
bmAttributes 0x80

(Bus Powered)
MaxPower 500mA
Interface Descriptor:

bLength 9
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 8 Mass Storage
bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk-Only
iInterface 4 Settings VFS
Endpoint Descriptor:

bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Interface Association:
bLength 8
bDescriptorType 11
bFirstInterface 1
bInterfaceCount 2
bFunctionClass 2 Communications
bFunctionSubClass 2 Abstract (modem)
bFunctionProtocol 1 AT-commands (v.25ter)
iFunction 5 Virtual Comport ACM

Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass 2 Communications
bInterfaceSubClass 2 Abstract (modem)
bInterfaceProtocol 1 AT-commands (v.25ter)
iInterface 5 Virtual Comport ACM
CDC Header:

bcdCDC 1.10
CDC Call Management:

bmCapabilities 0x00
bDataInterface 2

CDC ACM:
bmCapabilities 0x06

sends break
line coding and serial state

CDC Union:
bMasterInterface 1
bSlaveInterface 2

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x83 EP 3 IN
bmAttributes 3

Transfer Type Interrupt
Synch Type None
Usage Type Data

wMaxPacketSize 0x0008 1x 8 bytes
bInterval 255

Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 10 CDC Data
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface 6 Virtual Comport CDC
Endpoint Descriptor:

bLength 7
bDescriptorType 5
bEndpointAddress 0x02 EP 2 OUT
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x82 EP 2 IN
bmAttributes 2

Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Figure 4.3: USB descriptors of a GEX prototype obtained using “lsusb”

20

..................................... 4.2. USB Physical Layer

4.2 USB Physical Layer

USB uses differential signaling with Non Return to Zero Inverted (NRZI) encoding and
bit stuffing (the insertion of dummy bits to prevent long intervals in the same direct
current (DC) level). The encoding, together with frame formatting, checksum verification,
retransmission, and other low-level aspects of the USB connection are entirely handled by
the USB physical interface block in the microcontroller’s silicon. Normally we do not need
to worry about those details; nonetheless, a curious reader may find more information in
chapters 7 and 8 of [5]. The electrical characteristics of the physical connection deserve
more attention, as they need to be understood correctly for a successful schematic and
PCB design.

The USB cable contains 4 conductors: VBUS (+5V), D+, D–, and ground (GND). The
data lines, D+ and D–, are also commonly labeled DP and DM. This differential pair should
be routed in parallel on the PCB and kept at the same length.

USB versions that share the same connector are backward compatible. The desired bus
speed is requested by the device using a 1.5 kΩ pull-up resistor to 3.3V on one of the data
lines: D+ pulled high for Full Speed (shown in Figure 4.4), D– pulled high for Low Speed.
The polarity of the differential signals is also inverted depending on the used speed, as
the idle level changes. Some microcontrollers integrate the correct pull-up resistor inside
the USB peripheral block (including out STM32F072), removing the need for an external
resistor.

D–

D+

Z = 90Ω

shielded cable

14.25–24.8 kΩ

USB host USB device

transceiver transceiver

+3.3 V

1.5 kΩ

Figure 4.4: Pull-up and pull-down resistors near the host and a Full Speed function, as
prescribed by the USB specification rev. 2.0

When a function needs to be re-enumerated by the host, which causes a reload of the
descriptor table and the re-attachment of software drivers, it can momentarily remove the
pull-up resistor, which the host will interpret as if the device was disconnected. With an
internal pull-up, this can be done by flipping a bit in a control register. An external resistor
may be connected through a transistor controlled by a GPIO pin. As discussed in [11], a
GPIO pin might be used to drive the pull-up directly, though this has not been verified by
the author.

The VBUS line supplies power to bus-powered devices. Self-powered devices can leave
this pin unconnected and instead use an external power supply. The maximal current
drawn from the VBUS line is configured using a descriptor and should not be exceeded, but
experiments suggest this is often not enforced.

21

4. Universal Serial Bus......................................
More details about the electrical and physical connection may be found in [6], sections
Connectors through Power.

4.3 USB Classes

This section explains the classes used in the GEX firmware. A list of all standard classes
with a more detailed explanation can be found in [9].

4.3.1 Mass Storage Class

The Mass Storage Class (MSC) is supported by all modern PC operating systems to support
USB thumb drives, external disks, memory card readers, and other storage devices.

The MSC specification [12] defines multiple transport protocols that can be selected
using the descriptors. The Bulk Only Transport (BOT) [13] will be used for its simplicity.
BOT uses two bulk endpoints for reading and writing blocks of data and for the exchange
of control commands and status messages.

For the mass storage device to be recognized by the host operating system, it must also
implement a command set. Most mass storage devices use the Small Computer System
Interface (SCSI) Transparent command set 1.

Unfortunately, the SCSI Transparent command set appears to have been deliberately
left unspecified for license or copyright reasons (see discussion in [14] and the surrounding
thread) and the protocol now used under this name is an industry standard without a clear
definition. Some pointers may be found in [15] and by examining the source code of the
USB Device driver library provided by ST Microelectronics.

This command set lets the host read information about the attached storage device,
such as its capacity, and check for media presence and readiness to write or detach. This is
used, e.g., for the “Safely Remove” function, which ensures that all internal buffers have
been written to the flash memory.

In order to emulate a mass storage device without having a physical storage medium,
we need to generate and parse the file system on-the-fly as the host OS tries to access it.
This will be discussed in Chapter 6.

4.3.2 CDC/ACM Class

Historically meant for modem communication, Communication Devices Class / Abstract
Control Model (CDC/ACM) is now the de facto standard way of making USB devices
appear as serial ports on the host OS. Its specification can be found in [16]. CDC/ACM is
a combination of two related classes, CDC handling the data communication and ACM,

1To confirm this assertion, the descriptors of five thumb drives and an external hard disk were analyzed
using lsusb. All but one device used the SCSI command set, one (the oldest thumb drive) used SFF-8070i.
A list of possible command sets can be found in [12]

22

...4.3. USB Classes

which defines control commands. Three endpoints are used: bulk IN, bulk OUT, and
interrupt OUT.

The interrupt endpoint is used for control commands, such as toggling the auxiliary lines
of RS-232 or setting the baud rate. Since GEX does not translate the data communication
to any physical UART, those commands are not applicable and can be silently ignored.

An interesting property of the CDC class is that the bulk endpoints transport raw data
without any wrapping frames. By changing the interface’s class in the descriptor table to
255 (Vendor Specific Class), we can retain the messaging functionality of the designated
endpoints, while accessing the endpoints device directly using, e.g., libUSB, without any
interference from the OS. This approach is also used to hide the MSC interface when it is
not needed.

4.3.3 Interface Association: Composite Class

The original USB specification expected that each function will have only one interface
enabled at a time. After it became apparent that there is a need to have multiple unrelated
interfaces working in parallel, the Interface Association Descriptor (IAD) [17] was introduced
as a workaround.

The IAD is an entry in the descriptor table that defines which interfaces belong together
and should be handled by the same software driver. To use the IAD, the function’s class
must be set to 0xEF, subclass 0x02, and protocol 0x01 in the top level descriptor, so that
the OS knows to look for this descriptor before binding drivers to any interfaces.

In GEX, the IAD is used to tie together the CDC and ACM interfaces while leaving out
the MSC interface which should be handled by a different driver. To make this work, a new
composite class was created as a wrapper for the library-provided MSC and CDC/ACM
implementation.

23

24

Chapter 5

FreeRTOS

FreeRTOS is a free, open-source real-time operating system kernel targeted at embedded
systems; it has been ported to many different microcontroller architectures [18] and it
is the de-facto industry standard. The system is compact and designed to be easy to
understand; it is written in C, with the exception of some architecture-specific routines
which use assembly. A complete overview of its application programming interface (API) is
available in the FreeRTOS reference manual [19] and its guide book [20].

FreeRTOS provides a task scheduler, forming the central part of the system, and
implements queues, semaphores, and mutexes for message passing and the synchronization
of concurrent tasks. Those features are summarily called synchronization objects, or simply
objects.

The system is used in GEX for its synchronization objects that allow us to safely pass
messages between interrupts and working threads, without deadlocks or race conditions;
the particular usage of FreeRTOS features will be explained in Section 10.7. The built-in
stack overflow protection helps us optimize task memory allocation1, and the heap allocator
provided by FreeRTOS enables thread-safe dynamic allocation with a shared heap.

5.1 Basic FreeRTOS Concepts and Functions

5.1.1 Tasks

Threads in FreeRTOS are called tasks. Each task is assigned a memory area to use as its
stack space, and a holding structure with its name, saved context, and other metadata used
by the kernel. A task context includes the program counter, stack pointer and other register
values. Task switching is done by saving and restoring this context by manipulating the
values on the stack before leaving an interrupt service routine (ISR). The FreeRTOS website
provides an example with the AVR port [21] demonstrating how its internal functionality is
implemented, including the context switch.

At start-up the firmware initializes the kernel, registers tasks to run, and starts the
scheduler. From this point onward the scheduler is in control and runs the tasks using
a round robin scheme, always giving a task one tick of run time (usually 1ms) before

1The stack monitor reports how much stack space was really used, so we can expand or shrink it as
needed to make the application work reliably, without wasting memory that would never be used.

25

5. FreeRTOS ..
interrupting it. Which task should run is determined primarily by their priority numbers,
but there are other factors, as will be shown in Section 5.1.1.

Task Run States

Tasks can be in one of four states: Suspended, Ready, Blocked, and Running. The Suspended
state does not normally occur in a task’s life cycle, it is entered and left using API calls
from the application. A task is in the Ready state when it can run, but is currently paused
because a higher priority task is running. It enters the Running state when the scheduler
switches to it. A Running task can wait for a synchronization object (e.g., a mutex) to be
available; at this point it enters a Blocked state and the scheduler runs the next Ready
task. When no tasks can run, the Idle Task takes control; it can either enter a sleep state
to save power, or wait in a loop until another task is available. The Idle task is always
either Ready or Running and has the lowest priority of all tasks.

Task Switching and Interrupts

Task switching occurs periodically in a timer interrupt, usually every 1ms; in Arm Cortex-
M chips this is typically the SysTick interrupt, a timer designed for this purpose that is
included in the core itself and thus available on all derived platforms.

After one tick of run time, the Running task is paused and becomes Ready, or continues
to run if no higher-priority task is available. If a higher-priority task waits for an object and
this is made available in an ISR, the running lower-priority task is paused and the waiting
task resumes immediately. FreeRTOS defines interrupt-friendly variants of some of the API
functions intended for this purpose; however, only a subset of the API is available in an
ISR, for example, it is not possible to use the delay function or wait for an object with a
timeout, as the SysTick interrupt, incrementing the tick counter, has the lowest priority
and could not run. This is by design, intended to prevent unexpected context switching in
application interrupts.

FreeRTOS uses a priority inheritance mechanism to prevent situations where a high-
priority task waits for an object held by a lower-priority task (called priority inversion).
The blocking task’s priority is temporarily raised to the level of the blocked high-priority
task so it can finish earlier and release the held object. Its priority is then degraded back
to the original value. When the lower-priority task itself is blocked, the same process can
be repeated.

5.1.2 Synchronization Objects

FreeRTOS provides binary and counting semaphores, mutexes, and queues, which will now
be briefly explained; a more in-depth description can be found in the guide book [20].

• Binary semaphores are used for task notifications, e.g., when a task waits for a
semaphore to be set by an ISR. This makes the task Ready and if it has a higher
priority than the task previously running, it is immediately resumed to process the
event.

26

.................................. 5.2. Stack Overflow Protection

• Counting semaphores represent available resources in a resource pool, a set of
software or hardware resources used by tasks. The pool is accompanied by a counting
semaphore on which tasks wait for a resource to become available, and then subtract
the semaphore value. After a resource is no longer needed by the task, the semaphore
is incremented again and another task can use it.

• Mutexes (locks) are similar to semaphores, but they must be taken and released in
the same task. We use them to guard an exclusive access to a resource, typically a
hardware peripheral or a shared memory area. When a mutex is taken, any other
tasks trying to take it too enter become Blocked. A Blocked task waiting for a mutex
is resumed once this becomes available, at which point the task becomes its owner
and is resumed.

• Queues are used for passing messages between tasks, or from interrupts to tasks.
Both sending and receiving of queue messages can block the task until the operation
becomes possible. A queue handing task is often simply a loop which tries to read
from the queue with an infinite timeout and processes the received data once the
reading succeeds.

It must be noted that synchronization objects like mutexes and semaphores can help
combat concurrent access only when used consistently and correctly. A locked mutex cannot
guard against a rogue task accessing the protected resource without checking.

5.2 Stack Overflow Protection

Each task in FreeRTOS is assigned a block of RAM to use as its stack when it runs. This is
where the stack pointer is restored to in the context switch. The stack pointer could move
outside the designated area if the allocated space is insufficient; without countermeasures,
this would mean that we are overwriting bytes in some unrelated memory structure, perhaps
another task’s stack memory.

A stack overflow protection can be enabled by a flag in the FreeRTOS configuration
file. This function works in two ways: the more obvious is a simple check that the stack
pointer remains in the designated area; however, as the check may be performed only
in the scheduler interrupt, it is possible that the stack pointer exceeds the bounds only
temporarily and returns back before the check can run. A more advanced solution, used by
FreeRTOS, fills the stack memory with a known filler value before starting the task; the last
few bytes are then tested to match this value. Not only can we detect a stack overflow more
reliably, this feature also makes it possible to estimate the peak stack usage by counting
the remaining filler bytes. We cannot distinguish between the original values and the same
data stored on the stack by the program, but the possibility of this happening is sufficiently
low and this method proves remarkably successful at detecting misconfigured stack sizes.

27

28

Chapter 6

The FAT16 File System and Its Emulation

A file system (FS) is used by GEX to provide the user comfortable access to the configuration
files. By emulating a mass storage USB device, the module appears as a thumb drive on
the host PC, and the user can edit its configuration using their preferred text editor. The
FAT16 file system was selected for its simplicity and good cross-platform support [22].

Three variants of the File Allocation Table (FAT) file system exist: FAT12, FAT16, and
FAT32. FAT12 was used on floppy disks and is similar to FAT16, except for additional
size constraints and a FAT entry packing scheme. FAT16 and FAT32 are FAT12’s later
developments from the time when hard disks became more common and the old addressing
scheme could not support their larger capacity.

This chapter will explain the structure of FAT16 and the challenges faced when trying
to emulate it without a physical storage medium. A more detailed overview of the file
system can be found in literature [23, 24, 25, 26, 27] consulted during the GEX firmware
development, with the Microsoft white paper [27] giving the most complete description.

6.1 The General Structure of the FAT File System

The storage medium is organized into sectors (or blocks), usually 512 bytes long; that is
the smallest addressing unit used by the file system. The disk starts with a boot sector,
also called the master boot record (MBR), followed by optional reserved sectors, one or
two copies of the file allocation table, and the root directory. All disk areas are aligned to a
sector boundary:

Disk area Size / Notes

Boot sector 1 sector

Reserved sectors optional

FAT 1 1 or more sectors, depends on disk size

FAT 2 optional, a back-up copy of FAT 1

Root directory 1 or more sectors

Data area Organized in clusters

Table 6.1: Areas of a FAT-formatted disk

29

6. The FAT16 File System and Its Emulation
6.1.1 Boot Sector

This is a 1-sector structure which holds the OS bootstrap code for bootable disks. The
first 3 bytes are a jump instruction to the actual bootstrap code located later in the sector.
What matters to us when implementing the file system is that the boot sector also contains
data fields describing how the disk is organized, what file system is used, who formatted it,
etc. The size of the FAT and the root directory is defined here. The exact structure of the
boot sector can be found in either of [23, 24, 25, 26, 27] or in the attached GEX source
code.

6.1.2 File Allocation Table

The data area of the disk is organized in clusters, logical allocation units composed of
groups of sectors. The use of a larger allocation unit allows the system to use shorter
addresses and thus support a larger disk capacity.

The FAT acts as a look-up table combined with linked lists. In FAT16, it is organized in
16-bit fields, each corresponding to one cluster. The first two entries in the allocation table
are reserved and hold special values set by the disk formatter and the host OS: a “media
descriptor” 0xFFF8 and a “clean/dirty flag” 0xFFFF/0x3FFF.

Files can span multiple clusters; each FAT entry either holds the address of the following
file cluster, or a special value:

• 0x0000 – free cluster
• 0xFFFF – last cluster of the file (still including file data)
• 0xFFF7 – bad cluster

The bad cluster mark, 0xFFF7, is used for clusters which are known to corrupt data
due to a flaw in the storage medium.

6.1.3 Root Directory

A directory is a record on the disk that can span several clusters and holds information
about the files and sub-directories contained in it. The root directory has the same structure
as any other directory; the difference lies in the fact that it is allocated with a fixed position
and size when the disk is formatted, whereas other directories are stored in the same way as
ordinary files and their capacity can be increased by simply expanding to another cluster.

Directories are organized in 32-byte entries representing individual files. Table 6.2 shows
the structure of one such entry. The name and extension fields form the well-known “8.3”
file name format known from MS DOS1. Longer file names are encoded using the Long File
Name (LFN) scheme [28] as special hidden entries stored in the directory table alongside
the regular “8.3” ones kept for backward compatibility.

The first byte of the file name has special meaning:

• 0x00 – indicates that there are no more files when searching the directory
1“8.3” refers to the byte size of the name and extension fields in the directory entry.

30

.......................... 6.1. The General Structure of the FAT File System

Offset Size (bytes) Description

0 8 File name (padded with spaces)

8 3 File extension

11 1 File attributes

12 10 Reserved

22 2 Creation time

24 2 Creation date

26 2 Address of the first cluster

28 4 File size (bytes)

Table 6.2: Structure of a FAT16 directory entry

• 0xE5 – marks a free slot; this is used when a file is deleted

• 0x05 – indicates that the first byte should actually be 0xE5, a code used in some
character sets at the time, and the slot is not free2.

• Any other values, except 0x20 (space) and characters forbidden in a DOS file name,
starts a valid file entry. Generally, only space, A–Z, 0–9, -, and _ should be used in
file names for maximum compatibility.

The attributes field contains flags such as directory, volume label, read-only and hidden.
Volume label is a special entry in the root directory defining the disk’s label shown by the
host OS. A file with the directory bit set is actually a pointer to a subdirectory, meaning
that when we open the linked cluster, we will find another directory table.

Figure 6.1 shows a possible organization of the GEX file system with two INI files, one
spanning two clusters, the other being entirely inside one. The clusters need not be used
completely; the exact sizes are stored in the files’ directory entries.

UNITS.INI
cluster 2

SYSTEM.INI
cluster 4

0xFFF8
Root directory FAT

0xFFFF

3

0xFFFF

0xFFFF

Cluster 2
UNITS.INI part 1

Cluster 3
UNITS.INI part 2

Cluster 4
SYSTEM.INI

Data area

Figure 6.1: An example of the GEX virtual file system

2The special meaning of 0xE5 appears to be a correction of a less than ideal design choice earlier in the
development of the file system

31

6. The FAT16 File System and Its Emulation
6.2 FAT16 Emulation

The FAT16 file system is relatively straightforward to implement. However, it is not practical
or even possible to keep the entire file system in memory on a small microcontroller like
our STM32F072. This means that we have to generate and parse disk sectors and clusters
on-demand, when the host reads or writes them. The STM32 USB Device library helpfully
implements the MSC and provides API endpoints to which we connect our file system
emulator. Specifically, those are requests to read and write a sector, and to the read disk’s
status and its parameters, such as the capacity.

6.2.1 DAPLink Emulator

A FAT16 emulator was developed as part of the open-source ArmMbed DAPLink project [29].
It is used there for a drag-and-drop flashing of firmware images to the target microcontroller,
taking advantage of the inherent cross-platform support (it uses the same software driver
as any thumb drive, as discussed in Section 4.3.1). Arm Mbed also uses a browser-based
integrated development environment (IDE) and cloud build servers, thus the end user does
not need to install or set up any software to program a compatible development kit.

The GEX firmware adapts several parts of the DAPLink code, optimizing its RAM
usage and porting it to work with FreeRTOS. The emulator source code is located in the
User/vfs folder of the GEX repository; the original Apache 2.0 open-source software license
headers, as well as the file names, have been retained.

As shown in Table 6.1, the disk consists of several areas. The boot sector is immutable
and can be loaded from the flash memory when requested. The handling of the other disk
areas (FAT, data area) depends on the type of access: read or write.

6.2.2 Read Access

The user can only read files that already exist on the disk; in our case, UNITS.INI and
SYSTEM.INI. Those files are dynamically generated from the binary settings storage and,
conversely, parsed as a byte stream without ever existing in their full form. This fact makes
our task more challenging, as the file size cannot be easily measured and there is no obvious
way to read a sector from the middle of a longer file. We solve this by implementing two
additional functions in the INI file generation routine: a read window and a dummy read
mode.

A read window is a specification of the byte range we wish to generate. The INI generator
discards bytes before the start of the read window, writes those inside the window to a
holding buffer, and stops the end of the window is reached. This lets us extract a sector
from anywhere in a file. The second function, dummy read, is tied to the window function:
we set the start index so high that it is never reached (e.g., 0xFFFFFFFF), and have the
generator count discarded characters. This character counter holds the full file size once
the generation is completed.

One more problem needs to be addressed: we need to know the mapping between the
files and the clusters they are stored in. In our case, the files change only when the settings

32

...................................... 6.2. FAT16 Emulation

are modified. After each such change, an algorithm is run which measures the file sizes,
allocates their clusters, and preserves this information for later use. When the host tries to
read from the data area of the disk, we simply test if the requested sectors are occupied by
any file, and if so, serve the corresponding part of it using the read window function. The
FAT can be dynamically generated from this information as well.

6.2.3 Write Access

Write access to the disk is more challenging to emulate than reading, as the host OS tends
to be somewhat unpredictable. In GEX’s case we are interested only in the action of
overwriting an already existing file, but it is interesting to analyze other actions the host
may perform as well.

It must be noted that due to the nonexistence of a physical storage medium, it is not
possible to read back a file the host has previously written, unless we store or re-generate
its content when such a read attempt occurs. The OS may show the written file on the disk,
but when the user tried to open it, the action either fails, or shows a cached copy. The
emulator works around this problem by temporarily reporting that the storage medium has
been removed after a file is written, forcing the host to drop any cached data and reload
the disk.

File Deletion

A file is deleted by:

1. Marking all FAT sectors used by the file as free

2. Replacing the first character of its name in the directory table by 0xE5 to indicate
the slot is free

From the perspective of emulation, we can ignore the FAT access and only detect writes
to the directory sectors. This is slightly more complicated when one considers that all
disk access is performed in sectors: the emulator must compare the written data with the
original bytes to detect what change has been performed. Alternatively, we could parse the
entire written sector as a directory table and compare it with our knowledge of its original
contents.

6.2.4 File Name Change

A file is renamed by modifying its directory entry. In the simple case of a short, 8.3 file name,
this is an in-place modification of the file entry. Long file names, using the LFN extension,
are a complication, as the number of non-file entries holding the long file name might
change, and subsequently the following entries in the table may shift or be re-arranged.

33

6. The FAT16 File System and Its Emulation
6.2.5 File Creation

A new file is created in three steps:

1. Finding free clusters and chaining them by writing the following cluster addresses (or
0xFFFF for the last cluster) into the FAT

2. Finding and overwriting a free entry in the directory table

3. Writing the file content

We can expect that the host first finds available sectors and a free directory entry before
performing any write operations, to prevent potential disk corruption.

To properly handle a newly created file by the emulator, we could, in theory, find its
name from the directory table, which has been updated, and then collect the data written
to the corresponding clusters. In practice, confirmed by experiments with a real Linux host,
the two latter steps may happen in any order, and often the content is written before the
directory table is updated.

The uncertain order of the written areas poses a problem when the file name has any
significance, as we cannot store the received file data while waiting for the directory table
to be updated. The Arm DAPLink firmware solves this by analyzing the content of the
first written sector of the file, which may contain the binary Nested Vectored Interrupt
Controller (NVIC) table, or a character pattern typical for Intel hex files, allowing it to
recognize a binary image the user wants to flash to the target MCU.

6.2.6 File Content Change

A change to file’s content is performed in a similar way to the creation of a new file, except
instead of creating a new entry in the directory table, an existing one is updated with the
new file size. The name of the file may be unknown until the content is written, but we
could detect the file name by comparing the start sector with those of all files known to the
virtual file system.

In the case of GEX, the detection of a file name is not important; we expect only INI
files to be written, and the particular file may be detected by its first section marker, such
as [UNITS] or [SYSTEM]. Should a non-INI file be written by accident, the INI parser will
likely detect a syntax error and discard it.

It should be noted that a file could be updated only partially, skipping the clusters which
remain unchanged, and there is also no guarantee regarding the order in which the file’s
sectors are written. A non-linear or partial file update is hard to process for the emulator,
but it can be reliably detected and discarded. Fortunately, this host behavior has not been
conclusively observed in practice, but a file update rarely fails for unknown reasons; this
could be a possible cause.

34

Chapter 7

Supported Hardware Buses

Hardware buses implemented in GEX are presented in this chapter. The description of
each bus is accompanied by several examples of devices that can be interfaced with it. The
reader is advised to consult the official specifications and particular devices’ datasheets for
additional details.

7.1 UART and USART

The Universal Synchronous/Asynchronous Receiver/Transmitter (USART) has a long
history and is still in widespread use today. It is the protocol used in RS-232, which was
once a common way of connecting modems, printers, mice and other devices to personal
computers. RS-232 can be considered the ancestor of USB in its widespread availability
and use. UART framing is also used in the industrial bus RS-485 and the automotive
interconnect bus LIN.

Start
bit

Bit 0 Stop
bit

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Clock

Idle frame

Stop
bit

Stop
bitBreak frame (used in LIN)

Next frame...
Parity

bit

LSB MSB

Figure 7.1: USART frame format in the 8-bit configuration with parity

UART and USART are two variants of the same interface. USART includes a separate
clock signal, while the UART timing relies on a well-known clock speed and the bit clock
is synchronized by start bits. USART was historically used in modems to achieve higher
bandwidth, but is now mostly obsolete.

USART, as implemented by microcontrollers such as the STM32 family, is a two-wire
full duplex interface that uses 3.3V or 5V logic levels. The data lines are in the high logical

35

7. Supported Hardware Buses...................................
level when idle. A USART frame, shown in Figure 7.1, starts by a start-bit (low level for
the period of one bit) followed by n data bits (typically eight), an optional parity bit, and
a period of high level called a stop bit (or stop bits), dividing consecutive frames.

RS-232 uses the UART framing, but its levels are different: logical 1 is represented by
negative voltages −3 to −25V and logical 0 uses the same range, but positive. To convert
between RS-232 levels and transistor-transistor logic (TTL) (5V) levels, a level-shifting
circuit such as the MAX232 can be used. In RS-232, the two data lines (Rx and Tx)
are accompanied by Ready To Send (RTS), Clear To Send (CTS), and Data Terminal
Ready (DTR), which facilitate handshaking and hardware flow control. In practice, those
additional signals are often unused or their function differs from their historical meaning;
for instance, Arduino boards (using a USB-serial converter) use the DTR line as a reset
signal to automatically enter their bootloader for firmware flashing [30].

7.1.1 Examples of Devices Using UART

• MH-Z19B – nondispersive infrared (NDIR) CO2 concentration sensor

• NEO-M8 – uBlox Global Positioning System (GPS) module

• ESP8266 with AT firmware – a WiFi module

• MFRC522 – near-field communication (NFC) MIFARE reader/writer IC (also
supports other interfaces)

7.2 SPI

Serial Peripheral Interconnect (SPI) is a point-to-point or multi-drop master-slave interface
based on shift registers. The SPI connection with multiple slave devices is depicted in
Figure 7.3. It uses at least 4 wires: Serial Clock (SCK), Master Out, Slave In (MOSI),
Master In, Slave Out (MISO) and Slave Select (SS). SS is often marked Chip Select Bar
(CSB) or Negated Slave Select (NSS) to indicate that its active state is 0. Slave devices
are addressed using their SS input while the data connections are shared. A slave that is
not addressed releases the MISO line to a high impedance state so it does not interfere in
ongoing communication.

Transmission and reception on the SPI bus happen simultaneously. A bus master asserts
the SS pin of a slave it wishes to address and then sends data on the MOSI line while
receiving a response on MISO. The slave normally responds with 0x00 or a status register
as the first byte of the response, before it can process the received command. A timing
diagram is shown in Figure 7.2, including two configurable parameters: clock polarity
(CPOL) and clock phase (CPHA).

SPI devices often provide a number of control, configuration and status registers that
can be read and written by the bus master. The first byte of a command usually contains
one bit that determines if it is a read or write access, and an address field selecting the
target register. The slave then either stores the following MOSI byte(s) into the register, or
sends its content back on MISO (or both simultaneously).

36

.. 7.2. SPI

CPOL=1

CPOL=0

CPHA=1

CPHA=0

NSS

SCK

MISO or MOSI

Figure 7.2: SPI timing diagram explaining the CPOL and CPHA settings (shown on 3 data
bits; a real message will use at least 8 bits)

MISO

MOSI
SCK

Master
Slaves

Slave Select

Rx

Tx Tx

Rx

Figure 7.3: A SPI bus with 1 master and 3 slaves, each enabled by its own Slave Select signal

7.2.1 Examples of Devices Using SPI

• SX1276 – LoRa transceiver

• nRF24L01+ – 2.4GHz ISM band radio module

• L3GD20 – 3-axis gyroscope

• BMP280 – pressure sensor

• BME680 – air quality sensor

• ENC28J60 – Ethernet controller

• L6470 – intelligent stepper motor driver

• AD9833 – waveform generator (MOSI only)

• ADE7912 – triple Σ-∆ ADC for power metering applications

• SD cards [31]

• SPI-interfaced EEPROM and Flash memories

37

7. Supported Hardware Buses...................................
7.3 I2C

Inter-Integrated Circuit (I2C) is a two-wire, open-drain bus that supports multi-master
operation. It uses two connections (plus GND): Serial Data Line (SDA) and Serial Clock
Line (SCL), both open-drain with a pull-up resistor.

The protocol was developed by Philips Semiconductor (now NXP Semiconductors), and
its implementors were, until 2006, required to pay licensing fees, leading to the development
of compatible implementations with different names, such as Atmel’s Two-Wire Interface
(TWI) or Dallas Semiconductor’s “Serial 2-wire Interface” (e.g., used in the DS1307 real-
time clock (RTC) chip). I2C is a basis of the System Management Bus (SMBus) and Power
Management Bus (PMBus), which add additional constraints and rules for a more robust
operation.

The frame format is shown and explained in Figure 7.4; more details may be found in
the specification [32] or application notes and datasheets offered by chip vendors, such as
the white paper from Texas Instruments [33]. A frame starts with a start condition and
stops with a stop condition, defined by an SDA edge while the SCL is high. The address
and data bytes are acknowledged by the slave by sending a 0 on the open-drain SDA line
in the following clock cycle. A slave can terminate the transaction by sending 1 in place of
the acknowledge bit. Slow slave devices may stop the master from sending more data by
holding the SCL line low at the end of a byte, a feature called Clock Stretching. As the bus
is open-drain, the line cannot go high until all participants release it.

Two addressing modes are defined: 7-bit and 10-bit. Due to the small address space,
exacerbated by many devices implementing only the 7-bit addressing, collisions between
different chips on a shared bus are common; many devices thus offer several pins to let the
board designer choose a few bits of the address by connecting them to different logic levels.

The bus supports multi-master operation, which leads to the problem of collisions.
Multi-master capable devices must implement a bus arbitration scheme as specified by
the I2C standard [32]. This feature is, however, rarely used in practice; the most common
topology for I2C is multi-drop single-master, similar to SPI, with the advantage of using
only two microcontroller pins.

Figure 7.4: An I2C message diagram (taken from the I2C specification [32])

38

... 7.4. 1-Wire

7.3.1 Examples of Devices Using I2C

• APDS-9960 – ambient light, proximity and gesture sensor

• L3GD20, BMP280, BME680 – listed as SPI devices, those also support I2C

• DS1307 – RTC; I2C is not mentioned in the entire datasheet, presumably to avoid
paying license fees, but it is fully compatible

• IS31FL3730 – a light emitting diode (LED) matrix driver

• The Serial Camera Control Bus (SCCB) used to configure camera modules is derived
from I2C

7.4 1-Wire

The 1-Wire bus, developed by Dallas Semiconductor (acquired by Maxim Integrated), uses
a single, bi-directional data line, which can also power the slave devices in a parasitic mode,
reducing the number of required wires to just two (compare with 3 in I2C and 5 in SPI, all
including GND). The parasitic operation is possible thanks to the data line resting at a
high logic level most of the time, charging an internal capacitor.

1-Wire uses an open-drain connection for the data line, similar to I2C, though the
protocol demands it to be connected directly to Vdd in some places when the parasitic
mode is used; this is accomplished using an external transistor, or by reconfiguring the
GPIO pin as output and setting it to 1, provided the microcontroller is able to supply a
sufficient current.

The communication consists of short pulses sent by the master and (for bit reading)
the line continuing to be held low by the slave for a defined amount of time. The pulse
timing determines whether it is a read or write operation and which value is encoded. It
can be implemented either in software as delay loops, or by abusing a UART peripheral,
as explained in [34]. Detailed timing diagrams can be found in the DS18x20 [35]. 1-Wire
transactions include a checksum byte to ensure an error-free communication.

MCU

Device Device Device Device
Data

+3.3 V

Optional supply line
4.7 kΩ

Figure 7.5: 1-Wire connection topology with four slave devices

Devices are addressed by their unique 64-bit ID numbers called ROM codes or ROMs;
they can be found by the bus master, with a cooperation from slaves, using a ROM Search
algorithm. The search algorithm is explained in [36], including a possible implementation
example. If only one device is connected, a wild card command Skip ROM can be used to
address the device without a known ROM code.

39

7. Supported Hardware Buses...................................
7.4.1 Examples of Devices Using 1-Wire

• DS1820, DS18S20, DS18B20 – digital thermometers

• iButton – contact-read access tokens, temperature loggers, etc.

Since 1-Wire is a proprietary protocol, there is a much smaller choice of available devices
and they also tend to be more expensive. The DS18x20 thermometers are, however, popular
enough to warrant the bus’s inclusion in GEX.

7.5 NeoPixel

NeoPixel is a marketing name of the WS2812 and compatible intelligent LED drivers that
are commonly used in “addressable LED strips”. Additional technical details about the
chips and their protocol may be found in the WS2812B datasheet [37]. These chips include
the control logic, PWM drivers and the LED diodes all in one 5×5mm SMD package.

The NeoPixel protocol is unidirectional, using only one data pin. The LED drivers are
chained together. Ones and zeros are encoded by pulses of a defined length on the data
pin; after the color data was loaded into the LED string, a longer “reset” pulse (low level)
is issued by the bus master and the set colors are displayed. The timing constraints are
listed in Table 7.1.

The NeoPixel timing is sensitive to pulse length accuracy; a deviation from the specified
timing may cause the data to be misinterpreted by the drivers. Some ways to implement the
timing use hardware timers or the Inter-IC Sound (I2S) peripheral. An easier method that
does not require any additional hardware resources beyond the GPIO pin is to implement
the timing using delay loops in the firmware; care must be taken to disable interrupts in
the sensitive parts of the timing; it may be advantageous to implement it in assembly for a
tighter control.

Figure 7.6: A close-up photo of a WS2812B pixel, showing the LED driver IC

40

.. 7.5. NeoPixel

Bit value Constraint Duration

0 High level 0.4µs ± 150ns

0 Low level 0.85µs ± 150ns

1 High level 0.45µs ± 150ns

1 Low level 0.8µs ± 150ns

– Reset pulse (low) > 50µs

Table 7.1: NeoPixel pulse timing

41

42

Chapter 8

Non-communication Hardware Functions

In addition to communication buses, described in Chapter 7, GEX implements several
measurement and output functions that take advantage of the microcontroller’s peripheral
blocks, such as timers/counters and DAC. The more complicated ones are described here;
simpler functions, such as the raw GPIO access, will be described later together with their
control API.

8.1 Frequency Measurement

Applications like motor speed measurement and the reading of a voltage-controlled oscillator
(VCO) or VCO-based sensor’s output demand a tool capable of measuring frequency. This
can be done using a laboratory instrument such as the Agilent 53131A. A low-cost solution
can be realized using a timer/counter peripheral of a microcontroller.

Two basic methods to measure frequency exist [38], each with its advantages and drawbacks:

• The direct method (Figure 8.1) is based on the definition of frequency as a number of
cycles n in a fixed-length time window τ (usually 1 s); the frequency is then calculated
as f = n/τ .
One timer generates the time window and its output gates the input of another,
configured as a pulse counter. At the end of the measurement window an interrupt is
generated and we can read the pulse count from the counter’s register.
The direct method has a resolution of 1Hz with a sampling window of 1 s (only a
whole number of pulses can me counted). The resolution can be increased by using a
longer time window, provided the measured signal is stable enough to make averaging
possible without distorting the result. Further increase of precision is possible through
analog or digital interpolation [39], a method used in some professional equipment.

• The indirect or reciprocal method (Figure 8.2) measures one period T as the time
interval between two pulses and this is then converted to frequency as f = 1/T .
This method needs only one timer/counter. Cycles of the system clock are counted
for the duration of one period on the input pin (between two rising edges). If we
additionally detect the falling edge in between, the counter’s value gives us the duty
cycle when related to the overall period length.
The reciprocal method’s resolution depends on the counter’s clock speed; if driven
at 48MHz, the tick period is 20.83 ns, which defines the granularity of our time

43

8. Non-communication Hardware Functions.............................
measurement. It is common to measure several pulses and average the obtained values
to further increase the precision.
We can easily achieve a sub-hertz resolution with this method, but its performance de-
grades at high frequencies where the time measurement precision becomes insufficient.
The input frequency range can be extended using a hardware prescaler1, which is also
applicable to the direct method, should the measurement of frequencies outside the
counter’s supported range be required. A duty cycle measurement available in this
method can be used to read the output of sensors that use a pulse-width modulation.

read data

Pulse counter

gate

timeoutReference
interval timer ISR

Input pin

Figure 8.1: Direct frequency measurement method

read data

Pulse counter

gate

pulse end ISR
Input pin

System clock

Figure 8.2: Reciprocal frequency measurement method

Which method to use depends on the frequency we want to measure; the worst-case
measurement errors of both methods, assuming an ideal 48MHz system clock, are plotted
in Figure 8.3. It can be seen that the reciprocal method leads in performance up to 7 kHz
where the direct method overtakes it. If a higher error is acceptable, the reciprocal method
could be used also for higher frequencies to avoid a reconfiguration and to take advantage
of its higher speed.

A good approach to a universal measurement, for cases where we do not know the
expected frequency beforehand, could be to obtain an estimate using the direct method
first, and if the frequency is below the worst-case error crossing point (here 7 kHz, according
to Figure 8.3), to take a more precise measurement using the reciprocal method.

The system clock’s frequency, which we use to measure pulse lengths and to gate the
pulse counter, will be affected by tolerances of the used components, the layout of the PCB,
temperature effects etc., causing measurement errors. A higher accuracy could be achieved
using a temperature-compensated oscillator (TCO), or, in the direct method, with the
synchronization pulse provided by a GPS receiver to time the measurement interval.

1Prescaler is a divider implemented as part of the timer/counter peripheral block that can be optionally
enabled and configured to a desired division factor.

44

................................... 8.2. Analog Signal Acquisition

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

Input frequency [Hz]

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

W
o
rs

t-
c
a
s
e
 m

e
a
s
u
rm

e
e
n
t
e
rr

o
r

[%
]

Direct method

Reciprocal method

Figure 8.3: Worst-case error using the two frequency measurement methods with an ideal
48MHz timer clock. The crossing lies at 7 kHz with an error of 0.015%, or 1.05Hz.

8.2 Analog Signal Acquisition

A very common need in experiments involving the measurement of physical properties is
the acquisition of analog signals, respective voltages. These can be roughly divided into
DC and alternating current (AC) or time-changing signals. Analog signals are converted
to digital values using ADCs. Several principles of analog signal measurement exist with
different cost, speed, resolution, and many other factors which determine their suitability
for a particular application.

DC signals can be measured by taking several samples and calculating their average
value; in the presence of mains interference (50Hz or 60Hz), it is advisable to spread those
samples over the 20ms (resp. 16.7ms) time of one period, so that the interfering waveform
cancels out. Time-changing signals can be captured by taking isochronous samples at a
frequency conforming to the Nyquist theorem, that is, at least twice that of the measured
signal. In practice, a frequency several times higher is preferred for a more accurate capture.

The ADC type commonly available in microcontrollers, including our STM32F072, uses a
successive approximation method. It is called the SAR type ADC, after its main component,
the successive approximation register (SAR). A diagram of this ADC is shown in Figure 8.4.

The SAR type converter uses a DAC, controlled by the value in the SAR, which
approximates the input voltage, bit by bit, following the algorithm described in [40] and
outlined below:

45

8. Non-communication Hardware Functions.............................

SAR

DAC

–

+

Bit value

Sample & Hold

Clock

Pin

Vref

Conversion complete

Bits of the output word

IRQ

MSB LSB→

Figure 8.4: A diagram of the SAR type ADC

1. The SAR is cleared to all zeros.

2. The DAC generates an approximation voltage.

3. Its output is compared with the sampled input, and the comparator’s output is stored
as the active bit in the approximation register.

4. The approximation continues with step 2 and the following (less significant) bit.

5. After finding all bits of the data word, an interrupt request (IRQ) is generated and
the application program can read the result from the SAR.

A change of the input value would make this principle unreliable, which is why the input
is buffered by a sample & hold circuit. The holding capacitor is charged to the input voltage
and maintains this level during the conversion. The duration for which the capacitor is
connected to the input is called a sampling time.

8.3 Waveform Generation

A waveform generator is a useful tool in many experiments and measurements. A sine
stimulus is the basis of a lock-in amplifier; it can be used to measure impedance; with a
frequency sweep, we can obtain the frequency response of an analog filter, etc. We can, of
course, generate other waveforms, such as a triangle, ramp, or rectangle wave.

The DAC peripheral can produce a DC level on the output pin based on a control word.
When we periodically change its digital input, it produces an analog waveform.

8.3.1 Waveform Generation with DMA and a Timer

A straightforward, intuitive implementation of the waveform generator is illustrated in
Figure 8.5. This approach has its advantages: it is simple and works autonomously, with

46

.................................... 8.3. Waveform Generation

no interrupt handling or interventions from the program. It could be implemented without
the use of Direct Memory Access (DMA) as well, using a loop periodically updating the
DAC values; of course, such approach is less flexible and we would run into problems with
interrupt handling affecting the timing accuracy.

 waveform
 look-up
 table

request

DACDMA
circular

trigger

Timer

Output pin

Figure 8.5: A simple implementation of the waveform generator, using DMA and a look-up table

The highest achievable output frequency largely depends on the size of our look-up table.
For instance, assuming a timer frequency of 48MHz and a 8192-word table, holding one
period of the waveform, the maximum frequency would be short of 6 kHz, whereas if we
shorten the table to just 1024 words, we can get almost 47 kHz on the analog output. The
downside of a shorter table is a lower resolution, which will appear as DC plateaus or steps
when observed with an oscilloscope, producing harmonic components similar to those of a
square wave.

A major disadvantage of this simple generation method is given by the limitations of the
used timer, which defines the output frequency. Its output trigger fires when the internal
counter reaches a predefined value, after which the counting register is reset. The counting
speed is derived from the system clock frequency fc using a prescaler P and the set maximum
value N . Only output frequencies that can be exactly expressed as f = fc/(P ·N ·TableSize)
can be accurately produced. Still, this simple and efficient method may be used where fine
tuning is not required to take advantage of its fully asynchronous operation.

8.3.2 Direct Digital Synthesis

There are situations where the simple waveform generation method is not sufficient, partic-
ularly when fine tuning, or on-line frequency and phase changes are required. Those are
the strengths of Direct Digital Synthesis (DDS), an advanced digital waveform generation
method well explained in [41].

A diagram of a possible DDS implementation in the STM32 firmware is shown in
Figure 8.6. It is based on a numerically controlled oscillator (NCO). The NCO consists
of a phase accumulator register and a tuning word which is periodically added to it at a
constant rate in a timer interrupt handler. The value of the tuning word determines the
output waveform frequency. The look-up table must have a power-of-two length so that it
can be addressed by the n most significant bits of the phase accumulator. An additional
control word could be added to this address to implement a phase offset for applications
like a phase-shift modulation.

47

8. Non-communication Hardware Functions.............................
 waveform
 look-up
 table

DAC

Phase accumulator
32 bits

addressing

n highest bits

Tuning word

trigger
Timer

ISR

Output pin

Figure 8.6: A block diagram of a DDS-based waveform generator

The output frequency is calculated as fout = M · fc
2n

, where M is the tuning word, n
is the bit length of the phase accumulator, and fc is the frequency of the phase-updating
interrupt. The number of bits used to address the look-up table does not affect the output
frequency; the table can be as large as the storage space allows. A tuning word value
exceeding the lower part of the phase accumulator (including bits which directly enter the
look-up address) will cause some values from the table to be skipped. A smaller tuning
word, conversely, makes some values appear at the output more than once. This can be
observed as steps or flat areas on the output. When the tuning word does not evenly divide
2n, that is, the modulo is non-zero, we can also observe jitter.

DDS Implemented in Hardware

DDS may be implemented in hardware, including the look-up table, often together with the
DAC itself, which is then called a Complete DDS. That is the case of, e.g., the AD9833 from
Analog Devices. As the software implementation depends on a periodic interrupt, it is often
advantageous to use a component like this when we need higher output frequencies where
the use of an interrupt is not possible. GEX can control an external waveform generator
like the AD9833 using an SPI port.

8.4 Touch Sensing

The STM32F072 microcontroller includes a Touch Sensing Controller (TSC) peripheral
block. This device is meant to be used in touch-based user interfaces, e.g., for kitchen
appliances or toys. We include it in GEX to serve as a demonstration of capacitive touch
sensing, and it could possibly be used for simple capacitive sensors as well, such as a water
level measurement.

The TSC requires a specific topology with a sampling capacitor connected close to the
microcontroller pin, which may not be possible on a universal GEX module; for this reason,
the touch sensing feature is best demonstrated on the STM32F072 Discovery development
kit, which includes a 4-segment touch slider shown in Figure 8.7.

48

..8.4. Touch Sensing

Figure 8.7: The touch slider on a STM32F072 Discovery board

The principle of capacitive touch sensing using the TSC is well explained in the microcon-
troller’s reference manual [42], the TSC product training materials [43, 44] and application
notes from ST Microelectronics [45, 46, 47, 48]. A key part of the TSC is a set of analog
switches which can be combined to form several different signal paths between external
pins, VDD, GND, and an analog comparator. Two input pins are needed for every touch
sensing channel: the sensing pad connects to one, the other is connected through a sampling
capacitor (47 nF on the Discovery board) to GND.

+3.3 V

47 nF

Sense pad
X pF –

+

Vthr Out
Clear

Charge

Figure 8.8: A simplified schematic of the touch sensing circuit

Capacitive sensing is a sequential process described in the following steps:

1. The sampling capacitor is discharged by connecting its free end to GND.

2. The sensing pad is connected to Vdd (+3.3V) and, acting as a capacitor, charged to
this voltage. It stores a small amount of charge, depending on its capacitance—this
is the variable property we are trying to measure.

3. The free terminals of the two capacitors (the sensing pad and the sampling capacitor)
are connected together and their voltages reach an equilibrium as a portion of the
stored charge leaves the sensing pad and flows into the bigger capacitor.

4. The steps (2) and (3) are repeated until the sampling capacitor’s voltage exceeds a
fixed threshold (set to a half of the supply voltage). The number of cycles needed to
charge the sampling capacitor corresponds to the capacitance of the sensing pad.

A real voltage waveform measured on the sensing pad using an oscilloscope is shown in
Figure 8.9.

49

8. Non-communication Hardware Functions.............................

Figure 8.9: A voltage waveform measured on the touch sensing pad. The bottom side of the
envelope equals the sampling capacitor’s voltage—this is the phase where both capacitors are
connected. The detailed view (middle) shows the individual charging cycles. The bottom
screenshot captures the entire waveform, left to continue until a timeout, after the analog
comparator was disabled.

50

Part III

Implementation

51

52

Chapter 9

Conceptual Overview

GEX is designed to be modular and easy to extend. The user-facing functionality is
composed of independent software modules, called functional blocks or units, which can be
configured by the user to fit their application needs. Units implement low-level logic to
work with hardware peripherals of the microcontroller, and expose this functionality to
the client application, running on the PC, through a communication interface. A diagram
showing the entire stack, from the user application down to hardware peripherals, is shown
in Figure 9.1.

STM32 driver library

Core framework

Client library

User application

Unit handles

Units

Hardware
peripherals

PC

GEX

System messages

Communication interface

Unit messages

Core
framework
services

Figure 9.1: The “GEX stack”, from a user application down to hardware

When we work with GEX, it is through units. The platform without units would be
just an empty shell, the bare core framework; this underlying system will be described in
Chapter 10. We will explore the individual units in Chapter 14, after going through the
hardware realizations in Chapter 13 and covering the communication protocol in Chapter 11.

53

9. Conceptual Overview
9.1 Physical User Interface

The firmware can be flashed to a STM32 development board, or a custom PCB. The
particulars of those form factors will be discussed in Chapter 13.

GEX module

Reset button

Lock button

Boot button

May share one
physical switch
or use jumpers

Optional

GPIO header

Power
LED

Status
LED

USB

Wireless
adapter

Wireless
gatewayUSB

UART

USB USB/serial
converter

Alternative USB
attachment methods

Figure 9.2: Physical user interface of a GEX module

All GEX hardware platforms have some common characteristics (Figure 9.2):

• Power LED – a simple indication that the board is powered on

• Status LED – periodic flashing every 3 s indicates correct operation, continuous
light a software error1; other light patterns may be shown as feedback to user actions
or received commands

• Reset button – resets the MCU; this is particularly useful during firmware develop-
ment as an alternative to re-connecting the USB cable

• Lock button – enables or disables access to configuration files through the virtual
mass storage device

• Boot button – when held during restart (that is, while the reset button is released),
the Device Firmware Update (DFU) mode [49] is activated and a new firmware image
can be flashed over the USB connection using dfu-util [50] or other firmware update
application

• GPIO header – a pin header exposing the MCU’s GPIO pins to be connected to
external circuitry

• Communication interface – a connection to the host PC; multiple options may
be available to choose from, a direct USB connection being the primary and always
available option

9.2 GEX-PC Connection

Figure 9.2 shows three ways to connect the module to a PC. Each communication interface
has its advantages and drawbacks, and is suitable for different use-cases.

1The microcontroller will then automatically restart within a few seconds due to a watchdog timeout.

54

....................................... 9.3. Controlling GEX

• Direct USB connection
This is the primary and most straightforward connection method. We use the
CDC/ACM and MSC USB classes to have the module appear as a virtual serial port
and a mass storage device, as described in Section 4.3. This method is the fastest of
the three and works out-of-the-box on Linux and MacOS. On MS Windows it may
require the right software driver to be installed and assigned manually2.

• Hardware UART
The hardware UART used as a communication interface is mapped to pins PA2 and
PA3 to be compatible with the built-in USB/UART converter on STM32 Nucleo
development boards. This interface is functionally identical to the CDC/ACM
connection, but the physical UART is necessarily slower and does not implement flow
control.

• Wireless connection
A wireless connection is implemented using a radio module on the GEX board. To
use it we need a counterpart, the wireless gateway, which connects to the PC using
USB with CDC/ACM.

All three interfaces share the same binary communication protocol (see below). The
wireless connection is an exception, as the gateway itself needs to be managed by the host
application, and it can connect to more than one GEX board, necessitating an addressing
scheme. Its modified protocol will be explained in Chapter 12.

The USB connection is always enabled first on start-up. GEX waits its for enumeration
by the host PC. When not enumerated in a few seconds, it concludes that the interface is
not active and tries other enabled options. The wireless module, connected through SPI,
can be detected by reading one of its registers that should have a known value. A UART
interface cannot be tested so reliably, thus it is always considered active3.

9.3 Controlling GEX

GEX is a platform providing access to low-level hardware to high-level applications. However,
this “high level” is relative. As was shown in Figure 9.1, the “GEX stack” ends with a
client library, a software library used by the user application.

The communication protocol (one level lower in the diagram) is robust and well defined,
making it possible to implement alternative client libraries in other programming languages,
or for yet-unsupported platforms. This protocol is explained in Chapter 11. The client
library implements the communication protocol and gives the user application access to
GEX units via unit handles.

2The STM32 Virtual COM port driver [51] has been tested to work with GEX on MS Windows version
7 and 8, though it must be manually assigned to the device in the Device Manager. MS Windows 10 and
later should support CDC/ACM natively.

3A detection of the UART connection would be possible by measuring the Rx pin voltage, which should
idle at a high level (here 3.3V). This was not implemented in the initial firmware version.

55

9. Conceptual Overview
Any logic above the client library is in the hands of the user, which means that, to

use GEX, they have to program a user application. Software libraries in languages C and
Python are provided, and will be explained in Chapter 15. The Python library is easy
to use even for beginner programmers, though we have to acknowledge that some users
might not be familiar with programming at all. Making GEX more accessible to those
users, e.g., through a graphical desktop application, is an appealing idea that is certainly
worth pursuing in later work.

9.4 Device Configuration

The core framework and each of the units have a number of adjustable options determining
their behavior. Those settings are internally stored in a binary form, but to make their
adjustment comfortable for the user, they are mapped to text configuration files in the INI
format.

9.4.1 INI File Format

INI files are, in our implementation, simple text files containing three basic syntax elements:
comments, sections, and key-value entries. Sections group the key-value pairs into logical
blocks, e.g., the configuration of individual units.

• Comments start with the hash symbol (#) and end at the end of line

• Sections are textual labels enclosed in square brackets ([UNITS])

• Key-value entries are composed of a label, the equals sign, and its value; values
may be text strings, decimal or hexadecimal numbers, lists of numbers separated by
commas, or any other format appropriate for the particular key

An example of the INI syntax is shown below.

comment
[section]
a = 123
b = 0xFF
port = A
pins = 1,2,3

9.4.2 Configuration Files Structure

The configuration is split into two files: UNITS.INI and SYSTEM.INI. The system configura-
tion file has a simple structure and does not need much explanation beyond the comments
already included in it; an example of its content is captured in Listing 1. The other file, as
its name suggests, serves to configure GEX units.

56

..................................... 9.4. Device Configuration

SYSTEM.INI

[SYSTEM]
Data link accessible as virtual comport (Y, N)
expose-vcom=Y
Show comments in INI files (Y, N)
ini-comments=Y
Enable debug UART-Tx on PA9 (Y, N)
debug-uart=Y

Output core clock on PA8 (Y, N)
mco-enable=N
Output clock prediv (1,2,...,128)
mco-prediv=128

--- Allowed fallback communication ports ---

UART Tx:PA2, Rx:PA3
com-uart=N
com-uart-baud=115200

nRF24L01+ radio
com-nrf=N
Radio channel (0-125)
nrf-channel=76
Network prefix (hex, 4 bytes)
nrf-network=12:00:09:4C
Node address (1-255)
nrf-address=1

Listing 1: The SYSTEM.INI configuration file

The units file, illustrated in Listing 2, is more complex, and interactive. The top part, a
[UNITS] section, lists all available unit types. A unit is created by writing its name (an
arbitrary label composed of letters, numbers, and underscore) next to the desired type.
Each unit is then configured in a separate section lower in the file; however, how does one
know what keys are needed for which unit? This problem is solved by interactivity of the
file.

After adding a unit name next to its type, we save the file. The disk temporarily
disappears from the device list as the file’s content updates. When we reopen the file, a
section for the new unit will be appended for us to configure as necessary. To delete a unit,
it is sufficient to remove its name from the list at the top and let the file regenerate the
same way; the unit’s section will disappear.

It is not uncommon that the entered (or default) configuration is invalid and the unit
cannot be enabled. The error is reported by inserting a comment into the INI file, at the

57

9. Conceptual Overview
UNITS.INI

[UNITS]
Create units by adding their names next to a type (e.g. DO=A,B),
remove the same way. Reload to update the unit sections below.

Digital output
DO=led
Digital input with triggers
DI=btn1,btn2
Neopixel RGB LED strip
NPX=
I2C master
I2C=i2c
#...

[I2C:i2c@1]
Peripheral number (I2Cx)
#...

Listing 2: Part of the UNITS.INI configuration file

top of the section of the failing unit. This error message disappears when the problem is
corrected.

Once we are satisfied with the configuration, it may be stored to the module’s permanent
memory. This is done by pushing the Lock button again, which also deactivates the virtual
storage device.

It may be interesting to know that the configuration files can also be read and modified
through the communication interface. A simple configuration editor (Figure 9.3) was
developed to demonstrate this feature. Besides applications like this, we can use the
programmatic configuration access to change GEX settings automatically by the client
application. The changes may be persisted by a command, but that is not required, which
lets us use them temporarily without modifying the stored configuration.

58

..................................... 9.4. Device Configuration

Figure 9.3: Configuration file editor GUI built using the GEX client library and PyQt4

59

60

Chapter 10

Internal Application Structure

The firmware is built around a core framework which provides services to units, such as
the settings storage, resource allocation, message delivery, and periodic updates. In this
chapter, we will focus on the structure of this framework and the services provided by it.

10.1 Internal Structure Block Diagram

The data flows and other internal logic of the firmware are depicted in Figure 10.1, with more
explanation following in this chapter. The interchangeable role of the three communication
interfaces can be clearly seen in the diagram, as well as the central role of the message
queue, which decouples interrupts from the processing thread.

The core framework forms the skeleton of the firmware and usually does not need any
changes when new user-facing features are added. When the firmware is ported to a different
STM32 microcontroller, the framework is not difficult to adjust and the whole process can
be accomplished in a few hours. The porting of units to a different platforms is significantly
more challenging.

The framework provides the following services to units:

• Hardware resource allocation (Section 10.3)

• Settings storage and loading (Section 10.4)

• Unit life cycle management (Section 10.2)

• Message sending and delivery (Section 10.5)

• Interrupt routing (Section 10.6)

10.2 Unit Life Cycle and Internal Structure

GEX’s user-facing functions, units, are implemented in unit drivers. Those are independent
modules in the firmware that the user can enable and configure, in one or more instances.
In practice, we are limited by hardware constraints: i.e., there may be only one ADC
peripheral, or two SPI ports. The assignment of those hardware resources to units is
handled by the resource registry (Section 10.3).

61

10. Internal Application Structure

Message + Job Queue

TinyFrame
Parser

Queue
Processing

Thread

Job
Execution

Message
Delivery

SPI I2C GPIO ADC

Requests to units

1 ms

TinyFrame
Builder

Communication
Interface
Multiplex

IRQs

Asynchronous
events

Unit Registry

Settings Storage

Hardware
Resource
Registry

FAT16
Emulator

USB
CDC/ACM

UART
Connection

Wireless
Module

USB
MSC INI File Parser / Builder

Scheduled reporting
of events from interrupts

System Commands
and Settings Handler

Decoupling the Rx interrupt
from command processing

G
EX

 to
 h

os
t

H
os

t t
o

G
EX

Figure 10.1: Block diagram showing the internal logic in the GEX firmware

Each unit is identified by a name and a callsign, which is a number that serves as an
address for message delivery. A unit is internally stored as a data object with the following
structure:

• Name
• Callsign (one byte)
• Configuration parameters loaded from the unit settings
• State variables updated at run-time by user commands or internal functions
• A reference to the unit driver

The unit driver handles commands sent from the host PC, initializes and de-initializes
the unit based on its settings, and implements other aspects of its function, such as periodic
updates and interrupt handling.

When the units configuration file is modified, all units are de-initialized and removed.
The binary settings are then updated based on the new values, verifying that the requested

62

..................................... 10.3. Resource Allocation

resources are available, and the units that can be enabled are subsequently initialized and
made available to the user.

10.3 Resource Allocation

SPI unit
0x01

PA5

PA6

PA7

PA8

SPI1

DI unit
0x02

PB0

DO unit
0x03

PC0

PC1

PC2

Resource registry

SPI1 0x01

SPI2 -

PA5 0x01

PA6 0x01

PA7 0x01

PA8 0x01

PB0 0x02

PC0 0x03

PC1 0x03

PC2 0x03

PD0 SYSTEM

PD1 N.C.

PD0 - lock button
PD1 - not available

Figure 10.2: An example allocation in the resource registry

The microcontroller provides a number of hardware resources that require exclusive
access: GPIO pins, peripheral blocks (SPI, I2C, UART. . .), and DMA channels. If two
units tried to control the same pin, the results would be unpredictable; similarly, the output
of a multiply-accessed serial port could become a useless mix of the different data streams.

To prevent multiple access, the firmware includes a resource registry (Figure 10.2). Each
individual resource is represented by a field in a resource table together with its owner’s
callsign. Initially all resources are free, except for those not available on the particular
platform (e.g., a GPIO pin PD1 may be disabled if not present on the microcontroller’s
package).

The resources used by the core framework are taken by a virtual unit SYSTEM on start-up
to prevent conflicts with the user’s units. This is the case of the status LED, the Lock
button, USB pins, the communication UART, the pins and an SPI peripheral connecting
the wireless module, pins used for the crystal oscillator, and the timer/counter which
provides the system timebase.

10.4 Settings Storage

The system and unit settings are written, in a binary form, into designated pages of the
microcontroller’s Flash memory. The unit settings serialization and parsing is implemented
by the respective unit drivers.

As the settings persist after a firmware update, it is important to maintain backward
compatibility. This is achieved by prefixing the settings block of each unit with a version
number. When the settings are loaded by a new version of the firmware, it first checks
the version and decides whether to use the old or new format. When the settings are next
changed, the new format will be used.

63

10. Internal Application Structure
Binary settings storage

Settings manager
binary storage / INI file
parsing and generation

System settings
options not tied to

individual units

Unit settings

DO driver

SPI driver

ADC driver

UNITS.INI SYSTEM.INI

Unit
Unit
Unit
Unit
Unit

Unit

Drivers create, load and
serialize unit instances,
generate and parse
UNITS.INI sections

Figure 10.3: Structure of the settings subsystem

10.5 Message Passing

One of the key functions of the core framework is to deliver messages from the host PC to
the right units. The TinyFrame protocol is used, described in detail in Chapter 11; it is
represented by the blocks “TinyFrame Parser” and “TinyFrame Builder” in ??.

Two groups of messages exist: system messages and unit messages. System messages
can, for instance, access the INI files, or request a list of available units. Unit messages are
addressed to a particular unit, and their payload format is defined by the unit’s driver. An
incoming message is inspected and delivered to the appropriate recipient, or responded to
with an error message.

In addition to message delivery, the core framework also provides event reporting. Events
are messages generated by units and sent to the host to notify it about asynchronous events.

This high-level functionality resides above the framing protocol, which will be described
in Chapter 11. The message format is shown in Section 11.7.

10.6 Interrupt Routing

Interrupts are an important part of almost any embedded application. They provide a
way to rapidly react to asynchronous external or internal events, temporarily leaving the
main program, jumping to an interrupt handler routine, and then returning back after the
event is handled. Interrupts are also the way FreeRTOS implements multitasking without
a multi-core processor.

In Arm Cortex-M0 the interrupt handlers table, defining which routine is called for
which interrupt, is stored in the program memory and cannot be changed at run-time. This
is a complication for the modular structure of GEX where different unit drivers may use
the same peripheral, and we would want to dynamically assign the interrupt handlers based
on the active configuration.

Let us have a look at a sample interrupt handler, in this case serving four different DMA
channels, as is common in STM32 microcontrollers:

64

........................... 10.7. FreeRTOS Synchronization Objects Usage

void DMA1_Channel4_5_6_7_IRQHandler(void)
{

if (LL_DMA_IsActiveFlag_GI4(DMA1)) { /* handle DMA1 channel 4 */ }
if (LL_DMA_IsActiveFlag_GI5(DMA1)) { /* handle DMA1 channel 5 */ }
if (LL_DMA_IsActiveFlag_GI6(DMA1)) { /* handle DMA1 channel 6 */ }
if (LL_DMA_IsActiveFlag_GI7(DMA1)) { /* handle DMA1 channel 7 */ }

}

It is evident that multiple units might need to use the same handler, even at the same
time, since each DMA channel is configured, and works, independently. GEX implements a
redirection scheme to accomplish such interrupt sharing: All interrupt handlers are defined
in one place, accompanied by a table of function pointers. When a unit driver wants to
register an interrupt handler, it stores a pointer to it in this redirection table. Then, once
an interrupt is invoked, the common handler checks the corresponding entry in the table
and calls the referenced routine, if any. Conversely, when a unit driver de-initializes a unit,
it removes all interrupt handlers it used, freeing the redirection table slots for other use.

10.7 FreeRTOS Synchronization Objects Usage

The firmware is built around FreeRTOS (Chapter 5) and a number of its synchronization
objects and patterns are used to make its operation more robust.

10.7.1 Message and Job Queue

The message and job queue, seen in Figure 10.1, is used to decouple asynchronous interrupts
from message transmission. All three communication interfaces use interrupts for the
asynchronous handling of incoming messages. The same interrupt handler receives an event
after a transmission was completed. The queue ensures that messages can be received
during the transmission of a large response that demands the use of multiple transmissions.

The “transmission complete” interrupt signals this fact to the message processing task
using a binary semaphore. The semaphore is released in the ISR and taken when a new
block of data is to be transmitted. If more data needs to be transmitted, the queue task
waits for the semaphore and enters a Blocked state until the semaphore becomes available
again.

Two mutexes are used in the firmware: one that guards access to TinyFrame until the
previous message was fully transmitted, and one to guard a shared memory buffer (reused in
several different places to save memory and avoid its re-allocation). The hardware resource
registry (explained in Section 10.3) does not need mutexes for individual resources, as
concurrent access to those fields can never happen; resources are always taken or released
sequentially by the same task.

10.8 Source Code Layout

65

10. Internal Application Structure
build

firmware.bin
firmware.dfu

Drivers
CMSIS

Device / ST / STM32F0xx
STM32F0xx_HAL_Driver

Middlewares / Third_Party / FreeRTOS
Src

main.c
User

USB / STM32_USB_Device_Library
Class

CDC
MSC
MSC_CDC

Core
platform

plat_compat.h
platform.c

units
adc
digital_out

...
FreeRTOSConfig.h
gex.mk

Makefile

Figure 10.4: The general structure
of the source code repository

Looking at the GEX source code repository (Fig-
ure 10.4), at the root we’ll find the device specific
driver libraries and support files provided by ST
Microelectronics, the FreeRTOS middleware, and
a folder called User containing the GEX applica-
tion code. This division is useful when porting the
firmware to a different microcontroller, as the GEX
folder is mostly platform-independent and can be
simply copied (of course, adjustments are needed to
accompany different hardware peripheral versions
etc.). The GEX core framework consists of ev-
erything in the User folder, excluding the units
directory in which the individual units are imple-
mented. Each unit driver must be registered in the
file platform.c to be available for the user to select.
The file plat_compat.h includes platform-specific
headers and macros, defining parameters such as pin
assignments or the clock speed.

The USB Device library, which had to be modified
to support a composite class, is stored inside the
User folder too, as it is compatible with all STM32
microcontrollers that support USB.

66

Chapter 11

Communication Protocol

GEX can be controlled through a hardware UART, the USB, or over a wireless link. To
minimize the firmware complexity, all the three connection methods use the same binary
messaging protocol and are functionally interchangeable.

Send

Received message
ID / Type listeners

Periodic update

Query
Binary
data

Rx

Tx

TinyFrame API

Frame
building

&
parsing
engine

Figure 11.1: TinyFrame API

GEX uses the TinyFrame [52] framing library, de-
veloped, likewise, by the author, but kept as a separate
project for easier re-use in different applications. The
library implements frame building and parsing, includ-
ing checksum calculation, and provides high-level API.

Both peers, GEX and the client library running on
the host PC, are at an equal level: either side can
independently send a message at any time. The com-
munication is organized in transactions; a transaction
consists of one or more messages going in either direction. A message can be stand-alone, or
chained to another, typically a request, using the frame ID field; this is the major advantage
over text-based protocols, like AT commands, where all messages are independent and their
relation to each other is not always clear.

11.1 Binary Payload Structure Notation

Binary payloads are described in several places of this text. We use a shortened notation
derived from the C language to represent field data types:

• bool – 8-bit field allowing values 0 (false) and 1 (true)
• u8 , u16, u32 – unsigned 8-, 16-, or 32-bit integer
• i8 , i16, i32 – signed (two’s complement) 8-, 16-, or 32-bit integer
• char – an 8-bit ASCII character
• float – single-precision (32-bit) IEEE 754 [53] floating point number
• double – double-precision (64-bit) IEEE 754 [53] floating point number
• u8[] – array of variable length
• u8[n] – array of length n
• cstring – zero-terminated character string (like char[], ending with a 0x00 byte)

67

11. Communication Protocol
11.2 Frame Structure

Message frames have the following structure (all little-endian):

“TinyFrame” frame structure, as used in GEX

• 0x01 start-of-frame marker
• u16 frame ID
• u16 payload length
• u8 frame type
• u8 header checksum
• u8[] payload
• u8 payload checksum (omitted for empty payloads)

Frame ID, which could be better described as Transaction ID, uniquely identifies each
transaction. The most significant bit is set to a different value in each peer to avoid ID
conflicts, and the rest of the ID field is incremented with each initiated transaction.

11.3 Message Listeners

After sending a message that should receive a response, the peer registers an ID listener
with the ID of the sent message. A response reuses the original frame ID and when it
is received, this listener is called to process it. ID listeners can also be used to receive
multi-part messages re-using the original ID.

Frame type describes the payload and does not have any prescribed format in TinyFrame;
its values are defined by the application. A type listener may be registered to handle all
incoming messages with a given frame type. It works in a similar way to an ID listener,
but has a lower priority.

Each message can be handled by only one listener, unless the listener explicitly requests
it to be passed on. Messages not handled by any listener are given to a default listener,
which can, e.g., write an error to a debug log.

11.4 Designated Frame Types

Table 11.1 lists the frame types defined by GEX. It is divided into four logical sections:
General, Bulk Read/Write, Unit Access, and Settings. The payloads belonging to those
frame types will be outlined in the following sections.

68

.............................. 11.5. Bulk Read and Write Transactions

Frame type Function Note

0x00 Success Payload depends on context
0x01 Ping GEX responds with Success and its version string
0x02 Error Payload contains the error message

0x03 Bulk Read Offer An offer of data to read using 0x04

0x04 Bulk Read Poll Requesting to read a block of data
0x05 Bulk Write Offer An offer to receive a bulk write transaction
0x06 Bulk Data Used for both reading and writing
0x07 Bulk End Marks the last “Bulk Data” frame
0x08 Bulk Abort

0x10 Unit Request Request to a unit
0x11 Unit Report Spontaneous event generated by a unit

0x20 List Units Read a list of all instantiated units
0x21 INI Read Request a bulk read transaction of an INI file
0x22 INI Write Request a bulk write transaction of an INI file
0x23 Persist Config Write updated configuration to flash

Table 11.1: Frame types used by GEX

11.5 Bulk Read and Write Transactions

The bulk read and write transactions are generic, multi-message exchanges which are used
to transfer the INI configuration files. They could additionally be used by some future unit
requiring to transfer a large amount of data (e.g., to read image data from a camera).

The reason for splitting a long file into multiple messages, rather than sending it all
in one, lies in the hardware limitations of the platform, specifically its small amount of
RAM (the STM32F072 has only 16 kB). A message cannot be processed until its payload
checksum is received and verified; however, the configuration file can have several kilobytes,
owning to the numerous explanatory comments, which would require a prohibitively large
data buffer. The chunked transaction could, additionally, be extended to support message
re-transmission on timeout without sending the entire file again.

A read or write transaction can be aborted by a frame 0x08 (Bulk Abort) at any time,
though aborting a write transaction may leave the configuration in a corrupted state. As
hinted in the introduction of this chapter, a transaction is defined by sharing a common
frame ID. Thus, all frames in a bulk transaction must have the same ID, otherwise the ID
listeners would not be called for the subsequent messages.

69

11. Communication Protocol
Figure 11.2 shows a diagram of the bulk read and write data flow.

11.5.1 Bulk Read

To read an INI file, we first send a frame 0x21 (INI Read), specifying the target file in the
payload:

Frame 0x21 (INI Read) payload structure

• u8 which file to write
– 0 . . . UNITS.INI
– 1 . . . SYSTEM.INI

What follows is a standard bulk read transaction with the requested file. GEX offers
the file for reading with a frame 0x03 (Bulk Read Offer):

Frame 0x03 (Bulk Read Offer) payload structure

• u32 full size of the file in bytes
• u32 largest chunk that can be read at once

Now we can proceed to read the file using 0x04 (Bulk Read Poll), which is always
responded to with 0x06 (Bulk Data), or 0x07 (Bulk End) if this was the last frame. Data
frames have only the useful data as their payload. The 0x04 (Bulk Read Poll) payload
specifies how many bytes we want to read:

Frame 0x04 (Bulk Read Poll) payload structure

• u32 how many bytes to read (at most)

Frame 0x06 (Bulk Data) or 0x07 (Bulk End) payload in a “read” transaction

• char[] a chunk of the read file

11.5.2 Bulk Write

To overwrite an INI file, we first send a frame 0x22 (INI Write) with the file size as its
payload. The name of the file is irrelevant, as it is detected automatically by inspecting the
content.

Frame 0x22 (INI Write) payload structure

• u32 size of the written file, in bytes

The write request is confirmed by a frame 0x05 (Bulk Write Offer) sent back:

70

.............................. 11.5. Bulk Read and Write Transactions

INI Read request
file: 0 (UNITS.INI)

Bulk Read Offer

Bulk Read Poll

Bulk Data

Bulk Read Poll

Bulk End

H
os

t

D
ev

ic
e

INI Write request

Bulk Write Offer

Bulk Data

Success

Bulk End

Success

H
os

t

D
ev

ic
e

Figure 11.2: A diagram of the bulk read and write transaction.

Frame 0x05 (Bulk Write Offer) payload structure

• u32 total bytes to write (here copied from the request frame)
• u32 how many bytes may be written per message

We can now send the file as a series of frames of type 0x06 (Bulk Data), or 0x07 (Bulk End)
in the last frame, with chunks of the data as their payloads. Each frame is confirmed by
0x00 (Success).

Frame 0x06 (Bulk Data) or 0x07 (Bulk End) payload in a “write” transaction

• char[] a chunk of the written file

11.5.3 Persisting the Changed Configuration to Flash

The written INI file is immediately parsed and the settings are applied. However, those
changes are not persistent: they exist only in RAM and will be lost when the module
restarts. To save the current state to Flash, issue a frame 0x23 (Persist Config). This has
the same effect as pressing the LOCK button (or replacing the LOCK jumper) when the
INI files are edited using the virtual mass storage.

It should be noted that after flashing a firmware, the Flash control registers may remain
in an unexpected state and the module must first be manually restarted before attempting
to persist settings. Otherwise an assertion will fail and the module is restarted by a
watchdog, losing the temporary changes.

71

11. Communication Protocol
11.6 Reading a List of Units

The frame 0x20 (List Units) requests a list of all available units in the GEX module. The
list includes all units’ callsigns, names and types. The response payload has the following
format:

Frame 0x20 (List Units) response structure

• u8 the number of available units
• For each unit:

– u8 unit callsign
– cstring unit name
– cstring unit type

11.7 Unit Requests and Reports

Frame types 0x10 (Unit Request) and 0x11 (Unit Report) are dedicated to messages sent to
and by unit instances. Each has a fixed header (inside the payload) followed by unit-specific
data.

11.7.1 Unit Requests

Unit requests deliver a message from the host to a unit instance. Unit drivers implements
different commands, each with its own payload structure. The frame 0x10 (Unit Request)
has the following structure:

Frame 0x10 (Unit Request) payload structure

• u8 unit callsign
• u8 command number, handled by the unit driver
• u8[] command payload, handled by the unit driver; its size and content depend

on the unit driver and the particular command number, as defined in Chapter 14

The most significant bit of the command byte (0x80) has a special meaning: when set,
the message delivering routine responds with 0x00 (Success) after the command completes,
unless an error occurred. That is used to get a confirmation that the message was delivered
and the module operates correctly (as opposed to, e.g., a lock-up resulting in a watchdog
reset). Requests which normally generate a response (e.g., reading a value from the unit)
should not be sent with this flag, as that would produce two responses at once.

72

..................................11.7. Unit Requests and Reports

11.7.2 Unit Reports

Several unit types can produce asynchronous events, such as reporting a pin change, or a
triggering condition. The event is timestamped and sent with a frame type 0x11 (Unit Re-
port):

Frame 0x11 (Unit Report) payload structure

• u8 unit callsign
• u8 report type, defined by the unit driver
• u64 event time (microseconds since power-on)
• u8[] report payload; similar to requests, the payload structure depends on the

unit driver and the particular report type, as defined in Chapter 14

73

74

Chapter 12

Wireless Interface

Four methods of a wireless connection have been considered: Bluetooth (perhaps with
CC2541), WiFi with ESP8266, a 868MHz long range link with SX1276, and a 2.4GHz link
with nRF24L01+. Bluetooth was dismissed early for its complexity, and ESP8266 for its
high consumption in continuous reception mode, although both solutions might be viable
for certain applications and with more development time.

The Semtech SX1276 [54] and Nordic Semiconductor nRF24L01+ [55] transceivers
have both been tested using the first GEX prototype, proving its usefulness as a hardware
development tool, and it has been confirmed they could fulfill the requirements of our
application.

Figure 12.1: Test setup with a GEX prototype controlling two nRF24L01+ modules

12.1 Modulations Overview

A brief overview of the different signal modulation techniques is presented here to aid the
reader with understanding of Table 12.1 and the rest of the chapter.

75

12. Wireless Interface
12.1.1 On-Off Keying (OOK)

In on-off keying (OOK), the carrier generator is switched on and off to transmit ones and
zeros.

12.1.2 Frequency Shift Keying (FSK)

Frequency-shift keying (FSK) uses a change of the carrier frequency to transmit data.
The simplest form of FSK is binary frequency-shift keying (BFSK), which uses a pair of
alternating frequencies to transmit ones and zeros.

12.1.3 Gaussian Frequency Shift Keying (GFSK)

Gaussian frequency-shift keying (GFSK) is an improvement over basic FSK which does not
switch between the different frequencies instantaneously, but uses a Gaussian filter to make
the changes less abrupt, which reduces the side-band interference otherwise generated by
the sharp edges. This scheme can be imagined as sending the binary waveform through
a Gaussian filter and then modulating a VCO with its output, rather than changing the
VCO’s control voltage discretely. GFSK is used in the Bluetooth standard.

12.1.4 Minimum-Shift Keying (MSK)

Minimum-shift keying (MSK) is another FSK-based modulation scheme. In MSK, the
frequencies representing different symbols are chosen such that there are no sharp changes
in the phase of the output waveform, the modulation is phase-coherent. This is another
way to reduce side-band interference.

12.1.5 Gaussian Minimum-Shift Keying (GMSK)

Gaussian minimum-shift keying (GMSK) is a variant of MSK which uses a Gaussian filter
to shape the digital signal before sending it to the oscillator. The principle is similar to
GFSK, and it is a yet another way to reduce side-band interference and increase spectral
efficiency. GMSK is used in the Global System for Mobile communications (GSM).

12.1.6 LoRa Modulation

LoRa is a patented proprietary modulation developed by Semtech. It uses a direct sequence
frequency hopping spread spectrum modulation and can achieve very long range transmission
(over 10 km is not uncommon). LoRa is available only with transceiver ICs produced by
Semtech and for this reason it is rather expensive.

12.2 Comparing SX1276 and nRF24L01+

The two transceivers are compared in Table 12.1. It is apparent that each of them has its
strengths and weaknesses, which will be discussed below.

76

............................ 12.3. Integration of the nRF24L01+ into GEX

Parameter SX1276 nRF24L01+

Connection SPI (4 pins) + up to 6 IRQ SPI (4 pins), CE, IRQ

Frequency band 868MHz or 433MHz 2.4GHz

Data rate up to 300 kbps 250–2000 kbps

Modulation (G)FSK, (G)MSK, OOK, LoRa GFSK

Range (est.) over 10 km up to 1 km

Consumption Rx 10.8–12mA 12.6–13.5mA

Consumption Tx 20–120mA 7–11.3mA

Idle power (max) 1µA sleep, 2mA stand-by 0.9µA sleep, 320µA stand-by

Max packet size 300 bytes 32 bytes

Reset NRESET pin Vdd disconnect

Extra LoRa FHSS, packet engine ShockBurst protocol engine

Price $7.3 $1.6

Table 12.1: Comparison of the SX1276 and nRF24L01+ wireless transceivers, using data from
their datasheets (price in USD from DigiKey in a 10 pcs. quantity, recorded on May 6th 2018)

SX1276 supports additional modulation modes, including a proprietary LoRa scheme
with a frequency-hopping spread spectrum modulation that can be received at a distance up
to 20 km in ideal conditions. The long-range capability is reflected in a higher consumption
during transmission. However, its consumption in receiver mode is slightly lower than that
of the nRF24L01+.

nRF24L01+ provides higher data rates at short distances. Its power consumption is
comparable or lower than that of the SX1276. It lacks a dedicated reset pin, but that can
be easily worked around using an external transistor to momentarily disconnect its Vdd
pin.

Both devices implement some form of a packet engine with error checking; that of the
nRF24L01+, called ShockBurst, is more advanced as it implements acknowledgment re-
sponses and automatic re-transmission, leading to a potentially more robust communication
without an additional overhead on the side of the microcontroller.

12.3 Integration of the nRF24L01+ into GEX

The nRF24L01+ was selected to be integrated into GEX thanks to its inclusion of the
ShockBurst engine, higher possible data rates and significantly lower price. The SX1276,
nonetheless, remains an interesting option that could be used as an alternative in the future,
should the need for a long range communication arise.

77

12. Wireless Interface
A separate device, the GEX wireless gateway, was developed to provide the PC connection

to a nRF24L01+ module. It is based on the STM32F103 microcontroller in its smallest
package (LQFP48), selected for its low cost and good availability.

TODO the above –remove/update/link to the hw chapter

12.3.1 The Wireless Gateway Protocol

Wireless gateway

RF link (ShockBurst)

Host

Gateway protocol (USB)

Wireless gateway
adapter

User application

Binary stream (TinyFrame)

GEX library

nRF

GEX

nRF

GEX

nRF

GEX

Figure 12.2: A block diagram of
the wireless connection

The gateway presents itself to the host as a CDC/ACM
device, much like the GEX modules themselves (here
called nodes) when connected over USB. It implements
a simple protocol which encapsulates the binary data
sent to or from a connected node. The wrapped GEX
protocol, which is described in Chapter 11, remains
unchanged.

The gateway has a 4-byte network ID, a number
derived from the MCU’s unique ID by calculating its
32-bit cyclic redundancy check (CRC). The network
ID must be entered into all nodes that wish to commu-
nicate with the gateway. Additionally, each module is
assigned a 1-byte number which serves as its address in
the network. The gateway can receive messages from
up to 6 nodes.

All messages sent to or from the gateway are a
multiple of 64 bytes long, padded with zeros if shorter.
The message starts with a control byte determining its type, as summarized in the following
table:

First byte Function Structure

‘r’ (114) RESTART
Restart the gateway, disconnecting all
nodes. This is functionally equivalent to
re-plugging it to the USB port.

‘i’ (105) GET_NET_ID
Read the unique 4-byte network ID. This
command has no side effects and may
be used as “ping” to verify the USB
connection.

Response:
• 0x01
• u8[4] network ID

‘n’ (110) ADD_NODES
Configure the gateway to listen for mes-
sages from the given nodes. Nodes may
be removed using the RESTART com-
mand.

Request:
• u8 count
• u8[] node addresses

78

............................ 12.3. Integration of the nRF24L01+ into GEX

First byte Function Structure

‘m’ (109) SEND_MSG
Send a binary message to one of the con-
nected nodes. The message may span
multiple 64-byte frames; the subsequent
frames will contain only the payload
bytes, or zero padding at the end of the
last one.

Request:
• u8 node address
• u16 length
• u8 checksum (inverted

XOR of all payload bytes)
• u8[] payload

0x02 INCOMING_MSG
A message was received from one of the
configured nodes. This is an event frame
sent by the gateway to the host.

Payload:
• u8 node address
• u8 message length
• u8[] payload

12.3.2 Gateway Initialization Procedure

A host program connecting to a node or nodes through the gateway should follow the
following procedure to initialize and configure the gateway:

1. Send the ‘GET_NET_ID’ command to test if the gateway is connected (and obtain
its network ID as a side effect)

2. Restart the gateway using the ‘RESTART’ command to clean any possible previous
configuration.

3. Add the node address(es) using ‘ADD_NODES’

4. Ping the connected node(s) via TinyFrame (passed through ‘SEND_MSG’ and
‘INCOMING_MSG’) to test if the connection works.

79

80

Chapter 13

Hardware Realization

13.1 Using a Discovery Board

It has been proposed earlier in the text that STM32 Nucleo and Discovery development
boards might be used as the hardware platform for this project. Indeed, a Discovery board
with STM32F072 [56] was used as a development platform for the majority of the GEX
firmware. This inexpensive board may be used to try the GEX firmware without having
access to the custom hardware.

13.1.1 Discovery F072 Configuration and Pin Mapping

This Discovery board is fitted with four LEDs on GPIO pins PC6 through PC9, in a
compass arrangement. The “north” LED, PC6, is used as the GEX status indicator. The
“User” button, connected to PA0, is mapped as the GEX Lock button, controlling the
settings storage.

We advise the reader, as a potential user of this discovery board, to review its schematic
diagram and ensure the solder-jumpers are configured correctly:

• Jumpers SB20 and SB23 must be closed to enable the User USB connector

• Jumper SB17 must be open and SB19 closed to use the 8MHz clock signal provided by
the on-board ST-Link programmer; the internal USB-synchronized 48MHz oscillator
will be used if the clock signal is not provided (SB19 open).

• Jumpers SB27 through SB32 should be closed to connect the GPIO pins normally
dedicated to the touch sensing strip to the board’s header.

• Capacitors C26 through C28 are sampling capacitors for the TSC. There are, unfor-
tunately, no jumpers available to disconnect them, and they interfere in high-speed
signals on the used pins (PA3, PA7, PB1). The only solution is to carefully remove
them from the board if the TSC is not needed.

An accelerometer IC L3GD20 is fitted on the board. The chip is attached to SPI2 on
pins PB13 (SCK), PB14 (MISO) and PB15 (MOSI), with NSS on pin PC0, and PC1 and
PC2 used for interrupt flags. This chip cannot be disconnected or disabled and it is difficult
to remove; care must be taken to avoid its interference on the used pins.

81

13. Hardware Realization.....................................
13.2 GEX Hub

GEX Hub was the first custom PCB designed for GEX. It uses the same microcontroller as
the Discovery board, thus the firmware modifications needed to make it work with this new
platform were minimal.

The Hub board provides access to all the GPIO pins using three flat-cable connectors,
one for each port; they also contain a ground and power supply connection to make the
connection of external boards or a breadboard easier, needing just one cable. The use of flat
cables, however, is not mandatory—those connectors are based on the standard 2.54mm
pitch pin headers, allowing the user to connect to them using widely available “jumper
wires”.

This board was produced in two revisions. The original model (Figure 13.1a) proved
fully functional, except for the two connectors on the left side, the boot jumper and
a programming header, which had the wrong footprints and could not be populated;
this mistake was fixed by soldering the jumper from the bottom of the PCB, and the
programming header was never needed thanks to the USB bootloader working without
issues.

The updated revision removes the two problematic footprints altogether; a reorganization
in the GPIO connectors allowed them to be moved together with the other pins. Revision 1
used a dedicated header for the Boot jumper that was meant to be closed during normal
operation, and removed only to enter the bootloader. Revision 2 moved the boot pin into
the connector, and such arrangement would not be practical; the solution was to invert
the jumper’s logic by changing the Boot pull-up to a pull-down. The bootloader is now
activated by inserting a regular 2.54mm jumper into the connector1, as can be seen in
Figure 13.1b.

(a) : Revision 1 (b) : Revision 2

Figure 13.1: Two revisions of the GEX Hub module, rev. 2 shown with the boot jumper and
a flat cable.

1A restart is required in all cases for the boot jumper changes to have effect

82

... 13.3. GEX Zero

13.3 GEX Zero

Our desire to re-use the form factor of the Raspberry Pi Zero to exploit the existing market
with add-on boards and cases for it has been revealed already in Section 2.5. This was
brought to fruition with GEX Zero, the second realized prototype board (counting the two
revisions of GEX Hub as one).

GEX Zero exactly copies the dimensions of the Pi Zero, which introduces several
challenges:

• It must be a one-sided board, with no components on the bottom; this is needed for
acrylic cases which sit flatly against the PCB, with a cut-out for the pin header.

• Buttons and the USB connector have to exactly align with connectors on the Pi Zero
to fit the openings in its cases.

• The board size is fixed, and rather small; we used only two layers to save production
cost, but this proved a significant challenge and the electrical characteristics of some
connections may not be ideal.

• To make use of the Raspberry Pi add-on boards, called HATs or pHATs, a particular
organization of the pin header is required. This is discussed in more detail below.

13.3.1 Finding the Best Pin Assignment

Like our STM32 microcontroller, the Broadcom processor on the Raspberry Pi multiplexes
its GPIO pins with alternate functions, and, likewise, each function is available only on a
small selection of pins. A number of compromises had to be made to achieve maximum
compatibility.

show the pi header mappings and the gex zero pin mappings

13.4 Wireless Gateway

Figure 13.4

TODO about the gateway ..

83

13. Hardware Realization.....................................

Figure 13.2: GEX Zero, top and bottom side

84

...................................... 13.4. Wireless Gateway

Figure 13.3: GEX Zero in the official Raspberry Pi Zero case and an aftermarket acrylic case

85

13. Hardware Realization.....................................

Figure 13.4: The wireless gateway module (top and bottom side)

86

Chapter 14

Units Overview, Commands and Events Description

This chapter describes all functional blocks (units) implemented in GEX, version 1.0. The
term “unit” will be used here to refer to both unit types (drivers) or their instances where
the distinction is not important.

Each unit’s description will be accompanied by a corresponding snippet from the
configuration file, and a list of supported commands and events. The commands and events
described here form the payload of TinyFrame messages 0x10 (Unit Request) and 0x11
(Unit Report), as described in Section 11.7.

The number in the first column of the command (or event) tables, marked as “Code”, is
the command number (or report type) used in the payload to identify how the message
data should be treated. When the request or response payload is empty, it is omitted from
the table. The same applies to commands with no response, in which case adding 0x80 to
the command number triggers a SUCCESS response after the command is finished.

14.1 General Notes

14.1.1 Unit Naming

Unit types are named in uppercase (SPI, 1WIRE, NPX) in the INI file and in the list of
units. Unit instances can be named in any way the user desires; using lowercase makes it
easier to distinguish them from unit types. It is advisable to use descriptive names, e.g.,
not “pin1”, but rather “button”.

14.1.2 Packed Pin Access

Several units facilitate an access to a group of GPIO pins, such as the digital input and
output units, or the SPI unit’s slave select pins. The STM32 microcontroller’s ports have 16
pins each, most of which can be configured to one of several alternate functions (e.g., SPI,
PWM outputs, ADC input). As a consequence, it is common to be left with a discontiguous
group of pins after assigning all the alternate functions needed by an application.

For instance, we could only have the pins 0, 1, 12–15 available on a GPIO port. GEX
provides a helpful abstraction to bridge the gaps in the port: The selected pins are packed
together and represented, in commands and events, as a block of six pins (0x3F) instead of
their original positions in the register (0xF003). This scheme is shown in Figure 14.1. The

87

14. Units Overview, Commands and Events Description
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 1 0

GPIO port

Commands / events

Figure 14.1: Pin packing

translation is done in the unit driver and works transparently, as if the block of pins had
no gaps—all the referenced pins are updated simultaneously without glitches. Where pin
numbers are used, the order in the packed word should be provided—in our example, that
would be 0–5, counting from the least significant bit.

14.2 Digital Output

The digital output unit provides a write access to one or more pins of a GPIO port. This
unit additionally supports pulse generation on any of its pins; this is implemented in
software, with timing derived from the system timebase, in order to support pulses on all
pins regardless of hardware PWM support. Pins in commands are expressed in the packed
format (Section 14.1.2).

14.2.1 Digital Output Configuration

[DO:out@1]
Port name
port=A
Pins (comma separated, supports ranges)
pins=0
Initially high pins
initial=
Open-drain pins
open-drain=

14.2.2 Digital Output Commands

Code Function Structure

0 WRITE
Write to all pins

Request:
• u16 new value

1 SET
Set selected pins to 1

Request:
• u16 pins to set

88

.. 14.3. Digital Input

Code Function Structure

2 CLEAR
Set selected pins to 0

Request:
• u16 pins to clear

3 TOGGLE
Toggle selected pins

Request:
• u16 pins to toggle

4 PULSE
Generate a pulse on the selected pins.
The microsecond scale may be used only
for 0–999µs.

Request:
• u16 pins to pulse
• bool active level
• u8 scale: 0-ms, 1-µs
• u16 duration

14.3 Digital Input

The digital input unit is the input counterpart of the digital output unit. In addition to
reading the immediate digital levels of the selected pins, this unit can report asynchronous
events on a pin change.

All pins of the unit may be configured either for a rising, falling, or any change detection;
due to a hardware limitation, the same pin number may not be used for event detection on
different ports (e.g., A1 and B1) at the same time. In order to receive a pin change event,
we must arm the pin first, using a command; it can be armed for a single event, or it may
be re-armed automatically with a hold-off time. It is, further, possible to automatically arm
selected pins on start-up, removing the need to arm them, e.g., after the module restarts or
is re-connected.

14.3.1 Digital Input Configuration

[DI:in@2]
Port name
port=A
Pins (comma separated, supports ranges)
pins=10-8,3-0
Pins with pull-up
pull-up=10,9
Pins with pull-down
pull-down=0

Trigger pins activated by rising/falling edge
trig-rise=10
trig-fall=
Trigger pins auto-armed by default
auto-trigger=10

89

14. Units Overview, Commands and Events Description
Triggers hold-off time (ms)
hold-off=100

14.3.2 Digital Input Events

Code Function Structure

0 PIN_CHANGE
A pin change event. The payload in-
cludes a snapshot of all configured pins
captured immediately after the change
was registered.

Payload:
• u16 changed pins
• u16 port snapshot

14.3.3 Digital Input Commands

Code Function Structure

0 READ
Read the pins

Response:
• u16 pin states

1 ARM_SINGLE
Arm for a single event

Request:
• u16 pins to arm

2 ARM_AUTO
Arm with automatic re-arming after
each event

Request:
• u16 pins to arm

3 DISARM
Dis-arm selected pins

Request:
• u16 pins to dis-arm

14.4 SIPO (Shift Register) Unit

The shift registers driver unit is designed for the loading of data into serial-in/parallel-out
(SIPO) shift registers, such as 74xx4094 or 74xx595. Those are commonly used to control
segmented LED displays, LED user interfaces, etc.

Those devices may be daisy-chained: the output of one is connected to the input of
another, sharing the same clock and other signals, and they work together as one longer
shift register.

A SIPO shift register has the following pins (possibly named differently with chips from
different vendors):

• Shift – SCK; shifts the data in the register by one bit

90

.................................. 14.4. SIPO (Shift Register) Unit

• Data In – MOSI; serial data to load into the register

• Data Out – output for daisy-chaining with other shift registers

• Store – latches the current register data and shows it on the output

• Clear – erases the latched data and clears the display

This unit automatically handles both the Shift and Store signals, provides access to the
Clear output, and is capable of loading multiple shift registers in parallel (an arrangement
sometimes used instead of daisy-chaining). The polarity (active level) of all signals can be
configured.

It is, additionally, possible to set the data lines to arbitrary “idle” level(s) before sending
the Store pulse; this may be latched and used for some additional feature on the user
interface, such as a brightness control.

14.4.1 SIPO Configuration

[SIPO:display@9]
Shift pin & its active edge (1-rising,0-falling)
shift-pin=A1
shift-pol=1
Store pin & its active edge
store-pin=A0
store-pol=1
Clear pin & its active level
clear-pin=A2
clear-pol=0
Data port and pins
data-port=A
data-pins=3

14.4.2 SIPO Commands

The WRITE and CLEAR_DIRECT commands are the only ones normally used. The
others provide manual control over all the output signals for debugging or testing.

Code Function Structure

0 WRITE
Load the shift registers and leave the
data outputs in the “trailing data” state
before sending the Store pulse.

Request:
• u16 trailing data (packed pins)
• For each output (same size)

– u8[] data to load

91

14. Units Overview, Commands and Events Description
Code Function Structure

1 DIRECT_DATA
Directly write to the data pin(s)

Request:
• u16 values to write (packed pins)

2 DIRECT_CLEAR
Pulse the Clear pin

3 DIRECT_SHIFT
Pulse the Shift pin

4 DIRECT_STORE
Pulse the Store pin

14.5 NeoPixel Unit

The NeoPixel unit implements the protocol needed to control a digital LED strip with
WS2812, WS2811, or compatible LED driver chips. The NeoPixel protocol (explained in
Section 7.5) is implemented in software, therefore it is available on any GPIO pin of the
module.

The color data can be loaded in five different format: as packed bytes (3×8 bits color),
or as the little- or big-endian encoding of colors in a 32-bit format: 0x00RRGGBB or
0x00BBGGRR. The 32-bit format is convenient when the colors are already represented as
an array of 32-bit integers, e.g., extracted from a screen capture or an image.

14.5.1 NeoPixel Configuration

[NPX:neo@3]
Data pin
pin=A0
Number of pixels
pixels=32

14.5.2 NeoPixel Commands

Code Function Structure

0 CLEAR
Switch all LEDs off (sets them to black)

92

..14.6. SPI Unit
Code Function Structure

1 LOAD
Load a sequence of R,G,B bytes

Request:
• For each LEDs:

– u8 red
– u8 green
– u8 blue

4 LOAD_U32_ZRGB
Load 32-bit big-endian 0xRRGGBB
(0,R,G,B)

Request:
• u32[] color data (big-endian)

5 LOAD_U32_ZBGR
Load 32-bit big-endian 0xBBGGRR
(0,B,G,R)

Request:
• u32[] color data (big-endian)

6 LOAD_U32_RGBZ
Load 32-bit little-endian 0xBBGGRR
(R,G,B,0)

Request:
• u32[] color data (little-endian)

7 LOAD_U32_BGRZ
Load 32-bit little-endian 0xRRGGBB
(B,G,R,0)

Request:
• u32[] color data (little-endian)

10 GET_LEN
Get number of LEDs in the strip

Response:
• u16 number of LEDs

14.6 SPI Unit

The SPI unit provides access to one of the microcontroller’s SPI peripherals. The unit can
be configured to any of the hardware-supported speeds, clock polarity, and clock phase
settings. Explanation of those options, including diagrams, can be found in Section 7.2.

The unit handles up to 16 slave select (NSS) signals and supports message multi-cast
(addressing more than one slaves at once). Protection resistors should be used if a multi-
cast transaction is issued with MISO connected to prevent a short circuit between slaves
transmitting the opposite logical level.

The QUERY command of this unit, illustrated by Figure 14.2, is flexible enough to
support all types of SPI transactions: read-only, write-only, and read-write, with different
request and response lengths and paddings. The slave select signal is asserted during the
entire transaction.

14.6.1 SPI Configuration

[SPI:spi@5]
Peripheral number (SPIx)
device=1

93

14. Units Overview, Commands and Events Description

X X XMOSI
Y Y Y YMISO ?

0x00 0x00

Request

Response
Skip

Padding

Figure 14.2: SPI transaction using the QUERY command

Pin mappings (SCK,MISO,MOSI)
SPI1: (0) A5,A6,A7 (1) B3,B4,B5
SPI2: (0) B13,B14,B15
remap=0
Prescaller: 2,4,8,...,256
prescaller=64
Clock polarity: 0,1 (clock idle level)
cpol=0
Clock phase: 0,1 (active edge, 0-first, 1-second)
cpha=0
Transmit only, disable MISO
tx-only=N
Bit order (LSB or MSB first)
first-bit=MSB
SS port name
port=A
SS pins (comma separated, supports ranges)
pins=0

14.6.2 SPI Commands

Code Function Structure

0 QUERY
Exchange bytes with a slave device; see
the diagram in Figure 14.2

Request:
• u8 slave number 0–16
• u16 response padding
• u16 response length
• u8[] bytes to write

Response:
• u8[] received bytes

1 MULTICAST
Send a message to multiple slaves at
once. The “addressed slaves” word uses
the packed pins format (Section 14.1.2).

Request:
• u16 addressed slaves
• u8[] bytes to write

14.7 I2C Unit

The I2C unit provides access to one of the microcontroller’s I2C peripherals. More on the
I2C bus can be found in Section 7.3.

The unit can be configured to use either of the three standard speeds (Standard, Fast
and Fast+) and supports both 10-bit and 7-bit addressing. 10-bit addresses can be used
in commands by setting their highest bit (0x8000), as a flag to the unit; the 7 or 10 least
significant bits will be used as the actual address.

94

.. 14.7. I2C Unit

14.7.1 I2C Configuration

[I2C:i2c@4]
Peripheral number (I2Cx)
device=1
Pin mappings (SCL,SDA)
I2C1: (0) B6,B7 (1) B8,B9
I2C2: (0) B10,B11 (1) B13,B14
remap=0

Speed: 1-Standard, 2-Fast, 3-Fast+
speed=1
Analog noise filter enable (Y,N)
analog-filter=Y
Digital noise filter bandwidth (0-15)
digital-filter=0

14.7.2 I2C Commands

Code Function Structure

0 WRITE
Perform a raw write transaction

Request:
• u16 slave address
• u8[] bytes to write

1 READ
Perform a raw read transaction.

Request:
• u16 slave address
• u16 number of read bytes

Response:
• u8[] received bytes

2 WRITE_REG
Write to a slave register. Sends the reg-
ister number and the data in the same
transaction. Multiple registers can be
written at once if the slave supports
auto-increment.

Request:
• u16 slave address
• u8 register number
• u8[] bytes to write

3 READ_REG
Read from a slave register. Writes the
register number and issues a read trans-
action of the given length. Multiple reg-
isters can be read at once if the slave
supports auto-increment.

Request:
• u16 slave address
• u8 register number
• u16 number of read bytes

Response:
• u8[] received bytes

95

14. Units Overview, Commands and Events Description
14.8 USART Unit

The USART unit provides access to one of the microcontroller’s USART peripherals. See
Section 7.1 for more information about the interface.

Most USART parameters available in the hardware peripheral’s configuration registers
can be adjusted to match the application’s needs. The peripheral is capable of driving
RS-485 transceivers, using the Driver Enable (DE) output for switching between reception
and transmission.

The unit implements asynchronous reception and transmission with DMA and a circular
buffer. Received data is sent to the host in asynchronous events when a half of the buffer is
filled, or after a fixed timeout from the last received byte. The write access is, likewise,
implemented using DMA.

add a diagram of the dma-based reception

14.8.1 USART Configuration

[USART:ser@6]
Peripheral number (UARTx 1-4)
device=1
Pin mappings (TX,RX,CK,CTS,RTS/DE)
USART1: (0) A9,A10,A8,A11,A12 (1) B6,B7,A8,A11,A12
USART2: (0) A2,A3,A4,A0,A1 (1) A14,A15,A4,A0,A1
USART3: (0) B10,B11,B12,B13,B14
USART4: (0) A0,A1,C12,B7,A15 (1) C10,C11,C12,B7,A15
remap=0

Baud rate in bps (eg. 9600)
baud-rate=115200
Parity type (NONE, ODD, EVEN)
parity=NONE
Number of stop bits (0.5, 1, 1.5, 2)
stop-bits=1
Bit order (LSB or MSB first)
first-bit=LSB
Word width (7,8,9) - including parity bit if used
word-width=8
Enabled lines (RX,TX,RXTX)
direction=RXTX
Hardware flow control (NONE, RTS, CTS, FULL)
hw-flow-control=NONE

Generate serial clock (Y,N)
clock-output=N
Clock polarity: 0,1

96

.. 14.9. 1-Wire Unit

cpol=0
Clock phase: 0,1
cpha=0

Generate RS485 Driver Enable signal (Y,N) - uses RTS pin
de-output=N
DE active level: 0,1
de-polarity=1
DE assert time (0-31)
de-assert-time=8
DE clear time (0-31)
de-clear-time=8

14.8.2 USART Events

Code Function Structure

0 DATA_RECEIVED
Data was received on the serial port.

Payload:
• u8[] received bytes

14.8.3 USART Commands

Code Function Structure

0 WRITE
Add data to the transmit buffer. Send-
ing is asynchronous, but the command
may wait for free space in the DMA
buffer.

Request:
• u8[] bytes to write

1 WRITE_SYNC
Add data to the transmit buffer and
wait for the transmission to complete.

Request:
• u8[] bytes to write

14.9 1-Wire Unit

The 1-Wire unit implements the Dallas Semiconductor’s 1-Wire protocol, most commonly
used to interface smart thermometers (DS18x20). The protocol is explained in Section 7.4.

This unit implements the ROM Search algorithm that is used to find the ROM codes of
all 1-Wire devices connected to the bus. The algorithm can find up to 32 devices in one
run; more devices can be found by issuing the SEARCH_CONTINUE command.

97

14. Units Overview, Commands and Events Description
Devices are addressed using their ROM codes, unique 64-bit (8-byte) identifiers that

work as addresses. When only one device is connected, the value 0 may be used instead and
the addressing will be skipped. Its ROM code may be recovered using the READ_ADDR
command or by the search algorithm.

14.9.1 1-Wire Configuration

[1WIRE:ow@7]
Data pin
pin=A0
Parasitic (bus-powered) mode
parasitic=N

14.9.2 1-Wire Commands

Code Function Structure

0 CHECK_PRESENCE
Test if there are any devices attached
to the bus.

Response:
• bool presence detected

1 SEARCH_ADDR
Start the search algorithm.

Response:
• bool should continue
• u64[] ROM codes

2 SEARCH_ALARM
Start the search algorithm, finding only
devices in an alarm state.

Response:
• bool should continue
• u64[] ROM codes

3 SEARCH_CONTINUE
Continue a previously started search

Response:
• bool should continue
• u64[] ROM codes

4 READ_ADDR
Read a device address (single device
only)

Response:
• u64 ROM code

10 WRITE
Write bytes to a device.

Request:
• u64 ROM code
• u8[] bytes to write

98

.................................. 14.10. Frequency Capture Unit

Code Function Structure

11 READ
Write a request and read response.

Request:
• u64 ROM code
• u16 read length
• bool verify checksum
• u8[] request bytes

Response:
• u8[] read bytes

20 POLL_FOR_1
Wait for a READY status, used by
DS18x20. Not available in parasitic
mode. Responds with SUCCESS after
all devices are ready.

14.10 Frequency Capture Unit

The frequency capture unit implements both the frequency measurement methods explained
in Section 8.1: direct and reciprocal.

The unit has several operational modes: idle, reciprocal continuous, reciprocal burst,
direct continuous, direct burst, free counting, and single pulse. Burst mode is an on-demand
measurement with optional averaging. Continuous mode does not support averaging, but
the latest measurement can be read at any time without a delay.

14.10.1 Value Conversion Formulas

Several of the features implemented in this unit would require floating point arithmetic
to provide the measured value in the desired units (Hz, seconds). That is not available in
Arm Cortex-M, only as a software implementation. The calculation is left to the client in
order to save Flash space that would be otherwise used by the arithmetic functions. This
arrangement also avoids rounding errors and a possible loss of precision.

Reciprocal (Indirect) Measurement

Period (in seconds) is computed as:

T = period_sum
fcore,MHz · 106 · n_periods

The frequency is obtained by simply inverting it:

f = T−1

99

14. Units Overview, Commands and Events Description
The average duty cycle is computed as the ratio of the sum of active-level pulses and

the sum of all periods:

average_duty = ontime_sum
period_sum

Direct Measurement

The frequency can be derived from the pulse count and measurement time using its definition
(tms is measurement time in milliseconds):

f = 1000 · count · prescaller
tms

14.10.2 Frequency Capture Configuration

[FCAP:j@10]
Signal input pin - one of:
Full support: A0, A5, A15
Indirect only: A1, B3
pin=A0

Active level or edge (0-low,falling; 1-high,rising)
active-level=1
Input filtering (0-15)
input-filter=0
Pulse counter pre-divider (1,2,4,8)
direct-presc=1
Pulse counting interval (ms)
direct-time=1000

Mode on startup: N-none, I-indirect, D-direct, F-free count
initial-mode=N

14.10.3 Frequency Capture Commands

Some commands include optional parameter setting. Using 0 in the field keeps the previous
value. Those fields are marked with *.

Code Function Structure

0 STOP
Stop all measurements, go idle

100

.................................. 14.10. Frequency Capture Unit

Code Function Structure

1 INDIRECT_CONT_START
Start a repeated reciprocal measure-
ment

2 INDIRECT_BUTST_START
Start a burst of reciprocal measure-
ments

Request:
• u16 number of periods

Response:
• u16 core speed (MHz)
• u16 number of periods
• u64 sum of all periods (ticks)
• u16 sum of on-times (ticks)

3 DIRECT_CONT_START
Start a repeated direct measurement

Request:
• u16 *measurement time
• u8 *prescaller (1, 2, 4, 8)

4 DIRECT_BURST_START
Start a single direct measurement.
Longer capture time may help increase
accuracy for stable signals.

Request:
• u16 *measurement time (ms)
• u8 *prescaller (1, 2, 4, 8)

Response:
• u8 prescaller
• u16 measurement time (ms)
• u32 pulse count

5 FREECOUNT_START
Clear and start the pulse counter

Request:
• u8 *prescaller (1,2,4,8)

6 MEASURE_SINGLE_PULSE
Measure a single pulse of the active level.
Waits for a rising edge.

Response:
• u16 core speed (MHz)
• u32 pulse length (ticks)

7 FREECOUNT_CLEAR
Read and clear the pulse counter.

Response:
• u32 previous counter value

10 INDIRECT_CONT_READ
Read the latest value from the continu-
ous reciprocal measurement, if running.

Response:
• u16 core speed (MHz)
• u32 period length (ticks)
• u32 on-time (ticks)

11 DIRECT_CONT_READ
Read the latest value from the continu-
ous direct measurement, if running.

Response:
• u8 prescaller
• u16 measurement time (ms)
• u32 pulse count

12 FREECOUNT_READ
Read the pulse counter value

Response:
• u32 pulse count

101

14. Units Overview, Commands and Events Description
Code Function Structure

20 SET_POLARITY
Set pulse polarity (active level)

Response:
• bool polarity

21 SET_PRESCALLER
Set prescaller for the direct mode

Response:
• u8 prescaller (1,2,4,8)

22 SET_INPUT_FILTER
Set input filtering (a hardware feature
designed to ignore glitches)

Response:
• u8 filtering factor (0-15, 0=off)

23 SET_DIR_MSEC
Set direct measurement time

Response:
• u16 measurement time (ms)

30 RESTORE_DEFAULTS
Restore all run-time adjustable param-
eters to their configured default values

14.11 ADC Unit

The analog/digital converter unit is one of the most complicated and powerful units
implemented in the project. The unit can measure the voltage on an input pin, either as its
immediate value, or averaged with exponential forgetting. Isochronous sampling is available
as well: it is possible to capture a fixed-length block of data on demand, or as a response to
a triggering condition on any of the enabled input pins. The ADC must continuously sample
the inputs to make the averaging and level based triggering possible; as a consequence, a
pre-trigger buffer is available that can be read together with the block of samples following
a trigger. The ADC unit can also be switched to a continuous streaming mode, a block
capture which continues indefinitely, until the host decides to stop the stream.

It is possible to activate any number of the 16 analog inputs of the ADC peripheral
simultaneously, together with the internal input channels. The maximum continuous
sampling frequency, which reaches 70 ksps with one channel, lowers with an increasing
number of enabled channels, as the amount of data to transfer host increases. Those high
speeds are achievable in shorter block captures, taking advantage of the (configurable) data
buffer. A streamed or too long block capture may be aborted after the buffer is exhausted.

add a diagram

14.11.1 ADC Configuration

[ADC:adc@8]
Enabled channels, comma separated
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 C0 C1 C2 C3 C4 C5 Tsens Vref

102

...14.11. ADC Unit

channels=16

Sampling time (0-7)
sample_time=2
Sampling frequency (Hz)
frequency=1000

Sample buffer size
- shared by all enabled channels
- defines the maximum pre-trigger size (divide by # of channels)
- captured data is sent in half-buffer chunks
- buffer overrun aborts the data capture
buffer_size=256

Enable continuous sampling with averaging
Caution: This can cause DAC output glitches
averaging=Y
Exponential averaging coefficient (permil, range 0-1000 ~ 0.000-1.000)
- used formula: y[t]=(1-k)*y[t-1]+k*u[t]
- not available when a capture is running
avg_factor=500

14.11.2 ADC Events

Code Function Structure

50 TRIGGERED
The first event generated when a trig-
gering condition occurs. The payload
includes pre-trigger and the transac-
tion continues with a sequence of CAP-
TURE events sharing the same frame
ID. The serial number is incremented
with each stream chunk and can be used
to detect lost data frames.

Payload:
• u32 pre-trigger length
• u8 triggering edge (1-falling,

2-rising, 3-forced)
• u8 stream serial number
• u16[] pre-trigger data

51 CAPTURE_DATA
A chunk of sampled data in a stream,
block, or a triggered capture. More
data will follow.

Payload:
• u8 stream serial number
• u16[] sample data

52 CAPTURE_END
Indicates the end of a multi-part cap-
ture. The payload may be empty if
there is no more data to send (e.g., a
stream had to be unexpectedly closed).

Payload:
• u8 stream serial number
• u16[] sample data

103

14. Units Overview, Commands and Events Description
14.11.3 ADC Commands

Code Function Structure

0 READ_RAW
Get the last raw sample from enabled
channels.

Response:
• u16[] raw values 0–4095

1 READ_SMOOTHED
Get the averaged values from enabled
channels. Not available for high sample
rates and when disabled.

Response:
• float[] smoothed values 0–4095

2 READ_CAL_CONSTANTS
Read factory calibration constants from
the MCU’s ROM

Response:
• u16 VREF_INT voltage (raw ADC

word)
• u16 ADC reference voltage (mV)

during VREF_INT measurement
• u16 Temperature sensor voltage

in point 1 (raw ADC word)
• u16 Temperature sensor voltage

in point 2 (raw ADC word)
• u16 Temperature in point 1 (°C)
• u16 Temperature in point 2 (°C)
• u16 ADC reference voltage (mV)

during temp. sensor calibration

10 GET_ENABLED_CHANNELS
Get numbers of all enabled channels
(0-based)

Response:
• u8[] enabled channel numbers

11 GET_SAMPLE_RATE
Get the current sample rate (in Hz)

Response:
• u32 requested sample rate
• float achieved sample rate

20 SETUP_TRIGGER
Configure the triggering level and other
trigger parameters. This command
does not arm the trigger!

Request:
• u8 source channel number
• u16 triggering level
• u8 active edge (1-falling, 2-rising,

3-any)
• u32 pre-trigger sample count
• u32 post-trigger sample count
• u16 hold-off time (ms)
• u8 auto re-arm (0,1)

21 ARM
Arm the trigger for capture.

Request:
• u8 auto re-arm (0, 1, 255-no

change)

104

...14.12. DAC Unit

Code Function Structure

22 DISARM
Dis-arm the trigger.

23 ABORT
Abort any ongoing capture and dis-arm
the trigger.

24 FORCE_TRIGGER
Manually trip the trigger, as if the
threshold level was reached.

25 BLOCK_CAPTURE
Capture a fixed-length sequence of sam-
ples.

Request:
• u32 number of samples

26 STREAM_START
Start a real-time stream of samples

27 STREAM_STOP
Stop an ongoing stream

28 SET_SMOOTHING_FACTOR
Set the smoothing factor (×103).

Request:
• u16 smoothing factor 0-1000

29 SET_SAMPLE_RATE
Set the sampling frequency.

Request:
• u32 frequency in Hz

30 ENABLE_CHANNELS
Select channels to sample. The channels
must be configured in the unit settings.

Request:
• u32 bit map of channels to enable

31 SET_SAMPLE_TIME
Set the sample time of the ADC’s sam-
ple&hold circuit.

Request:
• u8 sample time 0–7

14.12 DAC Unit

The digital/analog unit works with the two-channel DAC hardware peripheral. It can be
used in two modes: DC output, and waveform generation.

The waveform mode implements direct digital synthesis (explained in Section 8.3.2) of
a sine, rectangle, sawtooth or triangle wave. The generated frequency can be set with
a sub-hertz precision up to the lower tens of kHz. The two outputs can use a different
waveform shape, can be synchronized, and their phase offset and frequency are dynamically
adjustable.

105

14. Units Overview, Commands and Events Description
14.12.1 DAC Configuration

[DAC:dac@13]
Enabled channels (1:A4, 2:A5)
ch1_enable=Y
ch2_enable=Y
Enable output buffer
ch1_buff=Y
ch2_buff=Y
Superimposed noise type (NONE,WHITE,TRIANGLE) and nbr. of bits (1-12)
ch1_noise=NONE
ch1_noise-level=3
ch2_noise=NONE
ch2_noise-level=3

14.12.2 DAC Commands

Channels are specified in all commands as a bit map:

• 0x01 – channel 1
• 0x02 – channel 2
• 0x03 – both channels affected at once

Code Function Structure

0 WAVE_DC
Set a DC level, disable DDS for the
channel

Request:
• u8 channels
• u16 level (0–4095)

1 WAVE_SINE
Start a sine waveform

Request:
• u8 channels

2 WAVE_TRIANGLE
Start a symmetrical triangle waveform

Request:
• u8 channels

3 WAVE_SAWTOOTH_UP
Start a rising sawtooth waveform

Request:
• u8 channels

4 WAVE_SAWTOOTH_DOWN
Start a dalling sawtooth waveform

Request:
• u8 channels

5 WAVE_RECTANGLE
Start a rectangle waveform

Request:
• u8 channels
• u16 on-time (0–8191)
• u16 high level (0–4095)
• u16 low level (0–4095)

106

.. 14.13. PWM Unit

Code Function Structure

10 SYNC
Synchronize the two channels. The
phase accumulator is reset to zero.

20 SET_FREQUENCY
Set the channel frequency

Request:
• u8 channels
• float frequency

21 SET_PHASE
Set a channel’s phase. It is recom-
mended to only set the phase of one
channel, leaving the other at 0°.

Request:
• u8 channels
• u16 phase (0–8191)

22 SET_DITHER
Control the dithering function of the
DAC block. A high noise amplitude
can cause an overflow to the other end
of the output range due to a bug in the
DAC peripheral. Use value 255 to leave
the parameter unchanged.

Request:
• u8 channels
• u8 noise type (0–none, 1–white,

2–triangle)
• u8 number of noise bits (1–12)

14.13 PWM Unit

The PWM unit uses a timer/counter to generate a PWM (pulse train) signal. There are
four outputs with a common frequency and independent duty cycles. Each channel can
be individually enabled or disabled. This unit is intended for applications such as light
dimming, heater regulation, or the control of H-bridges.

14.13.1 PWM Configuration

[PWMDIM:pwm@12]
Default pulse frequency (Hz)
frequency=1000
Pin mapping - 0=disabled
Channel1 - 1:PA6, 2:PB4, 3:PC6
ch1_pin=1
Channel2 - 1:PA7, 2:PB5, 3:PC7
ch2_pin=0
Channel3 - 1:PB0, 2:PC8
ch3_pin=0
Channel4 - 1:PB1, 2:PC9
ch4_pin=0

107

14. Units Overview, Commands and Events Description
14.13.2 PWM Commands

Code Function Structure

0 SET_FREQUENCY
Set the PWM frequency

Request:
• u32 frequency in Hz

1 SET_DUTY
Set the duty cycle of one or more chan-
nels

Request:
• Repeat 1–4 times:

– u8 channel number 0–3
– u16 duty cycle 0–1000

2 STOP
Stop the hardware timer. Outputs enter
low level.

3 START
Start the hardware timer.

14.14 Touch Sense Unit

The touch sensing unit provides an access to the TSC peripheral, explained in Section 8.4.
The unit configures the TSC and reads the output values of each enabled touch pad.
Additionally, a threshold-based digital input function is implemented to make the emulation
of touch buttons easier. The hysteresis and debounce time can be configured in the
configuration file or set using a command. The threshold of individual pads must be set
using a command.

14.14.1 Touch Sense Configuration

[TOUCH:touch@11]
Pulse generator clock prescaller (1,2,4,...,128)
pg-clock-prediv=32
Sense pad charging time (1-16)
charge-time=2
Charge transfer time (1-16)
drain-time=2
Measurement timeout (1-7)
sense-timeout=7

Spread spectrum max deviation (0-128,0=off)
ss-deviation=0
Spreading clock prescaller (1,2)
ss-clock-prediv=1

Optimize for interlaced pads (individual sampling with others floating)

108

..................................... 14.14. Touch Sense Unit

interlaced-pads=N

Button mode debounce (ms) and release hysteresis (lsb)
btn-debounce=20
btn-hysteresis=10

Each used group must have 1 sampling capacitor and 1-3 channels.
Channels are numbered 1,2,3,4

Group1 - 1:A0, 2:A1, 3:A2, 4:A3
g1_cap=
g1_ch=
Group2 - 1:A4, 2:A5, 3:A6, 4:A7
g2_cap=
g2_ch=
...

14.14.2 Touch Sense Events

Code Function Structure

0 BUTTON_CHANGE
The binary state of some of the capac-
itive pads with button mode enabled
changed.

Payload:
• u32 binary state of all channels
• u32 changed / trigger-generating

channels

14.14.3 Touch Sense Commands

Code Function Structure

0 READ
Read the raw touch pad values (lower
indicates higher capacitance). Values
are ordered by group and channel.

Request:
• u16[] raw values

1 SET_BIN_THR
Set the button mode thresholds for all
channels. Value 0 disables the button
mode for a channel.

Request:
• u16[] thresholds

2 DISABLE_ALL_REPORTS
Set thresholds to 0, disabling the button
mode for all pads.

109

14. Units Overview, Commands and Events Description
Code Function Structure

3 SET_DEBOUNCE_TIME
Set the button mode debounce time
(used for all pads with button mode
enabled).

Request:
• u16 debounce time (ms)

4 SET_HYSTERESIS
Set the button mode hysteresis.

Request:
• u16 hystheresis

110

Chapter 15

Client Software

With the communication protocol clearly defined in Chapters 11 and 14, respective Chap-
ter 12 for the wireless gateway, the implementation of a client software is relatively
straightforward. Two client libraries have been developed, in languages C and Python.

15.1 General Library Structure

The structure of a GEX client library is in all cases similar:

• USB or serial port access
This is the only platform-dependent part of the library. Unix-based systems provide a
standardized POSIX API to configure the serial port. A raw access to USB endpoints
is possible using the libUSB C library. Access to the serial port or USB from C on MS
Windows has not been investigated, but should be possible using proprietary APIs.
Accessing the serial port or USB endpoints from Python is more straightforward
thanks to the cross platform libraries PySerial and PyUSB.

• TinyFrame implementation
The TinyFrame protocol library can be used directly in desktop C applications, and
it has been re-implemented in Python and other languages.

• Higher-level GEX logic
The host side of the communication protocol described in Chapter 11 should be
implemented as a part of the library. This includes the reading and writing of
configuration files, unit list read-out, command payload building, and asynchronous
event parsing.
Additional utilities may be defined on top of this basic protocol support for the
command API of different GEX units, as described in Chapter 14. Those unit-specific
“drivers” are available in the provided Python library.

15.2 Python Library

The Python GEX library implements both a serial port access and a raw access to USB
endpoints. Its development has been prioritized over the C library because of its potential

111

15. Client Software
to integrate with MATLAB, and because it promises to be the most convenient method
to interact with GEX thanks to the ease-of-use that comes with the Python syntax. This
library provides a high level API above the individual unit types, removing the burden of
building and parsing of the binary command payloads from the user.

The library is composed of a transport class, the core class gex.Client, and unit classes
(e.g., gex.I2C or gex.SPI).

Three transport implementations have been developed:

• gex.TrxSerialSync – virtual serial port access with polling for a response

• gex.TrxSerialThread – virtual serial port access with a polling thread and semaphore-
based notifications

• gex.TrxRawUSB – similar to gex.TrxSerialThread, but using a raw USB endpoint
access

The wireless gateway is accessed by wrapping either of the transports in an instance of
gex.DongleAdapter before passing it to gex.Client.

15.2.1 Example Python Script

An example Python program displaying a test pattern on a LED matrix using the I2C-
connected driver chip IS31FL3730 is presented in Listing 3 as an illustration of the library
usage. A photo of the produced LED pattern can be seen in Figure 15.1.

Figure 15.1: GEX Zero with the Micro Dot pHAT add-on board, showing a test pattern defined
in a Python script

First, a client instance is created, receiving the transport as an argument. We use a
With block in the example to ensure the transport is safely closed before the program ends,
even if that happens due to an exception; this is similar to the Try-Finally pattern in Java.
The client (and subsequently the transport) can be closed manually by calling its .close()
method. Inside the With block, the script proceeds to create unit handles and use them to
perform the desired task, in our case a communication with the LED matrix driver over
the I2C bus.

112

.................................... 15.3. MATLAB integration

#!/bin/env python3
The I2C unit, called 'i2c', is configured to use PB6 and PB7
import gex
with gex.Client(gex.TrxRawUSB()) as client:
bus = gex.I2C(client, 'i2c')
addr = 0x61
bus.write_reg(addr, 0x00, 0b00011000) # dual matrix
bus.write_reg(addr, 0x0D, 0b00001110) # 34 mA
bus.write_reg(addr, 0x19, 64) # set brightness
matrix 1
bus.write_reg(addr, 0x01, [
0xAA, 0x55, 0xAA, 0x55,
0xAA, 0x55, 0xAA, 0x55
])
matrix 2
bus.write_reg(addr, 0x0E, [
0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00
])
update display
bus.write_reg(addr, 0x0C, 0x01)

Listing 3: An example Python program using the GEX client library

15.3 MATLAB integration

The Python library can be accessed from MATLAB scripts thanks to the MATLAB’s
two-way Python integration [57]. Controlling GEX from MATLAB may be useful when
additional processing is required, e.g., with data from the ADC; however, in many cases, an
open source alternative native to Python exists that could be used for the same purpose,
such as the NumPy and SciPy libraries [58].

The example in Listing 4 demonstrates the use of MATLAB to calculate the frequency
spectrum of an analog signal captured with GEX. The syntax needed to use the serial port
transport (instead of a raw access to USB endpoints) is shown in a comment.

15.4 C Library

The C library is more simplistic than the Python one; it supports only the serial port
transport (UART or CDC/ACM) and does not implement asynchronous polling or the unit
support drivers. What is implement—the transport, a basic protocol handler, and payload
building and parsing utilities—is sufficient for most applications, though less convenient
than the Python library.

113

15. Client Software
% The ADC unit, called 'adc', is configured to use PA1 as Channel 0

%trx = py.gex.TrxSerialThread(pyargs('port', '/dev/ttyUSB1', ...
% 'baud', 115200));
trx = py.gex.TrxRawUSB();
client = py.gex.Client(trx);
adc = py.gex.ADC(client, 'adc');

L = 1000;
Fs = 1000;
adc.set_sample_rate(uint32(Fs)); % casting to unsigned integer
data = adc.capture(uint32(L));
data = double(py.array.array('f',data)); % numpy array to matlab format

Y = fft(data);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;

plot(f,P1)
client.close()

Listing 4: Calling the Python GEX library from a MATLAB script

This low-level library is intended for applications where the performance of the Python
implementation is insufficient, or where an integration with existing C code is required.
The full API can be found in the library header files. A C version of the example Python
script shown above, controlling a LED matrix driver, is presented in Listing 5. Readers
might point out that this example is unnecessarily obtuse, and that the payloads could be
constructed in a more readable way. Indeed, two better methods of payload construction
are available: one using C structs, and the other taking advantage of the Payload Builder
utility bundled with TinyFrame, which is included in the library package.

15.4.1 Structure-based Payload Construction

The structure-based method utilizes C structs to access individual fields in the payload.
Simple payloads can be represented by a struct without problems, but payloads of a dynamic
length pose a challenge; we can either define a new struct for each required length, or,
when the variable-length array is located at the end of the payload, a struct with the
largest needed payload size is defined and the real length is then specified when sending
the message. The latter approach is illustrated in Listing 6.

15.4.2 Using the Payload Builder Utility

114

... 15.4. C Library

#include <signal.h>
#include <assert.h>
#include "gex.h"

void main(void)
{

// Initialize GEX and the I2C unit handle
GexClient *gex = GEX_Init("/dev/ttyACM0", 200);
assert(NULL != gex);
GexUnit *bus = GEX_GetUnit(gex, "i2c", "I2C");
assert(NULL != bus);

// Configure the matrix driver
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x00\x18", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0d\x0e", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x19\x40", 4);

// Load data
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x01"

"\xAA\x55\xAA\x55\xAA\x55\xAA\x55", 11);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0e"

"\xFF\x00\xFF\x00\xFF\x00\xFF\x00", 11);
// Update display
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0c\x01", 4);

GEX_DeInit(gex);
}

Listing 5: An example C program (GNU C99) controlling GEX using the low-level GEX
library; this code has the same effect as the Python script shown in Listing 3, with payloads
built following the command tables from Chapter 14.

The Payload Builder utility offers a flexible solution to the construction of arbitrary
binary payloads. It is used in the GEX firmware to construct messages and events, along
with the binary settings storage content.

An example of Payload Builder’s usage is shown in Listing 7. We give it a byte buffer
and it then fills it with the payload values, taking care of buffer overflow and to advance the
write pointer by the right number of bytes. The third parameter of pb_init() is optional,
a pointer to a function called when the buffer overflows; this callback can flush the buffer
and rewind it, or report an error.

Payload Builder is accompanied by Payload Parser, a tool doing the exact opposite.
While it is not needed in our example, we will find this utility useful when processing
command responses or events payloads. The full API of those utilities can be found in their
header files.

115

15. Client Software

struct i2c_write {
uint16_t address;
uint8_t reg;
uint8_t value[8]; // largest needed payload size

} __attribute__((packed));

// 1-byte value
GEX_Send(bus, 2, (void *) &(struct i2c_write) {

.address = 0x61,

.reg = 0x00,

.value = {0x18},
}, 3 + 1); // use only 1 byte of the value array

// 8-byte value
GEX_Send(bus, 2, (void *) &(struct i2c_write) {

.address = 0x61,

.reg = 0x01,

.value = {0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55},
}, 3 + 8);

Listing 6: The variable-length struct approach to payload building

uint8_t buff[20];
PayloadBuilder pb;

pb = pb_init(&buff, 20, NULL);
pb_u16(&pb, 0x61);
pb_u8(&pb, 0x00);
pb_u8(&pb, 0x18);
GEX_Send(bus, 2, buff, pb_length(&pb));

pb_rewind(&pb); // reset the builder for a new frame

uint8_t screen[8] = {0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55};
pb_u16(&pb, 0x61);
pb_u8(&pb, 0x01);
pb_buf(&pb, &screen, 8);
GEX_Send(bus, 2, buff, pb_length(&pb));

Listing 7: Building and sending payloads using the PayloadBuilder utility

116

Part IV

Results

117

118

Chapter 16

Conclusion

TODO

119

120

Appendices

121

122

Appendix A

Bibliography

[1] Seeed Technology Co.,Ltd. Bus Pirate v4 product page. url: https : / / www .
seeedstudio.com/Bus-Pirate-v4-p-740.html (visited on 05/12/2018).

[2] National Instruments. I2C/SPI Interface Device product page. url: https://www.ni.
com/en-gb/shop/select/i2c-spi-interface-device (visited on 05/12/2018).

[3] National Instruments. USB-6008 product page. url: http://www.ni.com/en-
gb/support/model.usb-6008.html (visited on 05/12/2018).

[4] Total Phase, Inc. USB-6008 product page. url: https://www.totalphase.com/
products/aardvark-i2cspi/ (visited on 05/12/2018).

[5] USB Implementers Forum, Inc. Universal Serial Bus Specification. 2000. url: http:
//www.usb.org/developers/docs/usb20_docs/ (visited on 05/12/2018).

[6] Craig Peacock. USB in a NutShell. url: https : / / www . beyondlogic . org /
usbnutshell (visited on 05/12/2018).

[7] MQP Electronics Ltd. USB Made Simple. 2008. url: http://www.usbmadesimple.
co.uk/ (visited on 05/12/2018).

[8] Microsoft Corporation. Windows 2000 Professional Resource Kit / USB Func-
tions. 2008. url: https://docs.microsoft.com/en- us/previous- versions/
windows/it-pro/windows-2000-server/cc939102(v%3dtechnet.10) (visited on
05/12/2018).

[9] USB Implementers Forum, Inc. USB Class Codes. 2016. url: http://www.usb.org/
developers/defined_class (visited on 05/12/2018).

[10] pid.codes, a registry of USB PID codes for open source hardware projects. url:
http://pid.codes/ (visited on 05/12/2018).

[11] EEVblog Electronics Community Forum. pid.codes, a registry of USB PID codes for
open source hardware projects. url: https://www.eevblog.com/forum/projects/
driving-the-1k5-usb-pull-up-resistor-on-d/ (visited on 05/12/2018).

[12] USB Implementers Forum, Inc. USB Mass Storage Class, Specification Overview. 2010.
url: http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_
Specification_Overview_v1.4_2-19-2010.pdf (visited on 05/12/2018).

[13] USB Implementers Forum, Inc. USB Mass Storage Class, Bulk-Only Transport. 1999.
url: http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.
pdf (visited on 05/12/2018).

123

https://www.seeedstudio.com/Bus-Pirate-v4-p-740.html
https://www.seeedstudio.com/Bus-Pirate-v4-p-740.html
https://www.ni.com/en-gb/shop/select/i2c-spi-interface-device
https://www.ni.com/en-gb/shop/select/i2c-spi-interface-device
http://www.ni.com/en-gb/support/model.usb-6008.html
http://www.ni.com/en-gb/support/model.usb-6008.html
https://www.totalphase.com/products/aardvark-i2cspi/
https://www.totalphase.com/products/aardvark-i2cspi/
http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/docs/usb20_docs/
https://www.beyondlogic.org/usbnutshell
https://www.beyondlogic.org/usbnutshell
http://www.usbmadesimple.co.uk/
http://www.usbmadesimple.co.uk/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc939102(v%3dtechnet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc939102(v%3dtechnet.10)
http://www.usb.org/developers/defined_class
http://www.usb.org/developers/defined_class
http://pid.codes/
https://www.eevblog.com/forum/projects/driving-the-1k5-usb-pull-up-resistor-on-d/
https://www.eevblog.com/forum/projects/driving-the-1k5-usb-pull-up-resistor-on-d/
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf
http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf

A. Bibliography...
[14] Discussion in a USB storage driver development mailing list (site defunct, archived via

Archive.org). 2004. url: https://web.archive.org/web/20071108121822/https:
/ / lists . one - eyed - alien . net / pipermail / usb - storage / 2004 - September /
000795.html (visited on 05/12/2018).

[15] Jan Axelson. Mass Storage FAQ. 2013. url: http : / / janaxelson . com / mass _
storage_faq.htm (visited on 05/12/2018).

[16] USB Implementers Forum, Inc. Class definitions for Communication Devices 1.2.
2010. url: http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.
1_012011.zip (visited on 05/12/2018).

[17] USB Implementers Forum, Inc. USB Interface Association Descriptor, Device Class
Code and Use Model. 2003. url: http : / / www . usb . org / developers / docs /
whitepapers/iadclasscode_r10.pdf (visited on 05/12/2018).

[18] Real Time Engineers Ltd. FreeRTOS Ports. url: https://www.freertos.org/
a00090.html (visited on 05/12/2018).

[19] Real Time Engineers Ltd. The FreeRTOS™ Reference Manual. Real Time Engi-
neers Ltd., 2018. url: https://www.freertos.org/Documentation/FreeRTOS_
Reference_Manual_V10.0.0.pdf (visited on 05/12/2018).

[20] Richard Barry. Mastering the FreeRTOS™ Real Time Kernel. A Hands-On Tuto-
rial Guide. Real Time Engineers Ltd., 2016. url: https://www.freertos.org/
Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-
On_Tutorial_Guide.pdf (visited on 05/12/2018).

[21] Real Time Engineers Ltd. How FreeRTOS Works: FreeRTOS Implementation. url:
https://www.freertos.org/implementation/main.html (visited on 05/12/2018).

[22] Wikipedia contributors. Comparison of File Systems / OS Support. url: https:
//en.wikipedia.org/wiki/Comparison_of_file_systems#OS_support (visited
on 05/12/2018).

[23] Microsoft Corporation. How FAT Works. 2009. url: https://docs.microsoft.
com / en - us / previous - versions / windows / it - pro / windows - server - 2003 /
cc776720(v=ws.10) (visited on 05/12/2018).

[24] Jack Dobiash. FAT16 Structure Information. 1999. url: http://home.teleport.
com/~brainy/fat16.htm (visited on 05/12/2018).

[25] LKT Software. FAT16 File System. 1999. url: http://www.maverick- os.dk/
FileSystemFormats/FAT16_FileSystem.html (visited on 05/12/2018).

[26] Bob Eager. A tutorial on the FAT file system. 2017. url: http://www.tavi.co.uk/
phobos/fat.html (visited on 05/12/2018).

[27] Microsoft Corporation. FAT: General Overview of On-Disk Format. Tech. rep. 2000.
url: https://staff.washington.edu/dittrich/misc/fatgen103.pdf (visited on
05/12/2018).

[28] “vinDaci”. Long Filename Specification. 1998. url: http://home.teleport.com/
~brainy/lfn.htm (visited on 05/12/2018).

[29] Arm Mbed. Arm Mbed DAPLink source code repository. 2018. url: https://github.
com/ARMmbed/DAPLink (visited on 05/12/2018).

124

https://web.archive.org/web/20071108121822/https://lists.one-eyed-alien.net/pipermail/usb-storage/2004-September/000795.html
https://web.archive.org/web/20071108121822/https://lists.one-eyed-alien.net/pipermail/usb-storage/2004-September/000795.html
https://web.archive.org/web/20071108121822/https://lists.one-eyed-alien.net/pipermail/usb-storage/2004-September/000795.html
http://janaxelson.com/mass_storage_faq.htm
http://janaxelson.com/mass_storage_faq.htm
http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.1_012011.zip
http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.1_012011.zip
http://www.usb.org/developers/docs/whitepapers/iadclasscode_r10.pdf
http://www.usb.org/developers/docs/whitepapers/iadclasscode_r10.pdf
https://www.freertos.org/a00090.html
https://www.freertos.org/a00090.html
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/implementation/main.html
https://en.wikipedia.org/wiki/Comparison_of_file_systems#OS_support
https://en.wikipedia.org/wiki/Comparison_of_file_systems#OS_support
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
http://home.teleport.com/~brainy/fat16.htm
http://home.teleport.com/~brainy/fat16.htm
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.tavi.co.uk/phobos/fat.html
http://www.tavi.co.uk/phobos/fat.html
https://staff.washington.edu/dittrich/misc/fatgen103.pdf
http://home.teleport.com/~brainy/lfn.htm
http://home.teleport.com/~brainy/lfn.htm
https://github.com/ARMmbed/DAPLink
https://github.com/ARMmbed/DAPLink

... A. Bibliography

[30] “nkcelectronics”. Retrofitting AutoReset feature into an old Arduino serial board.
url: https://playground.arduino.cc/Learning/AutoResetRetrofit (visited on
05/13/2018).

[31] SD Group. SD Specifications, Part 1: Physical Layer Simplified Specification. Tech.
rep. 2010. url: https://www.cs.utexas.edu/~simon/395t_os/resources/Part_
1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
(visited on 05/13/2018).

[32] NXP Semiconductors. I2C-bus specification and user manual. 2014. url: https:
//www.nxp.com/docs/en/user-guide/UM10204.pdf (visited on 05/12/2018).

[33] Jared Becker Jonathan Valdez. Understanding the I2C Bus. Tech. rep. 2015. url:
http://www.ti.com/lit/an/slva704/slva704.pdf (visited on 05/12/2018).

[34] Dallas Semiconductor. AN214: Using a UART to Implement a 1-Wire Bus Master.
Tech. rep. url: https://www.maximintegrated.com/en/app-notes/index.mvp/
id/214 (visited on 05/13/2018).

[35] Dallas Semiconductor. DS18S20 High Precision 1-Wire Digital Thermometer. Tech.
rep. url: https : / / datasheets . maximintegrated . com / en / ds / DS18S20 . pdf
(visited on 05/13/2018).

[36] Dallas Semiconductor. AN162: Interfacing the DS18X20/DS1822 1-Wire Temper-
ature Sensor in a Micro-controller Environment. Tech. rep. url: https://www.
maximintegrated.com/en/app-notes/index.mvp/id/162 (visited on 05/13/2018).

[37] Worldsemi.WS2812B datasheet. Tech. rep. url: www.world-semi.com/DownLoadFile/
108 (visited on 05/13/2018).

[38] SiTime Corporation. AN10033: Frequency Measurement Guidelines for Oscillators.
Tech. rep. url: https : / / www . sitime . com / api / gated / AN10033 - Frequency -
Measurement-Guidelines-for-Oscillators.pdf (visited on 05/13/2018).

[39] Paul Boven. “Increasing the resolution of reciprocal frequency counters”. In: Pro-
ceedings of the 50. VHF meeting in Weinheim. url: https://www.febo.com/
pipermail/time-nuts/attachments/20071201/e7833af5/attachment.pdf (vis-
ited on 05/13/2018).

[40] Maxim Integrated. AN1080: Understanding SAR ADCs: Their Architecture and Com-
parison with Other ADCs. Tech. rep. 2001. url: https://pdfserv.maximintegrated.
com/en/an/AN1080.pdf (visited on 05/13/2018).

[41] Eva Murphy and Colm Slattery. “All about direct digital synthesis”. In: Ask The
Application Engineer 33 (2004). url: http : / / www . analog . com / media / en /
analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-
synthesis.pdf.

[42] ST Microelectronics. RM0091: STM32F0x1/STM32F0x2/STM32F0x8 reference man-
ual. 2017. url: http://www.st.com/resource/en/reference_manual/dm00031936.
pdf (visited on 05/12/2018).

[43] ST Microelectronics. STM32L4 training: Touch Sensing Controller. Tech. rep.
2017. url: http://www.st.com/resource/en/product_training/stm32l4_
peripheral_touchsense.pdf (visited on 05/12/2018).

125

https://playground.arduino.cc/Learning/AutoResetRetrofit
https://www.cs.utexas.edu/~simon/395t_os/resources/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
https://www.cs.utexas.edu/~simon/395t_os/resources/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.ti.com/lit/an/slva704/slva704.pdf
https://www.maximintegrated.com/en/app-notes/index.mvp/id/214
https://www.maximintegrated.com/en/app-notes/index.mvp/id/214
https://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
www.world-semi.com/DownLoadFile/108
www.world-semi.com/DownLoadFile/108
https://www.sitime.com/api/gated/AN10033-Frequency-Measurement-Guidelines-for-Oscillators.pdf
https://www.sitime.com/api/gated/AN10033-Frequency-Measurement-Guidelines-for-Oscillators.pdf
https://www.febo.com/pipermail/time-nuts/attachments/20071201/e7833af5/attachment.pdf
https://www.febo.com/pipermail/time-nuts/attachments/20071201/e7833af5/attachment.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.st.com/resource/en/reference_manual/dm00031936.pdf
http://www.st.com/resource/en/reference_manual/dm00031936.pdf
http://www.st.com/resource/en/product_training/stm32l4_peripheral_touchsense.pdf
http://www.st.com/resource/en/product_training/stm32l4_peripheral_touchsense.pdf

A. Bibliography...
[44] ST Microelectronics. Touch Sensing Controller (TSC) presentation. Tech. rep. 2015.

url: https://wenku.baidu.com/view/8472044a6137ee06eef9180c.html?re=
view (visited on 05/12/2018).

[45] ST Microelectronics. AN4299: Guidelines to improve conducted noise robustness on
STM32F0 Series, STM32F3 Series, STM32L0 Series and STM32L4 Series touch
sensing applications. Tech. rep. 2018. url: http://www.st.com/resource/en/
application_note/dm00085385.pdf (visited on 05/12/2018).

[46] ST Microelectronics. AN4310: Sampling capacitor selection guide for MCU based
touch sensing applications. Tech. rep. 2015. url: http://www.st.com/resource/en/
application_note/dm00087593.pdf (visited on 05/12/2018).

[47] ST Microelectronics. AN4312: Guidelines for designing touch sensing applications
with surface sensors. Tech. rep. 2017. url: http://www.st.com/resource/en/
application_note/dm00087990.pdf (visited on 05/12/2018).

[48] ST Microelectronics. AN4316: Tuning a STMTouch-based application. Tech. rep. 2015.
url: http://www.st.com/resource/en/application_note/dm00088471.pdf
(visited on 05/12/2018).

[49] USB Implementers Forum, Inc. USB Device Class Specification for Device Firmware
Upgrade. 2004. url: http://www.usb.org/developers/docs/devclass_docs/DFU_
1.1.pdf (visited on 05/17/2018).

[50] Harald Welte and Stefan Schmidt and Tormod Volden. dfu-util. 2016. url: http:
//dfu-util.sourceforge.net/ (visited on 05/17/2018).

[51] ST Microelectronics. STSW-STM32102: STM32 Virtual COM Port Driver. url:
http://www.st.com/en/development-tools/stsw-stm32102.html (visited on
05/17/2018).

[52] Ondřej Hruška. TinyFrame, a library for building and parsing data frames for se-
rial interfaces. url: https://github.com/MightyPork/TinyFrame (visited on
05/13/2018).

[53] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (Aug. 2008),
pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[54] Semtech Corporation. SX1276/77/78/79 datasheet. 2016. url: https : / / www .
semtech.com/uploads/documents/DS_SX1276- 7- 8- 9_W_APP_V5.pdf (visited
on 05/12/2018).

[55] Nordic Semiconductor. nRF24L01+ Single Chip 2.4GHz Transceiver Product Spec-
ification v1.0. 2008. url: http://www.nordicsemi.com/eng/content/download/
2726 / 34069 / file / nRF24L01P _ Product _ Specification _ 1 _ 0 . pdf (visited on
05/12/2018).

[56] ST Microelectronics. Discovery kit with STM32F072RB MCU. url: http://www.st.
com/en/evaluation-tools/32f072bdiscovery.html (visited on 05/16/2018).

[57] The MathWorks, Inc. Using MATLAB with Python. url: https://www.mathworks.
com/solutions/matlab-and-python.html (visited on 05/13/2018).

[58] SciPy developers. SciPy.org. url: https://www.scipy.org/ (visited on 05/13/2018).

126

https://wenku.baidu.com/view/8472044a6137ee06eef9180c.html?re=view
https://wenku.baidu.com/view/8472044a6137ee06eef9180c.html?re=view
http://www.st.com/resource/en/application_note/dm00085385.pdf
http://www.st.com/resource/en/application_note/dm00085385.pdf
http://www.st.com/resource/en/application_note/dm00087593.pdf
http://www.st.com/resource/en/application_note/dm00087593.pdf
http://www.st.com/resource/en/application_note/dm00087990.pdf
http://www.st.com/resource/en/application_note/dm00087990.pdf
http://www.st.com/resource/en/application_note/dm00088471.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://dfu-util.sourceforge.net/
http://dfu-util.sourceforge.net/
http://www.st.com/en/development-tools/stsw-stm32102.html
https://github.com/MightyPork/TinyFrame
https://doi.org/10.1109/IEEESTD.2008.4610935
https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf
https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf
http://www.nordicsemi.com/eng/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.nordicsemi.com/eng/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.st.com/en/evaluation-tools/32f072bdiscovery.html
http://www.st.com/en/evaluation-tools/32f072bdiscovery.html
https://www.mathworks.com/solutions/matlab-and-python.html
https://www.mathworks.com/solutions/matlab-and-python.html
https://www.scipy.org/

... A. Bibliography

Schematics here

127

	I Introduction
	1 Motivation
	1.1 Expected Outcome

	2 Requirement Analysis
	2.1 Desired Features
	2.1.1 Interfacing Intelligent Modules
	2.1.2 Analog Signal Acquisition
	2.1.3 Analog Signal Output
	2.1.4 Logic Level Input and Output
	2.1.5 Pulse Generation and Measurement

	2.2 Connection to the Host Computer
	2.2.1 Communication Interface
	2.2.2 Configuration Files

	2.3 An Overview of Planned Features
	2.4 Microcontroller Selection
	2.5 Form Factor Considerations

	3 Existing Solutions
	3.1 Raspberry Pi
	3.2 Bus Pirate
	3.3 Professional DAQ Modules

	II Theoretical Background
	4 Universal Serial Bus
	4.1 Basic Principles and Terminology
	4.1.1 Pipes and Endpoints
	4.1.2 Transfer Types
	4.1.3 Interfaces and Classes
	4.1.4 Descriptors

	4.2 USB Physical Layer
	4.3 USB Classes
	4.3.1 Mass Storage Class
	4.3.2 CDC/ACM Class
	4.3.3 Interface Association: Composite Class

	5 FreeRTOS
	5.1 Basic FreeRTOS Concepts and Functions
	5.1.1 Tasks
	5.1.2 Synchronization Objects

	5.2 Stack Overflow Protection

	6 The FAT16 File System and Its Emulation
	6.1 The General Structure of the FAT File System
	6.1.1 Boot Sector
	6.1.2 File Allocation Table
	6.1.3 Root Directory

	6.2 FAT16 Emulation
	6.2.1 DAPLink Emulator
	6.2.2 Read Access
	6.2.3 Write Access
	6.2.4 File Name Change
	6.2.5 File Creation
	6.2.6 File Content Change

	7 Supported Hardware Buses
	7.1 UART and USART
	7.1.1 Examples of Devices Using UART

	7.2 SPI
	7.2.1 Examples of Devices Using SPI

	7.3 I2C
	7.3.1 Examples of Devices Using I2C

	7.4 1-Wire
	7.4.1 Examples of Devices Using 1-Wire

	7.5 NeoPixel

	8 Non-communication Hardware Functions
	8.1 Frequency Measurement
	8.2 Analog Signal Acquisition
	8.3 Waveform Generation
	8.3.1 Waveform Generation with DMA and a Timer
	8.3.2 Direct Digital Synthesis

	8.4 Touch Sensing

	III Implementation
	9 Conceptual Overview
	9.1 Physical User Interface
	9.2 GEX-PC Connection
	9.3 Controlling GEX
	9.4 Device Configuration
	9.4.1 INI File Format
	9.4.2 Configuration Files Structure

	10 Internal Application Structure
	10.1 Internal Structure Block Diagram
	10.2 Unit Life Cycle and Internal Structure
	10.3 Resource Allocation
	10.4 Settings Storage
	10.5 Message Passing
	10.6 Interrupt Routing
	10.7 FreeRTOS Synchronization Objects Usage
	10.7.1 Message and Job Queue

	10.8 Source Code Layout

	11 Communication Protocol
	11.1 Binary Payload Structure Notation
	11.2 Frame Structure
	11.3 Message Listeners
	11.4 Designated Frame Types
	11.5 Bulk Read and Write Transactions
	11.5.1 Bulk Read
	11.5.2 Bulk Write
	11.5.3 Persisting the Changed Configuration to Flash

	11.6 Reading a List of Units
	11.7 Unit Requests and Reports
	11.7.1 Unit Requests
	11.7.2 Unit Reports

	12 Wireless Interface
	12.1 Modulations Overview
	12.1.1 On-Off Keying (OOK)
	12.1.2 Frequency Shift Keying (FSK)
	12.1.3 Gaussian Frequency Shift Keying (GFSK)
	12.1.4 Minimum-Shift Keying (MSK)
	12.1.5 Gaussian Minimum-Shift Keying (GMSK)
	12.1.6 LoRa Modulation

	12.2 Comparing SX1276 and nRF24L01+
	12.3 Integration of the nRF24L01+ into GEX
	12.3.1 The Wireless Gateway Protocol
	12.3.2 Gateway Initialization Procedure

	13 Hardware Realization
	13.1 Using a Discovery Board
	13.1.1 Discovery F072 Configuration and Pin Mapping

	13.2 GEX Hub
	13.3 GEX Zero
	13.3.1 Finding the Best Pin Assignment

	13.4 Wireless Gateway

	14 Units Overview, Commands and Events Description
	14.1 General Notes
	14.1.1 Unit Naming
	14.1.2 Packed Pin Access

	14.2 Digital Output
	14.2.1 Digital Output Configuration
	14.2.2 Digital Output Commands

	14.3 Digital Input
	14.3.1 Digital Input Configuration
	14.3.2 Digital Input Events
	14.3.3 Digital Input Commands

	14.4 SIPO (Shift Register) Unit
	14.4.1 SIPO Configuration
	14.4.2 SIPO Commands

	14.5 NeoPixel Unit
	14.5.1 NeoPixel Configuration
	14.5.2 NeoPixel Commands

	14.6 SPI Unit
	14.6.1 SPI Configuration
	14.6.2 SPI Commands

	14.7 I2C Unit
	14.7.1 I2C Configuration
	14.7.2 I2C Commands

	14.8 USART Unit
	14.8.1 USART Configuration
	14.8.2 USART Events
	14.8.3 USART Commands

	14.9 1-Wire Unit
	14.9.1 1-Wire Configuration
	14.9.2 1-Wire Commands

	14.10 Frequency Capture Unit
	14.10.1 Value Conversion Formulas
	14.10.2 Frequency Capture Configuration
	14.10.3 Frequency Capture Commands

	14.11 ADC Unit
	14.11.1 ADC Configuration
	14.11.2 ADC Events
	14.11.3 ADC Commands

	14.12 DAC Unit
	14.12.1 DAC Configuration
	14.12.2 DAC Commands

	14.13 PWM Unit
	14.13.1 PWM Configuration
	14.13.2 PWM Commands

	14.14 Touch Sense Unit
	14.14.1 Touch Sense Configuration
	14.14.2 Touch Sense Events
	14.14.3 Touch Sense Commands

	15 Client Software
	15.1 General Library Structure
	15.2 Python Library
	15.2.1 Example Python Script

	15.3 MATLAB integration
	15.4 C Library
	15.4.1 Structure-based Payload Construction
	15.4.2 Using the Payload Builder Utility

	IV Results
	16 Conclusion

	Appendices
	A Bibliography

