
Hello, and welcome to this presentation on the 
advanced-control, general-purpose and basic timers 
embedded in STM32F7 microcontrollers. It covers their 
main features which are useful for handling any timing-
related events, generating waveforms and measuring the 
timing characteristics of input signals.
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The STM32 embeds multiple timers providing timing 
resources for software or hardware tasks. The software 
tasks mainly consist of providing time bases, timeout 
event generation and time-triggers. The hardware tasks 
are related to I/Os: the timers can generate waveforms 
on their outputs, measure incoming signal parameters 
and react to external events on their inputs. 
The STM32 timers are very versatile and provide 
multiple operating modes to off-load the CPU from 
repetitive and time-critical tasks, while minimizing 
interfacing circuitry needs. All STM32 timers (with the 
sole exception of the low-power timer) are based on the 
same scalable architecture. Once the timer operating 
principles are known, they are valid for any of the timers. 
This architecture includes interconnection features and 
allows several timers to be combined into larger 
configurations. Lastly, some of the timers feature specific 
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functions for electrical motor control and digital power 
conversion such as lighting or digital switched mode 
power supplies.
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Here are the key features of the STM32 timers. All timers 
are based on the same architecture and are available in 
several derivatives listed later in this presentation. The 
timers mainly differ in the number of inputs and outputs 
they have, from a pure time base without any I/Os to an 
advanced control version with 9 I/Os. Most of the timers 
feature 16-bit counters, while some have 32-bit counters. 
Some features may not be present on the smallest timer 
derivatives (for example, DMA, synchronization, and 
up/down counting modes).
Most of the timers can be linked and synchronized to 
build larger time-base timers, have a higher number of 
synchronous waveforms, or handle complex timings and 
waveforms.
Within a timer, each and every channel can be 
configured independently as an input (typically for 
capture) or as an output (typically for a PWM).
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The timers can serve as a trigger for other peripherals, for 
instance to start ADC conversions, or to monitor the 
internal clocks, thanks to the interconnect matrix.
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This slide presents the block diagram of the medium-
featured TIM9 timer.
The timer kernel consists of a 16-bit up-counter, coupled 
with an auto-reload register to program the counting 
period. The 2 timer channels are controlled by 2 capture-
compare registers.
The counter is fed by the Clock and Trigger controller, 
also responsible for the timer chaining.
Shown on the left are the input stage and the input 
conditioning circuitry while on the right we have the 
output stage.
Note that TIMxCH1 and TIMxCH2 appear on both sides 
to indicate they are both input and output capable.
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The timer features multiple clocking options.
The Clock and Trigger controller, also responsible for 
timer chaining, handles the clock for the counter.
The default clock comes from the reset and clock 
controller, linked to one of APB clock domains. The 
various timers are shared on the 2 APB domains to 
implement low-power schemes (typically one high-speed 
APB and one low-speed APB to limit the current drawn 
by the peripherals, including the timers).
External timer clocking allows counting of external 
events or to have a counting period externally adjusted. 
The clock source can be provided by other on-chip 
timers, using one of the 4 internal trigger inputs 
(ITR1…ITR4). Input pins 1 and 2 can also serve as 
external clocks, with the option of including digital filters 
to remove spurious events. The external trigger input 
(ETR) can be configured as an external clock, with a 
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digital filter, programmable edge sensitivity and a first 
basic prescaler stage to reduce the frequency of 
incoming signals if needed.
Lastly, the quadrature signals from an encoder can be 
processed to provide a clock and a counting direction, as 
described later in this presentation.
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This slide explains how to adjust the timer counting 
period.
Each timer embeds a linear clock prescaler which allows 
you to divide the clock by any integer between 1 and 
65536. This allows the counting pace to be precisely 
adjusted. For instance, a division by 80 will yield a 
precise 1 MHz counting rate when the APB clock is 
80 MHz.
The autoreload register defines the counting period. In 
Down-counting mode, the counter is automatically 
reloaded with the period value when it underflows. In Up-
counting mode, the counter rolls over and is reset when 
it exceeds the auto-reload value.
An update event is issued when the counter underflows 
or overflows and a new period starts. It triggers an 
interrupt or DMA request that is used for adjusting timer 
parameters synchronously with its period, which is useful 
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for real-time control. This update event triggers the 
transfer from preload to active registers for multiple 
parameters, and in particular for the clock prescaler, auto-
reload value, compare registers and PWM mode.
An 8-bit programmable repetition counter allows you to 
decouple the interrupt issuing rate from the counting 
period, and have, for instance, one interrupt every single, 
2nd, 3rd and up to 256th PWM period. This is particularly 
useful when dealing with high PWM frequencies.
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Some of the STM32 timers feature up/down counting 
modes: the advanced control timers 1 and 8 and the 
general-purpose timers 2, 3, 4 and 5.
The counting direction can be programmed by software 
or automatically managed by the timer in center-aligned 
PWM mode. In this mode, the counting direction 
changes automatically on counter overflow and 
underflow. For a given PWM switching frequency, this 
mode reduces the acoustic noise by doubling the 
effective current ripple frequency, thus providing the 
optimum tradeoff between the power stage’s switching 
losses and noise.
The counting direction can also be automatically handled 
when the timer is in Encoder mode. Quadrature 
encoders are typically used for high-accuracy rotor 
position sensing in electrical motors, or for digital 
potentiometers. From the two outputs of a quadrature 
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encoder sensor (also called an incremental encoder), the 
timer extracts a clock on each and every active edge and 
adjusts the counting direction depending on the relative 
phase-shift between the two incomings signals. The timer 
counter thus directly holds the angular position of the 
motor or the potentiometer.

7



The simplest use case for a timer is to provide an 
internal time base.
This is commonly used by software routines, either to 
provide periodic interrupts or single-shot timeout 
protection. The timer can also provide periodic triggers to 
other on-chip peripherals, such as the ADC, DAC and 
other timers.
The update event from the timer (typically on counter 
overflow) is the usual means to have a software time 
base interrupt or to trigger a periodic event. The basic 
timers TIM6 and TIM7 are best suited for such a task, as 
they are the simplest timer derivatives with no 
input/output channel.
It is also possible to generate internal timings using any 
other timer, using compare events or using the trigger 
outputs on any other timer. It is possible to generate 
multiple timing events with a single timer using multiple 
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compare channels.

8



This slide describes the input capture features.
Each channel can be individually configured as input 
capture with a number of signal conditioning options. An 
input can be mapped on two capture channels (typically 
to differentiate rising-edge from falling-edge capture). 
The edge sensitivity is programmable and can be rising 
edge, falling edge or both edges. An event prescaler
allows capture of one event every 2, 4 or 8 events. This 
decreases the CPU burden when processing high 
frequency signals and allows the measurement to be 
more accurate, since it is performed over multiple input 
signal periods.
Spurious transition events due to noise or bounces can 
be removed using a programmable digital filter. The 
figure shows how a signal is filtered when the filter 
acceptance is set to 4. In the upper case, a clean rising 
edge capture is triggered 4 sampling periods after the 
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rising edge, as one can notice looking at the internal 
counter value. In the lower case, a glitch causes the filter 
counter to be reset and the capture to happen after 4 
successive samples at high level have been counted.
Once the capture trigger is issued, the timer’s counter is 
transferred into the capture register and an interrupt or a 
DMA request can be issued. If a new capture occurs 
before the previous one has been read, the capture 
register is over-written and an overcapture flag is set for 
the software to manage this condition if needed.
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This slide presents some of the more advanced capture-
related functions.
The Clear-on-capture mode causes a counter reset 
immediately after the capture has been triggered. This 
allows a direct measurement of the period, while a 
traditional free-running counter would require additional 
computation to obtain the period following the trigger.
In PWM input mode, the timer is able to capture both the 
period and the duty cycle of an incoming PWM signal. 
The input signal is internally routed to 2 capture 
channels. The signal’s rising edge is captured on input 
capture 2 to provide the period value with the Clear-on-
capture mode. The falling edge is captured by the 
capture 1 channel, which provides the pulse length 
duration. The duty cycle then simply corresponds to the 
ratio between input capture 1 and input capture 2.
Lastly, the timer includes an XOR function to combine 
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the three input channels with XOR logic. This is typically 
used to handle the three 120° phase-shifted signals 
coming from the Hall sensors in electrical motors. This 
allows you to have a clear on capture happening on each 
and every edge of the three signals and have a capture 
value directly usable for speed regulation.
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This slide presents the output compare features.
A compare event is generated when the counter matches 
the value of the compare register. This event can trigger 
an interrupt or a DMA request and can be reflected on 
the corresponding output pin by an output set, output 
reset or output toggle.
The compare register can be preloaded. The preload 
must be disabled if multiple compare values must be 
written during a counting period. On the contrary, the use 
of preload mode must be preferred for applications with 
real-time constraints, since this gives a higher time 
margin for the software to update the compare register 
with the next value. The transfer from the preload to the 
active value is triggered by an update event, when the 
counter overflows or underflows.
The output compare mode can also be preloaded, so as 
to allow glitch-less transition from a PWM mode to a 
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forced On or Off state, for instance.
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One-pulse mode is used to generate a pulse of a 
programmable length in response to an external event. 
The pulse can start as soon as the input trigger arrives or 
after a programmable delay. The compare 1 register 
(CCR1) value defines the pulse start time, while the 
auto-reload register (ARR) value defines the end of 
pulse. The effective pulse width is then defined as the 
difference between the ARR and CCR1 register values.
The waveform can be programmed to have a single 
pulse generated by the trigger, or to have a continuous 
pulse train started by a single trigger.
One-pulse mode also offers a retriggerable option. In this 
case, a new trigger arriving before the end of the pulse 
will cause the counter to be reset and the pulse width to 
be extended accordingly.
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This slide presents some of the PWM modes.
The standard edge-aligned PWM mode is programmed 
with the auto-reload register defining the period and the 
compare register defining the duty cycle, the counter 
being in up-only or down-only counting mode. A single 
timer can generate up to 4 PWM signals with 
independent duty cycles and identical frequency. When 
multiple PWM waveforms are generated by the same 
timer, all falling edges occur at the same time, hence the 
term edge-aligned. On the contrary, the rising and falling 
edges of center-aligned PWMs are not synchronized with 
the counter roll-over, so that switching time varies with 
the duty cycle value. This is achieved by programming 
the counter in up-down mode. This mode is interesting 
as it spreads the switching noise when multiple PWMs 
are generated with the same timer. This is a key feature 
for three-phase PWM generation for electric motor 
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drives, since it allows you to double the frequency of the 
current ripple for a given switching frequency. For 
instance, a 10 kHz PWM will generate inaudible 20 kHz 
current ripple. This minimizes the switching losses due to 
the PWM frequency while guaranteeing silent PWM 
operation. 
A variant of the center-aligned mode is the asymmetric 
PWM mode, where two compare registers define the 
turning on and off of the PWM signal. This provides 
higher resolution for pulse width setting, since turn-on 
and turn-off times are individually defined. It also allows 
the generation of phase-shifted PWM signals, necessary 
to drive DC/DC converters based on the full-bridge 
phase-shifted topology. In this case, the timer provides 
two PWM signals with identical frequency, 50% duty 
cycle, and a phase-shift varying from 0 to 180°.
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This slide presents the combined PWM modes.
This mode allows a logic combination of two PWM 
signals to be generated by adjacent channels (output 
compare 1 and 2 or output compare 3 and 4). The 
PWMs can be ORed or ANDed to create complex 
waveforms. Typically, this allows you to have two 
periodic pulses generated with any pulse width and any 
phase relationship value.
The combined 3-phase mode specifically targets 3-
phase motor control applications. In this case, channel 5 
of the timer can be combined with any of the three 
channels (1, 2 and 3) to insert a low state in the middle 
of a centered-pattern PWM signal. This mode greatly 
simplifies the implementation of low-cost current sensing 
techniques for 3-phase motor control, using a technique 
usually referred to as zero vector insertion.
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This slide presents some more specific PWM modes, 
where either the frequency or the duty cycle can be 
driven by external signals.
The timer can provide variable frequency signals, using 
an external reset signal connected either on the ETR, or 
on the channel 1 or 2 inputs. The purpose of this mode is 
to provide a signal with a fixed On or Off time and a 
continuously adjusted frequency controlled by the 
hardware. The timer provides control for the On (or Off) 
time, using the compare register, while the auto-reload 
register guarantees that the PWM will not stop if the 
external reset is missing, thus providing a safe control in 
boundary conditions. This technique is used for a variety 
of purposes, such as transition mode PFC (Power Factor 
Controller) for mains-supplied applications and current-
controlled digital LED lighting.
Another mode for the timer is to have the duty cycle 
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controlled by hardware, with either an on-chip comparator 
or an off-chip signal. The PWM operates at a fixed 
frequency, the maximum duty cycle is set by the compare 
register and the actual value controlled cycle-by-cycle. 
This is used for applications requiring current-controlled 
PWMs, typically for driving DC motors or solenoids. In 
this case, a comparator monitors the peak current value 
into the load. As soon as the current exceeds a 
programmed threshold, the comparator resets the PWM 
output, which is then automatically re-started at the next 
PWM period, thus providing a controlled peak current 
value.
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This slide presents the timer’s synchronization features.
The trigger controller allows you to cascade multiple 
timers in a master/slave configuration. A timer can 
control one or more timers as the master timer, or be 
controlled by another timer as a slave. The Clock and 
Trigger controller acts as a link between the timers. In 
Master mode, it can redirect outside the timer, multiple 
internal control signals, to an on-chip TRGO trigger 
output. In Slave mode, it gathers multiple inputs on the 
TRGI (the main trigger input) coming from the external 
trigger pin (ETR) or from one of the four internal trigger 
inputs ITR1 to ITR4, connected to the other TRGO 
outputs. Additionally, the input capture 1 and 2 pins can 
also be used as an internal trigger (typically to reset the 
counter). 
Slave and Master modes can be programmed 
independently. A given timer can thus simultaneously be 
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operating in Slave and Master modes in a cascaded 
configuration, accepting input triggers while providing 
output triggers.
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This slide lists the various operating modes and the 
signals exchanged between timers.
In Master mode, eight options are given for selecting the 
trigger to be sent on the TRGO output. The output can 
be a single synchronization pulse issued upon counter 
reset, counter enable which corresponds to the counter 
start, the update event or the compare 1 match event. 
Alternatively, the TRGO output can also transmit one of 4 
waveforms generated, including PWM signals, to the 
other timer modules.
In Slave mode, the timer operating mode is controlled by 
the TRGI input. In Triggered mode, the counter start is 
externally controlled. This mode is used for 
simultaneously starting multiple timers. In Reset mode, 
the counter is reset by a rising edge on the TRGI input, 
typically for variable frequency PWM operation. A 
Combined mode including reset and trigger can be used 
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for re-triggerable one-pulse mode generation. In Gated 
mode, shown in the figure, the counter is active only while 
the level on the input signal is high. This signal either 
comes from an input or from another timer in Waveform 
Generation mode. In this case, synchronization pulses 
issued on reset, enable, update or compare match cannot 
be used. Lastly, the slave mode selection includes clock-
related modes, such as quadrature encoder decoding or 
external clocking modes mentioned earlier in this 
presentation.
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This slide gives two examples of synchronized operation.
The first example shows how four timers can be 
simultaneously started. A mechanism allows the master 
timer to start slightly delayed to compensate for the 
master/slave link delay, and have all timers synchronized 
with cycle accuracy. By combining the channels of 
Timers 2, 3, 4 and 9 as shown, it is possible to have up 
to 14 synchronized PWM channels.
The second example shows how to create a 48-bit timer 
by cascading three timers. Here the update event 
generated on counter roll-over is used as the input clock 
for the following slave timer, so that Timer 3’s counter 
holds the least significant 16-bits, Timer 2’s counter 
holds the medium bits (bits 16 to 31) and Timer 9’s 
counter holds the upper bits from bit 32 to bit 47.
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This slide summarizes the timer’s 4 main electrical motor 
control features: 
The timer includes specific PWM modes for controlling 
power switches. In addition to center-aligned and 
combined 3-phase PWMs previously described, the timer 
features dead time insertion for complementary PWM 
generation and 6-step mode for driving brushless DC 
motors.
It includes power stage protection circuitry with a dual-

level emergency stop mechanism to disable the PWM 
outputs by hardware in case of a fault.
It is able to handle the most common sensors found in 

motor control systems. Quadrature encoders and Hall 
sensors are used for fine and coarse position feedback, 
while tachometer generators are used for cost-effective 
speed feedback and just require a Clear-on-capture 
mode.
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Lastly, the timer includes synchronized ADC triggering 
options, necessary to properly manage voltage and 
current sensing and avoid any acquisition issues due to 
switching noise in power stages.
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This slide presents the dead time insertion function.
A hardware dead time generator provides two non-
overlapping complementary PWMs from a reference 
PWM signal. The STM32 timers includes up to three 
dead time generators for OC1, OC2 and OC3 channels. 
The dead time duration is programmed with an 8-bit 
value. This value can be locked by the user to prevent 
this critical value from being corrupted during run-time. 
This is done by setting a write-once lock bit which 
switches the dead time register into read-only mode until 
the next MCU reset.
Dead time insertion is necessary when driving half-

bridges, where a pair of transistors are connected in 
series between two power rails. In this case, it is 
necessary to insert some time before the switch on of 
one side to allow the other side to switch off, taking into 
account physical switching characteristics. Half-bridges 
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are usually found in DC/DC converters, for DC or stepper 
motor drive, using the full-bridge topology shown here or 
for 3-phase inverters, with three PWM pairs.
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21

This slide shows how the 6-step drive (also called block 
commutation) is managed with the STM32 timer.
It consists of chaining two timers, one handling the three 

Hall sensor signals while the other manages the PWM 
generation synchronized with the rotor angular position, 
generating six successive steps.
The first timer operates in clear-on-capture mode, 
triggered by the three inputs. A compare register (here 
compare 2), is responsible for adding a programmable 
delay between the raw angular position and the 
commutation time. The capture register 1 holds the 
timing interval between successive Hall sensor edges 
and is necessary for the speed regulation loop.
The compare 2 match event is propagated to the slave 
timer through the TRGO output. These events serve as 
commutation events and trigger changes for PWM 
generation. For each of the six steps of the sequence, 



the states of the six outputs are defined to be either 
forced active or inactive, or generating a PWM signal. 
The transition from one step to the other is preloaded by 
software, in the commutation interrupt routine, and 
automatically transferred by hardware to re-program the 
output operating mode when the next commutation 
arrives.
The figure at right shows the six PWM signals for two 
consecutive, complete 6-step sequences, together with 
the current in one of the motor phases.
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This slide presents the break function.
A break event triggers a hardware protection mechanism 
that automatically disables the PWM outputs, and forces 
them to a user-configurable state, either low impedance 
with high or low level, or high impedance. The logic 
circuitry works asynchronously, without any clock. This 
guarantees the functionality even in case of a system 
clock failure, and avoids any clock-related propagation 
time that would tend to delay the protection.
This feature is available on all timers having 
complementary PWM outputs, which are capable of 
performing power conversion tasks: Timers 1 and 8.
Timers 1 and 8 have two separated break channels. 
This provides a dual-level protection scheme, where for 
instance a low priority protection with all switches off can 
be overridden by a higher priority protection with low-side 
switches active. Furthermore, a dead time delay can be 
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inserted immediately before entering the fault mode for 
safely disabling the power stage. This prevents potential 
shoot-through conditions. Let’s consider for instance that 
the fault occurs when the high-side PWM is ON, while the 
safe state is programmed to have high-side switched 
OFF and low-side switched ON. At the time the fault 
occurs the system will first disable the high-side PWM, 
and insert a dead time before switching ON the low side.

22



This slide presents how the break function sources are 
managed.
Multiple break sources can be combined for triggering a 

break event. A system level source can be selected: the 
Clock Security System (CSS) indicating an external clock 
failure.
Break inputs can also be selected with the alternate 
function controller, on the MCU pinout.
External sources can be conditioned before entering the 
break detection unit. This allows selection of the proper 
polarity and discarding of spurious glitches by means of 
a digital filter.
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This slide presents the ADC triggering options related to 
the timers.
The ADCs can be triggered with most of the STM32 
timers, with three options.
This can be done using compare events: the ADC 
conversion will start on a given compare match. The list 
of supported compare events varies from one timer to 
the other, as shown on the table.
The TRGO event can also be used on certain timers. 
This gives extra flexibility since the TRGO can be any of 
the compare events or timer internal control signals, 
such as register update, counter reset or trigger input. 
On the other hand, this prevents the TRGO from being 
used for synchronization purposes.
For this reason, Timers 1 and 8 also have an additional 

TRGO2 output, fully devoted to ADC triggering.
TRGO2 offers 16 possibilities, including the six compare 
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events and the possibility to have a dual trigger per PWM 
period, by combining the compare 4 and 6 events. This 
also leaves the TRGO free for multiple timer 
synchronization schemes.
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This slide presents an example of PWM-synchronized 
ADC trigger.
For 3-phase motor control, it is mandatory to have ADC 

readings synchronized with the PWM generated for 
controlling the power stage. This allows extraction of the 
average value out of the current waveform ripple, and 
makes sure the ADC reading is done at an adequate 
distance from the ringing due to the power switches.
Shown here on the left is a 3-phase motor inverter. The 

six switches are controlled by three complementary 
PWM pairs with dead time inserted, while the current in 
the motor windings is measured using shunt resistors 
placed in the three half-bridges’ bottom side. The right 
side shows the timer’s counter, compare 1 and compare 
2 values and corresponding PWM outputs for the low-
side switches controlled by CH1N and CH2N. The two 
bottom waveforms represent the current in the motor 

25



phase and the image of this current obtained on the shunt 
resistors. With this low-cost topology, the voltage can only 
be measured when the low-side switches are ON, which 
explains the square-wave-shaped signal obtained on the 
ADC input. In this case, the ADC trigger is generated on 
the counter roll-over. This allows the reading to be done 
precisely in the middle of the period and get the average 
value of a signal with significant ripple. Additionally, using 
a PWM-synchronized ADC trigger also guarantees that 
the ADC conversion will be done away from the ringing 
noise present on the shunt voltages.
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This slide lists the interrupts and DMA requests sources.
Most of events are able to generate either an interrupt or 

a DMA request, and even the two simultaneously. The 
update is issued when the counter overflows or 
underflows. It is mainly used to refresh the timer’s run-
time settings at the beginning of the PWM period and 
maximize the interval before the next register update. 
The repetition counter allows you to skip some PWM 
periods and decrease the number of interrupts or DMA 
requests at high PWM frequency.
Each of the four capture/compare events have their own 
interrupt and DMA. A trigger event on the TRGI input 
(regardless of the trigger source) can also trigger an 
interrupt or DMA request.
Lastly, additional sources of interrupts and DMA requests 
are the commutation and break events on Timers 1, 8, 
15, 16 and 17 only. Note that the break event does not 



generate DMA requests.
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The timer includes a DMA burst mode to have multiple 
registers re-programmed with a single DMA stream. This 
allows the modification of several run-time parameters 
simultaneously (for instance duty cycle and frequency of 
several channels) or dynamically change the timer 
configuration by writing the configuration registers. 
The example shows how a table containing three 
compare values can be transferred into the compare 
registers with a single DMA stream when a new PWM 
period starts.
The DMA must be programmed in memory to peripheral 
mode, pointing to a unique location in the timer (virtual 
register TIMx_DMAR). When the update event occurs, 
the timer sends a number of DMA requests 
corresponding to the programmed burst length. Each 
value is then automatically redirected from the virtual 
register into the active register targeted.
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On the next update event, three new compare values are 
transferred again.  In this example, this mechanism saves 
two DMA streams that would normally be necessary for 
such an update scheme.
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The timer is active in the Run and Sleep modes, while it 
is frozen in Stop mode: the timer state and register 
content are preserved and the timer directly resumes 
operation when the MCU is woken up.
In Standby mode, the timer is powered-down and must 
be completely re-initialized when exiting from this mode.



The timer’s state in Debug mode can be configured with 
one configuration bit per timer.
If the debug bit is reset, the timer clock is maintained 

during a breakpoint.
If the debug bit is set, the timer’s counter is stopped as 

soon as the core is halted. Additionally, the outputs of the 
timers having complementary outputs are disabled and 
forced to an inactive state. This feature is extremely 
useful for applications where the timers are controlling 
power switches or electrical motors. It prevents the 
power stages from being damaged by excessive current, 
or the motors from being left in an uncontrolled state 
when hitting a breakpoint.
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This slide explains how to set the timer’s PWM 
frequency. 
This parameter is defined using the autoreload value 
(ARR) programmed in the TIMx_ARR register and the 
clock prescaler programmed in the TIMx_PSC register.
The PWM frequency is given by the timer operating 
frequency (fTIM) divided by ARR+1 times the clock 
prescaler+1.  
Practically, finding both register values is an iterative 
process, where one must start from PSC = 0, i.e. no 
clock division. This guarantees that the PWM will have 
the finest possible resolution.
In this case, the ARR value is simply the ratio between 
the timer clock frequency and the PWM frequency, the 
whole minus 1.  
If this equation yields an ARR value above the timer’s 
ARR range, either a 16-bit or 32-bit value depending on 
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the selected timer, the computation must be re-done with 
a higher prescaler value, with the following sequence:
An ARR value equal to timer clock frequency divided by 
two over the PWM frequency, the whole minus 1, then an 
ARR value equal to timer clock frequency divided by 
three over the PWM frequency, the whole minus 1, and 
so on up to the point where the ARR value fits within the 
programmable range.
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This slide explains how to program a duty cycle for a 
given PWM frequency.

This parameter is defined using the autoreload value 
(ARR) programmed in the TIMx_ARR register and the 
compare value programmed in the TIMx_CCRx register.
The duty cycle does not depend on the PWM frequency 
and is given by the compare value +1 over the 
autoreload value +1.

Another useful indication is the PWM resolution. 
This gives the number of possible duty cycle values and 
indicates how fine the control on the PWM signal will be. 
The resolution, expressed in number of duty cycle steps, 
is simply equal to the ratio between the timer clock 
frequency and the PWM frequency, the whole minus 1.  
Another way of expressing it is in bits, as for giving a 
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DAC converter output resolution. In this case, the 
resolution is the base 2 logarithm of the ratio between the 
timer clock frequency and the PWM frequency, the whole 
minus 1.
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This slide shows a simple practical example of PWM 
usage, for dimming a low-power LED. 
This can be done directly using a PWM output, as long 
as the current does not exceed the rated output current. 
The 1st step is to program the frequency, to be set to 
1 kHz. When doing the ARR value computation with no 
prescaler and a timer operating frequency of 80 MHz, the 
value obtained is 79999, which is above the 16-bit range 
that can be used with Timer 1.

The timer prescaler must be set to 1 to have the timer 
operating at 40 MHz and this results in a valid value of 
39999 for the ARR register.
The second step consists of computing the Compare 
register value to have a 20% duty cycle. This yields a 
value of 7999.
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Lastly, the dimming resolution can be computed from 
formulas presented in the previous slides. With a timer 
running at 40 MHz, a 1 kHz PWM provides 40000 
dimming steps, which corresponds to an equivalent 
resolution of 15.3 bits.
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This slide explains a common support case, where the 
whole timer is configured, the counter is started, the 
PWM mode is enabled, as well as the corresponding 
outputs, but still there’s no activity on the pins.

Usually, this is because the MOE bit was not set. 
For timers equipped with dead time generators (Timers 
1, 8, 15, 16 and 17), a Main Output Enable (MOE) bit in 
the TIMx_BDTR registers controls all outputs and acts as 
a circuit breaker in case of fault detection on the break 
input (global disable of all PWM outputs).
The MOE bit must be set (armed) to have the outputs 
enabled.
This is valid even if the timer is used without dead time 
insertion, and the timer is used for general-purpose 
applications.
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The timer is linked with multiple on-chip peripherals. It 
serves as a trigger source for the ADC and the DAC 
converter.
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This slide lists the timer instances present in STM32F7 
microcontrollers.
Timers 1 and 8 are full-featured timers, motor control 
capable, including all PWM options and six compare 
channels for being able to generate simultaneously 3-
phase PWM signals and have two independent ADC 
triggers.
Timers 2, 3, 4 and 5 are general-purpose timers, 
including all PWM modes, up-down counting capability 
and 4 channels. Timers 2 and 5 additionally offer a 32-bit 
counting range.
Timers 9, 10, 11, 12, 13 and 14 are lite timers, with 
support for standard PWM only, with 1 or 2 channels and 
up-counting mode only. They complement the other 
timers whenever additional independent time bases are 
necessary. They also have dead time insertion and break 
input for driving simple power systems with only a single 



PWM pair.
Lastly, Timers 6 and 7 are pure time bases with no 
outputs, used principally to trigger the DAC converters or 
to provide software time bases.
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Three application notes complement the timer sections in 
the reference manual: 
AN2592 gives a practical implementation of a 32-bit 
timer made of two synchronized 16-bit timers, and is 
useful for better understanding the overall timer 
synchronization mechanism. It comes with a software 
example.
AN4013 provides a more detailed overview of all timer 
features and available firmware examples.
AN4507 presents an implementation of PWM resolution 
enhancement by means of dithering techniques. It 
comes with a software example.
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