
Hello, and welcome to this presentation on the
advanced-control, general-purpose and basic timers
embedded in STM32F7 microcontrollers. It covers their
main features which are useful for handling any timing-
related events, generating waveforms and measuring the
timing characteristics of input signals.

1

The STM32 embeds multiple timers providing timing
resources for software or hardware tasks. The software
tasks mainly consist of providing time bases, timeout
event generation and time-triggers. The hardware tasks
are related to I/Os: the timers can generate waveforms
on their outputs, measure incoming signal parameters
and react to external events on their inputs.
The STM32 timers are very versatile and provide
multiple operating modes to off-load the CPU from
repetitive and time-critical tasks, while minimizing
interfacing circuitry needs. All STM32 timers (with the
sole exception of the low-power timer) are based on the
same scalable architecture. Once the timer operating
principles are known, they are valid for any of the timers.
This architecture includes interconnection features and
allows several timers to be combined into larger
configurations. Lastly, some of the timers feature specific

2

functions for electrical motor control and digital power
conversion such as lighting or digital switched mode
power supplies.

2

Here are the key features of the STM32 timers. All timers
are based on the same architecture and are available in
several derivatives listed later in this presentation. The
timers mainly differ in the number of inputs and outputs
they have, from a pure time base without any I/Os to an
advanced control version with 9 I/Os. Most of the timers
feature 16-bit counters, while some have 32-bit counters.
Some features may not be present on the smallest timer
derivatives (for example, DMA, synchronization, and
up/down counting modes).
Most of the timers can be linked and synchronized to
build larger time-base timers, have a higher number of
synchronous waveforms, or handle complex timings and
waveforms.
Within a timer, each and every channel can be
configured independently as an input (typically for
capture) or as an output (typically for a PWM).

3

The timers can serve as a trigger for other peripherals, for
instance to start ADC conversions, or to monitor the
internal clocks, thanks to the interconnect matrix.

3

This slide presents the block diagram of the medium-
featured TIM9 timer.
The timer kernel consists of a 16-bit up-counter, coupled
with an auto-reload register to program the counting
period. The 2 timer channels are controlled by 2 capture-
compare registers.
The counter is fed by the Clock and Trigger controller,
also responsible for the timer chaining.
Shown on the left are the input stage and the input
conditioning circuitry while on the right we have the
output stage.
Note that TIMxCH1 and TIMxCH2 appear on both sides
to indicate they are both input and output capable.

4

The timer features multiple clocking options.
The Clock and Trigger controller, also responsible for
timer chaining, handles the clock for the counter.
The default clock comes from the reset and clock
controller, linked to one of APB clock domains. The
various timers are shared on the 2 APB domains to
implement low-power schemes (typically one high-speed
APB and one low-speed APB to limit the current drawn
by the peripherals, including the timers).
External timer clocking allows counting of external
events or to have a counting period externally adjusted.
The clock source can be provided by other on-chip
timers, using one of the 4 internal trigger inputs
(ITR1…ITR4). Input pins 1 and 2 can also serve as
external clocks, with the option of including digital filters
to remove spurious events. The external trigger input
(ETR) can be configured as an external clock, with a

5

digital filter, programmable edge sensitivity and a first
basic prescaler stage to reduce the frequency of
incoming signals if needed.
Lastly, the quadrature signals from an encoder can be
processed to provide a clock and a counting direction, as
described later in this presentation.

5

This slide explains how to adjust the timer counting
period.
Each timer embeds a linear clock prescaler which allows
you to divide the clock by any integer between 1 and
65536. This allows the counting pace to be precisely
adjusted. For instance, a division by 80 will yield a
precise 1 MHz counting rate when the APB clock is
80 MHz.
The autoreload register defines the counting period. In
Down-counting mode, the counter is automatically
reloaded with the period value when it underflows. In Up-
counting mode, the counter rolls over and is reset when
it exceeds the auto-reload value.
An update event is issued when the counter underflows
or overflows and a new period starts. It triggers an
interrupt or DMA request that is used for adjusting timer
parameters synchronously with its period, which is useful

6

for real-time control. This update event triggers the
transfer from preload to active registers for multiple
parameters, and in particular for the clock prescaler, auto-
reload value, compare registers and PWM mode.
An 8-bit programmable repetition counter allows you to
decouple the interrupt issuing rate from the counting
period, and have, for instance, one interrupt every single,
2nd, 3rd and up to 256th PWM period. This is particularly
useful when dealing with high PWM frequencies.

6

Some of the STM32 timers feature up/down counting
modes: the advanced control timers 1 and 8 and the
general-purpose timers 2, 3, 4 and 5.
The counting direction can be programmed by software
or automatically managed by the timer in center-aligned
PWM mode. In this mode, the counting direction
changes automatically on counter overflow and
underflow. For a given PWM switching frequency, this
mode reduces the acoustic noise by doubling the
effective current ripple frequency, thus providing the
optimum tradeoff between the power stage’s switching
losses and noise.
The counting direction can also be automatically handled
when the timer is in Encoder mode. Quadrature
encoders are typically used for high-accuracy rotor
position sensing in electrical motors, or for digital
potentiometers. From the two outputs of a quadrature

7

encoder sensor (also called an incremental encoder), the
timer extracts a clock on each and every active edge and
adjusts the counting direction depending on the relative
phase-shift between the two incomings signals. The timer
counter thus directly holds the angular position of the
motor or the potentiometer.

7

The simplest use case for a timer is to provide an
internal time base.
This is commonly used by software routines, either to
provide periodic interrupts or single-shot timeout
protection. The timer can also provide periodic triggers to
other on-chip peripherals, such as the ADC, DAC and
other timers.
The update event from the timer (typically on counter
overflow) is the usual means to have a software time
base interrupt or to trigger a periodic event. The basic
timers TIM6 and TIM7 are best suited for such a task, as
they are the simplest timer derivatives with no
input/output channel.
It is also possible to generate internal timings using any
other timer, using compare events or using the trigger
outputs on any other timer. It is possible to generate
multiple timing events with a single timer using multiple

8

compare channels.

8

This slide describes the input capture features.
Each channel can be individually configured as input
capture with a number of signal conditioning options. An
input can be mapped on two capture channels (typically
to differentiate rising-edge from falling-edge capture).
The edge sensitivity is programmable and can be rising
edge, falling edge or both edges. An event prescaler
allows capture of one event every 2, 4 or 8 events. This
decreases the CPU burden when processing high
frequency signals and allows the measurement to be
more accurate, since it is performed over multiple input
signal periods.
Spurious transition events due to noise or bounces can
be removed using a programmable digital filter. The
figure shows how a signal is filtered when the filter
acceptance is set to 4. In the upper case, a clean rising
edge capture is triggered 4 sampling periods after the

9

rising edge, as one can notice looking at the internal
counter value. In the lower case, a glitch causes the filter
counter to be reset and the capture to happen after 4
successive samples at high level have been counted.
Once the capture trigger is issued, the timer’s counter is
transferred into the capture register and an interrupt or a
DMA request can be issued. If a new capture occurs
before the previous one has been read, the capture
register is over-written and an overcapture flag is set for
the software to manage this condition if needed.

9

This slide presents some of the more advanced capture-
related functions.
The Clear-on-capture mode causes a counter reset
immediately after the capture has been triggered. This
allows a direct measurement of the period, while a
traditional free-running counter would require additional
computation to obtain the period following the trigger.
In PWM input mode, the timer is able to capture both the
period and the duty cycle of an incoming PWM signal.
The input signal is internally routed to 2 capture
channels. The signal’s rising edge is captured on input
capture 2 to provide the period value with the Clear-on-
capture mode. The falling edge is captured by the
capture 1 channel, which provides the pulse length
duration. The duty cycle then simply corresponds to the
ratio between input capture 1 and input capture 2.
Lastly, the timer includes an XOR function to combine

10

the three input channels with XOR logic. This is typically
used to handle the three 120° phase-shifted signals
coming from the Hall sensors in electrical motors. This
allows you to have a clear on capture happening on each
and every edge of the three signals and have a capture
value directly usable for speed regulation.

10

This slide presents the output compare features.
A compare event is generated when the counter matches
the value of the compare register. This event can trigger
an interrupt or a DMA request and can be reflected on
the corresponding output pin by an output set, output
reset or output toggle.
The compare register can be preloaded. The preload
must be disabled if multiple compare values must be
written during a counting period. On the contrary, the use
of preload mode must be preferred for applications with
real-time constraints, since this gives a higher time
margin for the software to update the compare register
with the next value. The transfer from the preload to the
active value is triggered by an update event, when the
counter overflows or underflows.
The output compare mode can also be preloaded, so as
to allow glitch-less transition from a PWM mode to a

11

forced On or Off state, for instance.

11

One-pulse mode is used to generate a pulse of a
programmable length in response to an external event.
The pulse can start as soon as the input trigger arrives or
after a programmable delay. The compare 1 register
(CCR1) value defines the pulse start time, while the
auto-reload register (ARR) value defines the end of
pulse. The effective pulse width is then defined as the
difference between the ARR and CCR1 register values.
The waveform can be programmed to have a single
pulse generated by the trigger, or to have a continuous
pulse train started by a single trigger.
One-pulse mode also offers a retriggerable option. In this
case, a new trigger arriving before the end of the pulse
will cause the counter to be reset and the pulse width to
be extended accordingly.

12

This slide presents some of the PWM modes.
The standard edge-aligned PWM mode is programmed
with the auto-reload register defining the period and the
compare register defining the duty cycle, the counter
being in up-only or down-only counting mode. A single
timer can generate up to 4 PWM signals with
independent duty cycles and identical frequency. When
multiple PWM waveforms are generated by the same
timer, all falling edges occur at the same time, hence the
term edge-aligned. On the contrary, the rising and falling
edges of center-aligned PWMs are not synchronized with
the counter roll-over, so that switching time varies with
the duty cycle value. This is achieved by programming
the counter in up-down mode. This mode is interesting
as it spreads the switching noise when multiple PWMs
are generated with the same timer. This is a key feature
for three-phase PWM generation for electric motor

13

drives, since it allows you to double the frequency of the
current ripple for a given switching frequency. For
instance, a 10 kHz PWM will generate inaudible 20 kHz
current ripple. This minimizes the switching losses due to
the PWM frequency while guaranteeing silent PWM
operation.
A variant of the center-aligned mode is the asymmetric
PWM mode, where two compare registers define the
turning on and off of the PWM signal. This provides
higher resolution for pulse width setting, since turn-on
and turn-off times are individually defined. It also allows
the generation of phase-shifted PWM signals, necessary
to drive DC/DC converters based on the full-bridge
phase-shifted topology. In this case, the timer provides
two PWM signals with identical frequency, 50% duty
cycle, and a phase-shift varying from 0 to 180°.

13

This slide presents the combined PWM modes.
This mode allows a logic combination of two PWM
signals to be generated by adjacent channels (output
compare 1 and 2 or output compare 3 and 4). The
PWMs can be ORed or ANDed to create complex
waveforms. Typically, this allows you to have two
periodic pulses generated with any pulse width and any
phase relationship value.
The combined 3-phase mode specifically targets 3-
phase motor control applications. In this case, channel 5
of the timer can be combined with any of the three
channels (1, 2 and 3) to insert a low state in the middle
of a centered-pattern PWM signal. This mode greatly
simplifies the implementation of low-cost current sensing
techniques for 3-phase motor control, using a technique
usually referred to as zero vector insertion.

14

This slide presents some more specific PWM modes,
where either the frequency or the duty cycle can be
driven by external signals.
The timer can provide variable frequency signals, using
an external reset signal connected either on the ETR, or
on the channel 1 or 2 inputs. The purpose of this mode is
to provide a signal with a fixed On or Off time and a
continuously adjusted frequency controlled by the
hardware. The timer provides control for the On (or Off)
time, using the compare register, while the auto-reload
register guarantees that the PWM will not stop if the
external reset is missing, thus providing a safe control in
boundary conditions. This technique is used for a variety
of purposes, such as transition mode PFC (Power Factor
Controller) for mains-supplied applications and current-
controlled digital LED lighting.
Another mode for the timer is to have the duty cycle

15

controlled by hardware, with either an on-chip comparator
or an off-chip signal. The PWM operates at a fixed
frequency, the maximum duty cycle is set by the compare
register and the actual value controlled cycle-by-cycle.
This is used for applications requiring current-controlled
PWMs, typically for driving DC motors or solenoids. In
this case, a comparator monitors the peak current value
into the load. As soon as the current exceeds a
programmed threshold, the comparator resets the PWM
output, which is then automatically re-started at the next
PWM period, thus providing a controlled peak current
value.

15

This slide presents the timer’s synchronization features.
The trigger controller allows you to cascade multiple
timers in a master/slave configuration. A timer can
control one or more timers as the master timer, or be
controlled by another timer as a slave. The Clock and
Trigger controller acts as a link between the timers. In
Master mode, it can redirect outside the timer, multiple
internal control signals, to an on-chip TRGO trigger
output. In Slave mode, it gathers multiple inputs on the
TRGI (the main trigger input) coming from the external
trigger pin (ETR) or from one of the four internal trigger
inputs ITR1 to ITR4, connected to the other TRGO
outputs. Additionally, the input capture 1 and 2 pins can
also be used as an internal trigger (typically to reset the
counter).
Slave and Master modes can be programmed
independently. A given timer can thus simultaneously be

16

operating in Slave and Master modes in a cascaded
configuration, accepting input triggers while providing
output triggers.

16

This slide lists the various operating modes and the
signals exchanged between timers.
In Master mode, eight options are given for selecting the
trigger to be sent on the TRGO output. The output can
be a single synchronization pulse issued upon counter
reset, counter enable which corresponds to the counter
start, the update event or the compare 1 match event.
Alternatively, the TRGO output can also transmit one of 4
waveforms generated, including PWM signals, to the
other timer modules.
In Slave mode, the timer operating mode is controlled by
the TRGI input. In Triggered mode, the counter start is
externally controlled. This mode is used for
simultaneously starting multiple timers. In Reset mode,
the counter is reset by a rising edge on the TRGI input,
typically for variable frequency PWM operation. A
Combined mode including reset and trigger can be used

17

for re-triggerable one-pulse mode generation. In Gated
mode, shown in the figure, the counter is active only while
the level on the input signal is high. This signal either
comes from an input or from another timer in Waveform
Generation mode. In this case, synchronization pulses
issued on reset, enable, update or compare match cannot
be used. Lastly, the slave mode selection includes clock-
related modes, such as quadrature encoder decoding or
external clocking modes mentioned earlier in this
presentation.

17

This slide gives two examples of synchronized operation.
The first example shows how four timers can be
simultaneously started. A mechanism allows the master
timer to start slightly delayed to compensate for the
master/slave link delay, and have all timers synchronized
with cycle accuracy. By combining the channels of
Timers 2, 3, 4 and 9 as shown, it is possible to have up
to 14 synchronized PWM channels.
The second example shows how to create a 48-bit timer
by cascading three timers. Here the update event
generated on counter roll-over is used as the input clock
for the following slave timer, so that Timer 3’s counter
holds the least significant 16-bits, Timer 2’s counter
holds the medium bits (bits 16 to 31) and Timer 9’s
counter holds the upper bits from bit 32 to bit 47.

18

This slide summarizes the timer’s 4 main electrical motor
control features:
The timer includes specific PWM modes for controlling
power switches. In addition to center-aligned and
combined 3-phase PWMs previously described, the timer
features dead time insertion for complementary PWM
generation and 6-step mode for driving brushless DC
motors.
It includes power stage protection circuitry with a dual-

level emergency stop mechanism to disable the PWM
outputs by hardware in case of a fault.
It is able to handle the most common sensors found in

motor control systems. Quadrature encoders and Hall
sensors are used for fine and coarse position feedback,
while tachometer generators are used for cost-effective
speed feedback and just require a Clear-on-capture
mode.

19

Lastly, the timer includes synchronized ADC triggering
options, necessary to properly manage voltage and
current sensing and avoid any acquisition issues due to
switching noise in power stages.

19

This slide presents the dead time insertion function.
A hardware dead time generator provides two non-
overlapping complementary PWMs from a reference
PWM signal. The STM32 timers includes up to three
dead time generators for OC1, OC2 and OC3 channels.
The dead time duration is programmed with an 8-bit
value. This value can be locked by the user to prevent
this critical value from being corrupted during run-time.
This is done by setting a write-once lock bit which
switches the dead time register into read-only mode until
the next MCU reset.
Dead time insertion is necessary when driving half-

bridges, where a pair of transistors are connected in
series between two power rails. In this case, it is
necessary to insert some time before the switch on of
one side to allow the other side to switch off, taking into
account physical switching characteristics. Half-bridges

20

are usually found in DC/DC converters, for DC or stepper
motor drive, using the full-bridge topology shown here or
for 3-phase inverters, with three PWM pairs.

20

21

This slide shows how the 6-step drive (also called block
commutation) is managed with the STM32 timer.
It consists of chaining two timers, one handling the three

Hall sensor signals while the other manages the PWM
generation synchronized with the rotor angular position,
generating six successive steps.
The first timer operates in clear-on-capture mode,
triggered by the three inputs. A compare register (here
compare 2), is responsible for adding a programmable
delay between the raw angular position and the
commutation time. The capture register 1 holds the
timing interval between successive Hall sensor edges
and is necessary for the speed regulation loop.
The compare 2 match event is propagated to the slave
timer through the TRGO output. These events serve as
commutation events and trigger changes for PWM
generation. For each of the six steps of the sequence,

the states of the six outputs are defined to be either
forced active or inactive, or generating a PWM signal.
The transition from one step to the other is preloaded by
software, in the commutation interrupt routine, and
automatically transferred by hardware to re-program the
output operating mode when the next commutation
arrives.
The figure at right shows the six PWM signals for two
consecutive, complete 6-step sequences, together with
the current in one of the motor phases.

21

This slide presents the break function.
A break event triggers a hardware protection mechanism
that automatically disables the PWM outputs, and forces
them to a user-configurable state, either low impedance
with high or low level, or high impedance. The logic
circuitry works asynchronously, without any clock. This
guarantees the functionality even in case of a system
clock failure, and avoids any clock-related propagation
time that would tend to delay the protection.
This feature is available on all timers having
complementary PWM outputs, which are capable of
performing power conversion tasks: Timers 1 and 8.
Timers 1 and 8 have two separated break channels.
This provides a dual-level protection scheme, where for
instance a low priority protection with all switches off can
be overridden by a higher priority protection with low-side
switches active. Furthermore, a dead time delay can be

22

inserted immediately before entering the fault mode for
safely disabling the power stage. This prevents potential
shoot-through conditions. Let’s consider for instance that
the fault occurs when the high-side PWM is ON, while the
safe state is programmed to have high-side switched
OFF and low-side switched ON. At the time the fault
occurs the system will first disable the high-side PWM,
and insert a dead time before switching ON the low side.

22

This slide presents how the break function sources are
managed.
Multiple break sources can be combined for triggering a

break event. A system level source can be selected: the
Clock Security System (CSS) indicating an external clock
failure.
Break inputs can also be selected with the alternate
function controller, on the MCU pinout.
External sources can be conditioned before entering the
break detection unit. This allows selection of the proper
polarity and discarding of spurious glitches by means of
a digital filter.

23

This slide presents the ADC triggering options related to
the timers.
The ADCs can be triggered with most of the STM32
timers, with three options.
This can be done using compare events: the ADC
conversion will start on a given compare match. The list
of supported compare events varies from one timer to
the other, as shown on the table.
The TRGO event can also be used on certain timers.
This gives extra flexibility since the TRGO can be any of
the compare events or timer internal control signals,
such as register update, counter reset or trigger input.
On the other hand, this prevents the TRGO from being
used for synchronization purposes.
For this reason, Timers 1 and 8 also have an additional

TRGO2 output, fully devoted to ADC triggering.
TRGO2 offers 16 possibilities, including the six compare

24

events and the possibility to have a dual trigger per PWM
period, by combining the compare 4 and 6 events. This
also leaves the TRGO free for multiple timer
synchronization schemes.

24

This slide presents an example of PWM-synchronized
ADC trigger.
For 3-phase motor control, it is mandatory to have ADC

readings synchronized with the PWM generated for
controlling the power stage. This allows extraction of the
average value out of the current waveform ripple, and
makes sure the ADC reading is done at an adequate
distance from the ringing due to the power switches.
Shown here on the left is a 3-phase motor inverter. The

six switches are controlled by three complementary
PWM pairs with dead time inserted, while the current in
the motor windings is measured using shunt resistors
placed in the three half-bridges’ bottom side. The right
side shows the timer’s counter, compare 1 and compare
2 values and corresponding PWM outputs for the low-
side switches controlled by CH1N and CH2N. The two
bottom waveforms represent the current in the motor

25

phase and the image of this current obtained on the shunt
resistors. With this low-cost topology, the voltage can only
be measured when the low-side switches are ON, which
explains the square-wave-shaped signal obtained on the
ADC input. In this case, the ADC trigger is generated on
the counter roll-over. This allows the reading to be done
precisely in the middle of the period and get the average
value of a signal with significant ripple. Additionally, using
a PWM-synchronized ADC trigger also guarantees that
the ADC conversion will be done away from the ringing
noise present on the shunt voltages.

25

This slide lists the interrupts and DMA requests sources.
Most of events are able to generate either an interrupt or

a DMA request, and even the two simultaneously. The
update is issued when the counter overflows or
underflows. It is mainly used to refresh the timer’s run-
time settings at the beginning of the PWM period and
maximize the interval before the next register update.
The repetition counter allows you to skip some PWM
periods and decrease the number of interrupts or DMA
requests at high PWM frequency.
Each of the four capture/compare events have their own
interrupt and DMA. A trigger event on the TRGI input
(regardless of the trigger source) can also trigger an
interrupt or DMA request.
Lastly, additional sources of interrupts and DMA requests
are the commutation and break events on Timers 1, 8,
15, 16 and 17 only. Note that the break event does not

generate DMA requests.

26

The timer includes a DMA burst mode to have multiple
registers re-programmed with a single DMA stream. This
allows the modification of several run-time parameters
simultaneously (for instance duty cycle and frequency of
several channels) or dynamically change the timer
configuration by writing the configuration registers.
The example shows how a table containing three
compare values can be transferred into the compare
registers with a single DMA stream when a new PWM
period starts.
The DMA must be programmed in memory to peripheral
mode, pointing to a unique location in the timer (virtual
register TIMx_DMAR). When the update event occurs,
the timer sends a number of DMA requests
corresponding to the programmed burst length. Each
value is then automatically redirected from the virtual
register into the active register targeted.

27

On the next update event, three new compare values are
transferred again. In this example, this mechanism saves
two DMA streams that would normally be necessary for
such an update scheme.

27

The timer is active in the Run and Sleep modes, while it
is frozen in Stop mode: the timer state and register
content are preserved and the timer directly resumes
operation when the MCU is woken up.
In Standby mode, the timer is powered-down and must
be completely re-initialized when exiting from this mode.

The timer’s state in Debug mode can be configured with
one configuration bit per timer.
If the debug bit is reset, the timer clock is maintained

during a breakpoint.
If the debug bit is set, the timer’s counter is stopped as

soon as the core is halted. Additionally, the outputs of the
timers having complementary outputs are disabled and
forced to an inactive state. This feature is extremely
useful for applications where the timers are controlling
power switches or electrical motors. It prevents the
power stages from being damaged by excessive current,
or the motors from being left in an uncontrolled state
when hitting a breakpoint.

29

This slide explains how to set the timer’s PWM
frequency.
This parameter is defined using the autoreload value
(ARR) programmed in the TIMx_ARR register and the
clock prescaler programmed in the TIMx_PSC register.
The PWM frequency is given by the timer operating
frequency (fTIM) divided by ARR+1 times the clock
prescaler+1.
Practically, finding both register values is an iterative
process, where one must start from PSC = 0, i.e. no
clock division. This guarantees that the PWM will have
the finest possible resolution.
In this case, the ARR value is simply the ratio between
the timer clock frequency and the PWM frequency, the
whole minus 1.
If this equation yields an ARR value above the timer’s
ARR range, either a 16-bit or 32-bit value depending on

30

the selected timer, the computation must be re-done with
a higher prescaler value, with the following sequence:
An ARR value equal to timer clock frequency divided by
two over the PWM frequency, the whole minus 1, then an
ARR value equal to timer clock frequency divided by
three over the PWM frequency, the whole minus 1, and
so on up to the point where the ARR value fits within the
programmable range.

30

This slide explains how to program a duty cycle for a
given PWM frequency.

This parameter is defined using the autoreload value
(ARR) programmed in the TIMx_ARR register and the
compare value programmed in the TIMx_CCRx register.
The duty cycle does not depend on the PWM frequency
and is given by the compare value +1 over the
autoreload value +1.

Another useful indication is the PWM resolution.
This gives the number of possible duty cycle values and
indicates how fine the control on the PWM signal will be.
The resolution, expressed in number of duty cycle steps,
is simply equal to the ratio between the timer clock
frequency and the PWM frequency, the whole minus 1.
Another way of expressing it is in bits, as for giving a

31

DAC converter output resolution. In this case, the
resolution is the base 2 logarithm of the ratio between the
timer clock frequency and the PWM frequency, the whole
minus 1.

31

This slide shows a simple practical example of PWM
usage, for dimming a low-power LED.
This can be done directly using a PWM output, as long
as the current does not exceed the rated output current.
The 1st step is to program the frequency, to be set to
1 kHz. When doing the ARR value computation with no
prescaler and a timer operating frequency of 80 MHz, the
value obtained is 79999, which is above the 16-bit range
that can be used with Timer 1.

The timer prescaler must be set to 1 to have the timer
operating at 40 MHz and this results in a valid value of
39999 for the ARR register.
The second step consists of computing the Compare
register value to have a 20% duty cycle. This yields a
value of 7999.

32

Lastly, the dimming resolution can be computed from
formulas presented in the previous slides. With a timer
running at 40 MHz, a 1 kHz PWM provides 40000
dimming steps, which corresponds to an equivalent
resolution of 15.3 bits.

32

This slide explains a common support case, where the
whole timer is configured, the counter is started, the
PWM mode is enabled, as well as the corresponding
outputs, but still there’s no activity on the pins.

Usually, this is because the MOE bit was not set.
For timers equipped with dead time generators (Timers
1, 8, 15, 16 and 17), a Main Output Enable (MOE) bit in
the TIMx_BDTR registers controls all outputs and acts as
a circuit breaker in case of fault detection on the break
input (global disable of all PWM outputs).
The MOE bit must be set (armed) to have the outputs
enabled.
This is valid even if the timer is used without dead time
insertion, and the timer is used for general-purpose
applications.

33

The timer is linked with multiple on-chip peripherals. It
serves as a trigger source for the ADC and the DAC
converter.

34

This slide lists the timer instances present in STM32F7
microcontrollers.
Timers 1 and 8 are full-featured timers, motor control
capable, including all PWM options and six compare
channels for being able to generate simultaneously 3-
phase PWM signals and have two independent ADC
triggers.
Timers 2, 3, 4 and 5 are general-purpose timers,
including all PWM modes, up-down counting capability
and 4 channels. Timers 2 and 5 additionally offer a 32-bit
counting range.
Timers 9, 10, 11, 12, 13 and 14 are lite timers, with
support for standard PWM only, with 1 or 2 channels and
up-counting mode only. They complement the other
timers whenever additional independent time bases are
necessary. They also have dead time insertion and break
input for driving simple power systems with only a single

PWM pair.
Lastly, Timers 6 and 7 are pure time bases with no
outputs, used principally to trigger the DAC converters or
to provide software time bases.

35

Three application notes complement the timer sections in
the reference manual:
AN2592 gives a practical implementation of a 32-bit
timer made of two synchronized 16-bit timers, and is
useful for better understanding the overall timer
synchronization mechanism. It comes with a software
example.
AN4013 provides a more detailed overview of all timer
features and available firmware examples.
AN4507 presents an implementation of PWM resolution
enhancement by means of dithering techniques. It
comes with a software example.

36

