The nRF24L01+ wireless dongle firmware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

160 lines
4.9 KiB

/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_mult_q31.c
*
* Description: Q31 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q31 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4; /* temporary input variables */
q31_t inB1, inB2, inB3, inB4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB2) >> 32;
out3 = ((q63_t) inA3 * inB3) >> 32;
out4 = ((q63_t) inA4 * inB4) >> 32;
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
*pDst++ = out1 << 1u;
*pDst++ = out2 << 1u;
*pDst++ = out3 << 1u;
*pDst++ = out4 << 1u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inB1 = *pSrcB++;
out1 = ((q63_t) inA1 * inB1) >> 32;
out1 = __SSAT(out1, 31);
*pDst++ = out1 << 1u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
/* Decrement the blockSize loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of BasicMult group
*/