GEX core repository.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gex-core/units/adc/_adc_init.c

274 lines
8.7 KiB

//
// Created by MightyPork on 2018/02/03.
//
#include <stm32f072xb.h>
#include "platform.h"
#include "unit_base.h"
#define ADC_INTERNAL
#include "_adc_internal.h"
/** Allocate data structure and set defaults */
error_t UADC_preInit(Unit *unit)
{
struct priv *priv = unit->data = calloc_ck(1, sizeof(struct priv));
if (priv == NULL) return E_OUT_OF_MEM;
priv->channels = 1; // PA0
priv->enable_tsense = false;
priv->enable_vref = false;
priv->sample_time = 0b010; // 13.5c
priv->frequency = 1000;
priv->buffer_size = 512;
priv->averaging_factor = 500;
priv->opmode = ADC_OPMODE_UNINIT;
return E_SUCCESS;
}
/** Configure frequency */
error_t UADC_SetSampleRate(Unit *unit, uint32_t hertz)
{
struct priv *priv = unit->data;
uint16_t presc;
uint32_t count;
if (!solve_timer(PLAT_APB1_HZ, hertz, true, &presc, &count,
&priv->real_frequency)) {
dbg("Failed to resolve timer params.");
return E_BAD_VALUE;
}
dbg("Frequency error %d ppm, presc %d, count %d",
(int) lrintf(1000000.0f *
((priv->real_frequency - hertz) / (float) hertz)),
(int) presc, (int) count);
LL_TIM_SetPrescaler(priv->TIMx, (uint32_t) (presc - 1));
LL_TIM_SetAutoReload(priv->TIMx, count - 1);
priv->real_frequency_int = hertz;
return E_SUCCESS;
}
/** Finalize unit set-up */
error_t UADC_init(Unit *unit)
{
bool suc = true;
struct priv *priv = unit->data;
// Written for F072 which has only one ADC
TRY(rsc_claim(unit, R_ADC1));
TRY(rsc_claim(unit, R_DMA1_1));
TRY(rsc_claim(unit, R_TIM15));
priv->DMAx = DMA1;
priv->DMA_CHx = DMA1_Channel1;
priv->dma_chnum = 1;
priv->ADCx = ADC1;
priv->ADCx_Common = ADC1_COMMON;
priv->TIMx = TIM15;
// ----------------------- CONFIGURE PINS --------------------------
{
// Claim and configure all analog pins
priv->nb_channels = 0;
for (uint8_t i = 0; i < 16; i++) {
if (priv->channels & (1 << i)) {
char c;
uint8_t num;
if (i <= 7) {
c = 'A';
num = i;
}
else if (i <= 9) {
c = 'B';
num = (uint8_t) (i - 8);
}
else {
c = 'C';
num = (uint8_t) (i - 10);
}
TRY(rsc_claim_pin(unit, c, num));
uint32_t ll_pin = hw_pin2ll(num, &suc);
GPIO_TypeDef *port = hw_port2periph(c, &suc);
assert_param(suc);
LL_GPIO_SetPinPull(port, ll_pin, LL_GPIO_PULL_NO);
LL_GPIO_SetPinMode(port, ll_pin, LL_GPIO_MODE_ANALOG);
priv->nb_channels++;
}
}
if (priv->enable_tsense) priv->nb_channels++;
if (priv->enable_vref) priv->nb_channels++;
if (priv->nb_channels == 0) {
dbg("!! Need at least 1 channel");
return E_BAD_CONFIG;
}
if (priv->buffer_size < priv->nb_channels*2*2) {
dbg("Insufficient buf size");
return E_BAD_CONFIG;
}
}
// ------------------- ENABLE CLOCKS --------------------------
{
// enable peripherals clock
hw_periph_clock_enable(priv->ADCx);
hw_periph_clock_enable(priv->TIMx);
// DMA and GPIO clocks are enabled on startup automatically
}
// ------------------- CONFIGURE THE TIMER --------------------------
dbg("Setting up TIMER");
{
TRY(UADC_SetSampleRate(unit, priv->frequency));
// // Find suitable timer values
// uint16_t presc;
// uint32_t count;
// float real_freq;
// if (!solve_timer(PLAT_APB1_HZ, priv->frequency, true, &presc, &count, &real_freq)) {
// dbg("Failed to resolve timer params.");
// return E_BAD_VALUE;
// }
// dbg("Frequency error %d ppm, presc %d, count %d",
// (int) lrintf(1000000.0f * ((real_freq - priv->frequency) / (float)priv->frequency)), (int) presc, (int) count);
//
// LL_TIM_SetPrescaler(priv->TIMx, (uint32_t) (presc - 1));
// LL_TIM_SetAutoReload(priv->TIMx, count - 1);
LL_TIM_EnableARRPreload(priv->TIMx);
LL_TIM_EnableUpdateEvent(priv->TIMx);
LL_TIM_SetTriggerOutput(priv->TIMx, LL_TIM_TRGO_UPDATE);
LL_TIM_GenerateEvent_UPDATE(priv->TIMx); // load the prescaller value
}
// --------------------- CONFIGURE THE ADC ---------------------------
dbg("Setting up ADC");
{
// Calibrate the ADC
dbg("Wait for calib");
LL_ADC_StartCalibration(priv->ADCx);
while (LL_ADC_IsCalibrationOnGoing(priv->ADCx)) {}
dbg("ADC calibrated.");
{
uint32_t mask = 0;
if (priv->enable_vref) mask |= LL_ADC_PATH_INTERNAL_VREFINT;
if (priv->enable_tsense) mask |= LL_ADC_PATH_INTERNAL_TEMPSENSOR;
LL_ADC_SetCommonPathInternalCh(priv->ADCx_Common, mask);
}
LL_ADC_SetDataAlignment(priv->ADCx, LL_ADC_DATA_ALIGN_RIGHT);
LL_ADC_SetResolution(priv->ADCx, LL_ADC_RESOLUTION_12B);
LL_ADC_REG_SetDMATransfer(priv->ADCx, LL_ADC_REG_DMA_TRANSFER_UNLIMITED);
// configure channels
priv->extended_channels_mask = priv->channels;
if (priv->enable_tsense) priv->extended_channels_mask |= (1<<16);
if (priv->enable_vref) priv->extended_channels_mask |= (1<<17);
priv->ADCx->CHSELR = priv->extended_channels_mask;
LL_ADC_REG_SetTriggerSource(priv->ADCx, LL_ADC_REG_TRIG_EXT_TIM15_TRGO);
LL_ADC_SetSamplingTimeCommonChannels(priv->ADCx, LL_ADC_SAMPLETIMES[priv->sample_time]);
// LL_ADC_Enable(priv->ADCx);
}
// --------------------- CONFIGURE DMA -------------------------------
dbg("Setting up DMA");
{
// The length must be a 2*multiple of the number of channels, in bytes
uint16_t itemcount = (uint16_t) ((priv->nb_channels) * (uint16_t) (priv->buffer_size / (2 * priv->nb_channels)));
if (itemcount % 2 == 1) itemcount -= priv->nb_channels;
priv->dma_buffer_itemcount = itemcount;
dbg("DMA item count is %d (%d bytes), There are %d 2-byte samples per group.",
priv->dma_buffer_itemcount,
priv->dma_buffer_itemcount*sizeof(uint16_t),
priv->nb_channels);
priv->dma_buffer = calloc_ck(priv->dma_buffer_itemcount, sizeof(uint16_t));
if (NULL == priv->dma_buffer) return E_OUT_OF_MEM;
assert_param(((uint32_t) priv->dma_buffer & 3) == 0); // must be aligned
{
LL_DMA_InitTypeDef init;
LL_DMA_StructInit(&init);
init.Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
init.Mode = LL_DMA_MODE_CIRCULAR;
init.NbData = itemcount;
init.PeriphOrM2MSrcAddress = (uint32_t) &priv->ADCx->DR;
init.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
init.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
init.MemoryOrM2MDstAddress = (uint32_t) priv->dma_buffer;
init.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
init.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
assert_param(SUCCESS == LL_DMA_Init(priv->DMAx, priv->dma_chnum, &init));
// Interrupt on transfer 1/2 and complete
// We will capture the first and second half and send it while the other half is being filled.
// LL_DMA_EnableIT_HT(priv->DMAx, priv->dma_chnum);
// LL_DMA_EnableIT_TC(priv->DMAx, priv->dma_chnum);
}
LL_DMA_EnableChannel(priv->DMAx, priv->dma_chnum);
}
// prepare the avg factor float for the ISR
if (priv->averaging_factor > 1000) priv->averaging_factor = 1000; // normalize
priv->avg_factor_as_float = priv->averaging_factor/1000.0f;
dbg("ADC peripherals configured.");
irqd_attach(priv->DMA_CHx, UADC_DMA_Handler, unit);
irqd_attach(priv->ADCx, UADC_ADC_EOS_Handler, unit);
dbg("irqs attached");
UADC_SwitchMode(unit, ADC_OPMODE_IDLE);
dbg("ADC done");
return E_SUCCESS;
}
/** Tear down the unit */
void UADC_deInit(Unit *unit)
{
struct priv *priv = unit->data;
// de-init peripherals
if (unit->status == E_SUCCESS ) {
UADC_SwitchMode(unit, ADC_OPMODE_UNINIT);
//LL_ADC_DeInit(priv->ADCx);
LL_ADC_CommonDeInit(priv->ADCx_Common);
LL_TIM_DeInit(priv->TIMx);
irqd_detach(priv->DMA_CHx, UADC_DMA_Handler);
irqd_detach(priv->ADCx, UADC_ADC_EOS_Handler);
LL_DMA_DeInit(priv->DMAx, priv->dma_chnum);
free_ck(priv->dma_buffer);
}
// Release all resources, deinit pins
rsc_teardown(unit);
// Free memory
free_ck(unit->data);
}