GEX core repository.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gex-core/comm/nrf.c

551 lines
16 KiB

//
// Created by MightyPork on 2018/04/02.
//
#include "platform.h"
#if SUPPORT_NRF
#include "nrf.h"
/**
* Read a register
*
* @param reg - register number (max 83)
* @return register value
*/
static uint8_t NRF_ReadRegister(uint8_t reg);
/**
* Write a register
*
* @param reg - register number (max 83)
* @param value - register value
* @return status register value
*/
static uint8_t NRF_WriteRegister(uint8_t reg, uint8_t value);
// Internal use
static uint8_t NRF_WriteBuffer(uint8_t reg, const uint8_t *pBuf, uint8_t bytes);
static uint8_t NRF_ReadBuffer(uint8_t reg, uint8_t *pBuf, uint8_t bytes);
/**
* Set TX address for next frame
*
* @param SendTo - addr
*/
static void NRF_SetTxAddress(uint8_t ToAddr);
//----------------------------------------------------------
/** Tight asm loop */
#define __asm_loop(cycles) \
do { \
register uint32_t _count asm ("r4") = cycles; \
asm volatile( \
".syntax unified\n" \
".thumb\n" \
"0:" \
"subs %0, #1\n" \
"bne 0b\n" \
: "+r" (_count)); \
} while(0)
// 12 for 72 MHz
#define _delay_us(n) __asm_loop((n)*8)
static inline void CE(bool level) {
__asm_loop(1);
if (level) LL_GPIO_SetOutputPin(NRF_CE_GPIO_Port, NRF_CE_Pin);
else LL_GPIO_ResetOutputPin(NRF_CE_GPIO_Port, NRF_CE_Pin);
__asm_loop(1);
}
static inline void NSS(bool level) {
__asm_loop(1);
if (level) LL_GPIO_SetOutputPin(NRF_NSS_GPIO_Port, NRF_NSS_Pin);
else LL_GPIO_ResetOutputPin(NRF_NSS_GPIO_Port, NRF_NSS_Pin);
__asm_loop(1);
}
static uint8_t spi(uint8_t tx) {
while (! LL_SPI_IsActiveFlag_TXE(NRF_SPI));
LL_SPI_TransmitData8(NRF_SPI, tx);
while (! LL_SPI_IsActiveFlag_RXNE(NRF_SPI));
return LL_SPI_ReceiveData8(NRF_SPI);
}
void NRF_Reset(bool enable_reset)
{
if (enable_reset) {
// go HIGH - this closes the PMOS
LL_GPIO_SetOutputPin(NRF_RST_GPIO_Port, NRF_RST_Pin);
} else {
// LOW - open PMOS, enable power
LL_GPIO_ResetOutputPin(NRF_RST_GPIO_Port, NRF_RST_Pin);
}
}
//-------
/*
* from: http://barefootelectronics.com/NRF24L01.aspx
*/
#define CMD_READ_REG 0x00 // Read command to register
#define CMD_WRITE_REG 0x20 // Write command to register
#define CMD_RD_RX_PLD 0x61 // Read RX payload register address
#define CMD_WR_TX_PLD 0xA0 // Write TX payload register address
#define CMD_FLUSH_TX 0xE1 // Flush TX register command
#define CMD_FLUSH_RX 0xE2 // Flush RX register command
#define CMD_REUSE_TX_PL 0xE3 // Reuse TX payload register command
#define CMD_RD_RX_PL_WIDTH 0x60 // Read RX Payload Width
#define CMD_WR_ACK_PLD 0xA8 // Write ACK payload for Pipe (Add pipe number 0-6)
#define CMD_WR_TX_PLD_NK 0xB0 // Write ACK payload for not ack
#define CMD_NOP 0xFF // No Operation, might be used to read status register
// SPI(nRF24L01) registers(addresses)
#define RG_CONFIG 0x00 // 'Config' register address
#define RG_EN_AA 0x01 // 'Enable Auto Acknowledgment' register address
#define RG_EN_RXADDR 0x02 // 'Enabled RX addresses' register address
#define RG_SETUP_AW 0x03 // 'Setup address width' register address
#define RG_SETUP_RETR 0x04 // 'Setup Auto. Retrans' register address
#define RG_RF_CH 0x05 // 'RF channel' register address
#define RG_RF_SETUP 0x06 // 'RF setup' register address
#define RG_STATUS 0x07 // 'Status' register address
#define RG_OBSERVE_TX 0x08 // 'Observe TX' register address
#define RG_CD 0x09 // 'Carrier Detect' register address
#define RG_RX_ADDR_P0 0x0A // 'RX address pipe0' register address
#define RG_RX_ADDR_P1 0x0B // 'RX address pipe1' register address
#define RG_RX_ADDR_P2 0x0C // 'RX address pipe2' register address
#define RG_RX_ADDR_P3 0x0D // 'RX address pipe3' register address
#define RG_RX_ADDR_P4 0x0E // 'RX address pipe4' register address
#define RG_RX_ADDR_P5 0x0F // 'RX address pipe5' register address
#define RG_TX_ADDR 0x10 // 'TX address' register address
#define RG_RX_PW_P0 0x11 // 'RX payload width, pipe0' register address
#define RG_RX_PW_P1 0x12 // 'RX payload width, pipe1' register address
#define RG_RX_PW_P2 0x13 // 'RX payload width, pipe2' register address
#define RG_RX_PW_P3 0x14 // 'RX payload width, pipe3' register address
#define RG_RX_PW_P4 0x15 // 'RX payload width, pipe4' register address
#define RG_RX_PW_P5 0x16 // 'RX payload width, pipe5' register address
#define RG_FIFO_STATUS 0x17 // 'FIFO Status Register' register address
#define RG_DYNPD 0x1C // 'Enable dynamic payload length
#define RG_FEATURE 0x1D // 'Feature register
#define RD_STATUS_TX_FULL 0x01 // tx queue full
#define RD_STATUS_RX_PNO 0x0E // pipe number of the received payload
#define RD_STATUS_MAX_RT 0x10 // max retransmissions
#define RD_STATUS_TX_DS 0x20 // data sent
#define RD_STATUS_RX_DR 0x40 // data ready
#define RD_CONFIG_PRIM_RX 0x01 // is primary receiver
#define RD_CONFIG_PWR_UP 0x02 // power up
#define RD_CONFIG_CRCO 0x04 // 2-byte CRC
#define RD_CONFIG_EN_CRC 0x08 // enable CRC
#define RD_CONFIG_DISABLE_IRQ_MAX_RT 0x10
#define RD_CONFIG_DISABLE_IRQ_TX_DS 0x20
#define RD_CONFIG_DISABLE_IRQ_RX_DR 0x40
#define RD_FIFO_STATUS_RX_EMPTY 0x01
#define RD_FIFO_STATUS_RX_FULL 0x02
#define RD_FIFO_STATUS_TX_EMPTY 0x10
#define RD_FIFO_STATUS_TX_FULL 0x20
#define RD_FIFO_STATUS_TX_REUSE 0x40
// Config register bits (excluding the bottom two that are changed dynamically)
// enable only Rx IRQ
#define ModeBits (RD_CONFIG_DISABLE_IRQ_MAX_RT | \
RD_CONFIG_DISABLE_IRQ_TX_DS | \
RD_CONFIG_EN_CRC | \
RD_CONFIG_CRCO)
static inline uint8_t CS(uint8_t hl)
{
if (hl == 1) {
NSS(0);
}
else {
NSS(1);
}
return hl;
}
#define CHIPSELECT for (uint8_t cs = CS(1); cs==1; cs = CS(0))
// Base NRF address - byte 4 may be modified before writing to a pipe register,
// the first 4 bytes are shared in the network. Master is always code 0.
static uint8_t nrf_base_address[5];
static uint8_t nrf_pipe_addr[6];
static bool nrf_pipe_enabled[6];
static uint8_t NRF_WriteRegister(uint8_t reg, uint8_t value)
{
uint8_t status = 0;
CHIPSELECT {
status = spi(CMD_WRITE_REG | reg);
spi(value);
}
dbg_nrf("Wr[0x%02x] := 0x%02x", (int)reg, (int) value);
uint8_t reg_val = 0;
CHIPSELECT {
spi(CMD_READ_REG | reg);
reg_val = spi(0);
}
dbg_nrf(" verify 0x%02x", (int)reg_val);
if (reg_val != value)
dbg_nrf(" !!!");
else
dbg_nrf(" OK");
return status;
}
static uint8_t NRF_ReadRegister(uint8_t reg)
{
uint8_t reg_val = 0;
CHIPSELECT {
spi(CMD_READ_REG | reg);
reg_val = spi(0);
}
dbg_nrf("Rd[0x%02x] = 0x%02x", (int)reg, (int) reg_val);
return reg_val;
}
static uint8_t NRF_ReadStatus(void)
{
uint8_t reg_val = 0;
CHIPSELECT {
reg_val = spi(CMD_NOP);
}
return reg_val;
}
static uint8_t NRF_WriteBuffer(uint8_t reg, const uint8_t *pBuf, uint8_t bytes)
{
uint8_t status = 0, i = 0;
CHIPSELECT {
status = spi(CMD_WRITE_REG | reg);
for (i = 0; i < bytes; i++) {
spi(*pBuf++);
}
}
return status;
}
static uint8_t NRF_ReadBuffer(uint8_t reg, uint8_t *pBuf, uint8_t bytes)
{
uint8_t status = 0, i;
CHIPSELECT {
status = spi(CMD_READ_REG | reg);
for (i = 0; i < bytes; i++) {
pBuf[i] = spi(0);
}
}
return status;
}
void NRF_SetBaseAddress(const uint8_t *Bytes4)
{
memcpy(nrf_base_address, Bytes4, 4);
nrf_base_address[4] = 0;
// write it to the two full-width address registers
NRF_WriteBuffer(RG_RX_ADDR_P0, nrf_base_address, 5);
nrf_base_address[4] = 1;// to be different
NRF_WriteBuffer(RG_RX_ADDR_P1, nrf_base_address, 5);
}
void NRF_SetRxAddress(uint8_t pipenum, uint8_t AddrByte)
{
if (pipenum > 5) {
dbg_nrf("!! bad pipe %d", pipenum);
return;
}
nrf_base_address[4] = AddrByte;
nrf_pipe_addr[pipenum] = AddrByte;
dbg_nrf("Set Rx addr (pipe %d) = 0x%02x", (int)pipenum, AddrByte);
if (pipenum == 0) {
dbg_nrf("W ADDR_PA0: %02X-%02X-%02X-%02X-%02X", nrf_base_address[0], nrf_base_address[1], nrf_base_address[2], nrf_base_address[3], nrf_base_address[4]);
NRF_WriteBuffer(RG_RX_ADDR_P0, nrf_base_address, 5);
}
else if (pipenum == 1) {
dbg_nrf("W ADDR_PA1: %02X-%02X-%02X-%02X-%02X", nrf_base_address[0], nrf_base_address[1], nrf_base_address[2], nrf_base_address[3], nrf_base_address[4]);
NRF_WriteBuffer(RG_RX_ADDR_P1, nrf_base_address, 5);
}
else {
NRF_WriteRegister(RG_RX_ADDR_P2 + (pipenum - 2), AddrByte);
}
}
bool NRF_AddPipe(uint8_t AddrByte, uint8_t *PipeNum)
{
for (uint8_t i = 0; i < 6; i++) {
if(!nrf_pipe_enabled[i]) {
NRF_SetRxAddress(i, AddrByte);
*PipeNum = i;
NRF_EnablePipe(i);
return true;
}
}
return false;
}
uint8_t NRF_PipeNum2Addr(uint8_t pipe_num)
{
if (pipe_num > 5) return 0; // fail
return nrf_pipe_addr[pipe_num];
}
uint8_t NRF_Addr2PipeNum(uint8_t addr)
{
for (int i = 0; i < 6; i++) {
if (nrf_pipe_addr[i] == addr) return (uint8_t) i;
}
return 0xFF;
}
void NRF_EnablePipe(uint8_t pipenum)
{
dbg_nrf("Enable pipe num %d", (int)pipenum);
uint8_t enabled = NRF_ReadRegister(RG_EN_RXADDR);
enabled |= 1 << pipenum;
NRF_WriteRegister(RG_EN_RXADDR, enabled);
nrf_pipe_enabled[pipenum] = 1;
}
void NRF_DisablePipe(uint8_t pipenum)
{
uint8_t enabled = NRF_ReadRegister(RG_EN_RXADDR);
enabled &= ~(1 << pipenum);
NRF_WriteRegister(RG_EN_RXADDR, enabled);
nrf_pipe_enabled[pipenum] = 0;
}
static void NRF_SetTxAddress(uint8_t SendTo)
{
nrf_base_address[4] = SendTo;
dbg_nrf("W Tx_ADDR + Rx0: %02X-%02X-%02X-%02X-%02X",
nrf_base_address[0], nrf_base_address[1], nrf_base_address[2], nrf_base_address[3], nrf_base_address[4]);
NRF_WriteBuffer(RG_TX_ADDR, nrf_base_address, 5);
NRF_WriteBuffer(RG_RX_ADDR_P0, nrf_base_address, 5); // the ACK will come to pipe 0
}
void NRF_PowerDown(void)
{
dbg_nrf("PDn");
CE(0);
NRF_WriteRegister(RG_CONFIG, ModeBits);
}
void NRF_ModeTX(void)
{
dbg_nrf("Tx Mode");
CE(0);
uint8_t m = NRF_ReadRegister(RG_CONFIG);
NRF_WriteRegister(RG_CONFIG, ModeBits | RD_CONFIG_PWR_UP);
if ((m & RD_CONFIG_PWR_UP) == 0) {
// switching on
LL_mDelay(5);
}
}
void NRF_ModeRX(void)
{
dbg_nrf("Rx Mode");
NRF_WriteRegister(RG_CONFIG, ModeBits | RD_CONFIG_PWR_UP | RD_CONFIG_PRIM_RX);
NRF_SetRxAddress(0, nrf_pipe_addr[0]); // set the P0 address - it was changed during Rx for ACK reception
CE(1);
//if ((m&2)==0) LL_mDelay()(5); You don't need to wait. Just nothing will come for 5ms or more
}
uint8_t NRF_IsModePowerDown(void)
{
uint8_t ret = 0;
if ((NRF_ReadRegister(RG_CONFIG) & RD_CONFIG_PWR_UP) == 0) ret = 1;
return ret;
}
uint8_t NRF_IsModeTX(void)
{
uint8_t m = NRF_ReadRegister(RG_CONFIG);
if ((m & RD_CONFIG_PWR_UP) == 0) return 0; // OFF
if ((m & RD_CONFIG_PRIM_RX) == 0) return 1;
return 0;
}
uint8_t NRF_IsModeRx(void)
{
uint8_t m = NRF_ReadRegister(RG_CONFIG);
if ((m & RD_CONFIG_PWR_UP) == 0) return 0; // OFF
if ((m & RD_CONFIG_PRIM_RX) == 0) return 0;
return 1;
}
void NRF_SetChannel(uint8_t Ch)
{
NRF_WriteRegister(RG_RF_CH, Ch);
}
uint8_t NRF_ReceivePacket(uint8_t *Packet, uint8_t *PipeNum)
{
uint8_t pw = 0, status;
// if (!NRF_IsRxPacket()) {
// dbg("rx queue empty");
// return 0;
// }
// const uint8_t orig_conf = NRF_ReadRegister(RG_CONFIG);
// CE(0); // quit Rx mode - go idle
CHIPSELECT {
status = spi(CMD_RD_RX_PL_WIDTH);
pw = spi(0);
}
if (pw == 0) {
dbg("empty pld");
}
if (pw > 32) {
CHIPSELECT {
spi(CMD_FLUSH_RX);
}
pw = 0;
dbg("over 32");
} else {
// Read the reception pipe number
*PipeNum = ((status & RD_STATUS_RX_PNO) >> 1);
CHIPSELECT {
spi(CMD_RD_RX_PLD);
for (uint8_t i = 0; i < pw; i++) Packet[i] = spi(0);
}
}
NRF_WriteRegister(RG_STATUS, RD_STATUS_RX_DR); // Clear the RX_DR interrupt
// if ((orig_conf & RD_CONFIG_PWR_UP) == 0) {
// dbg_nrf("going back PwrDn");
// NRF_PowerDown();
// }
// else if ((orig_conf & RD_CONFIG_PRIM_RX) == RD_CONFIG_PRIM_RX) {
// dbg_nrf("going back PwrUp+Rx");
// NRF_ModeRX();
// }
// CE(1); // back to rx
return pw;
}
bool NRF_IsRxPacket(void)
{
return 0 == (NRF_ReadRegister(RG_FIFO_STATUS) & RD_FIFO_STATUS_RX_EMPTY);
// uint8_t ret = NRF_ReadRegister(RG_STATUS) & RD_STATUS_RX_DR;
// return 0 != ret;
}
bool NRF_SendPacket(uint8_t PipeNum, const uint8_t *Packet, uint8_t Length)
{
if (!nrf_pipe_enabled[PipeNum]) {
dbg_nrf("!! Pipe %d not enabled", PipeNum);
return 0;
}
dbg_nrf("Will tx to addr %02x", nrf_pipe_addr[PipeNum]);
const uint8_t orig_conf = NRF_ReadRegister(RG_CONFIG);
CE(0);
NRF_ModeTX(); // Make sure in TX mode
NRF_SetTxAddress(nrf_pipe_addr[PipeNum]); // this sets the Tx addr and also pipe 0 addr for ACK
CHIPSELECT {
spi(CMD_FLUSH_TX);
};
CHIPSELECT {
spi(CMD_WR_TX_PLD);
for (uint8_t i = 0; i < Length; i++) spi(Packet[i]);
};
// CE pulse
CE(1);
_delay_us(20); // At least 10 us
CE(0);
uint8_t st = 0;
while ((st & (RD_STATUS_MAX_RT|RD_STATUS_TX_DS)) == 0) {
st = NRF_ReadStatus(); // Packet acked or timed out
}
dbg_nrf("Send status: 0x%02x - MAX_RT %d, SENT %d", (int)st,
(st&RD_STATUS_MAX_RT) != 0, (st&RD_STATUS_TX_DS) != 0);
NRF_WriteRegister(RG_STATUS, st & (RD_STATUS_MAX_RT|RD_STATUS_TX_DS)); // Clear the bit
if ((orig_conf & RD_CONFIG_PWR_UP) == 0) {
dbg_nrf("going back PwrDn");
NRF_PowerDown();
}
else if ((orig_conf & RD_CONFIG_PRIM_RX) == RD_CONFIG_PRIM_RX) {
dbg_nrf("going back PwrUp+Rx");
NRF_ModeRX();
}
return 0 != (st & RD_STATUS_TX_DS); // success
}
bool NRF_Init(uint8_t pSpeed)
{
// Set the required output pins
NSS(1);
CE(0);
LL_mDelay(200);
for (int i = 0; i < 6; i++) {
nrf_pipe_addr[i] = 0;
nrf_pipe_enabled[i] = 0;
}
// this is a test if there's anything present
uint8_t awreg = NRF_ReadRegister(RG_SETUP_AW);
if (awreg == 0 || awreg > 3) return false;
// clear flags etc
NRF_PowerDown();
CHIPSELECT { spi(CMD_FLUSH_RX); }
CHIPSELECT { spi(CMD_FLUSH_TX); }
NRF_WriteRegister(RG_STATUS, 0x70);
NRF_WriteRegister(RG_CONFIG, ModeBits);
NRF_WriteRegister(RG_SETUP_AW, 0b11); // 5 byte addresses
NRF_WriteRegister(RG_EN_RXADDR, 0x01); // disable all, enable pipe 0 - this is required for shockburst, despite not being specified in the DS
NRF_WriteRegister(RG_SETUP_RETR, 0x18); // 8 retries
NRF_WriteRegister(RG_RF_CH, 2); // channel 2 NO HIGHER THAN 83 in USA!
NRF_WriteRegister(RG_RF_SETUP, pSpeed);
NRF_WriteRegister(RG_DYNPD, 0b111111); // Dynamic packet length
NRF_WriteRegister(RG_FEATURE, 0b100); // Enable dynamic payload, and no payload in the ack.
// for (int i = 0; i < 6; i++) {
// NRF_WriteRegister(RG_RX_PW_P0+i, 32); // Receive 32 byte packets - XXX this is probably not needed with dynamic length
// }
return true;
}
#endif