GEX core repository.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gex-core/units/usart/unit_usart.c

690 lines
22 KiB

//
// Created by MightyPork on 2018/01/02.
//
#include "platform.h"
#include "comm/messages.h"
#include "unit_base.h"
#include "utils/avrlibc.h"
#include "unit_usart.h"
// SPI master
/** Private data structure */
struct priv {
uint8_t periph_num; //!< 1-6
uint8_t remap; //!< UART remap option
uint32_t baudrate; //!< baud rate
uint8_t parity; //!< 0-none, 1-odd, 2-even
uint8_t stopbits; //!< 0-half, 1-one, 2-one-and-half, 3-two (halves - 1)
uint8_t direction; //!< 1-RX, 2-TX, 3-RXTX
uint8_t hw_flow_control; //!< HW flow control 0-none, 1-RTC, 2-CTS, 3-full
bool clock_output; //!< Output serial clock
bool cpol; //!< clock CPOL setting
bool cpha; //!< clock CPHA setting
bool lsb_first; //!< bit order
uint8_t width; //!< word width - 7, 8, 9 (this includes parity)
bool data_inv; //!< Invert data bytes
bool rx_inv; //!< Invert the RX pin levels
bool tx_inv; //!< Invert the TX pin levels
bool de_output; //!< Generate the Driver Enable signal for RS485
bool de_polarity; //!< DE active level
uint8_t de_assert_time; //!< Time to assert the DE signal before transmit
uint8_t de_clear_time; //!< Time to clear the DE signal after transmit
USART_TypeDef *periph;
};
/** Allocate data structure and set defaults */
static error_t UUSART_preInit(Unit *unit)
{
bool suc = true;
struct priv *priv = unit->data = calloc_ck(1, sizeof(struct priv), &suc);
if (!suc) return E_OUT_OF_MEM;
// some defaults
priv->periph_num = 1;
priv->remap = 0;
priv->baudrate = 115200;
priv->parity = 0; //!< 0-none, 1-odd, 2-even
priv->stopbits = 1; //!< 0-half, 1-one, 2-1.5, 3-two
priv->direction = 3; // RXTX
priv->hw_flow_control = false;
priv->clock_output = false;
priv->cpol = 0;
priv->cpha = 0;
priv->lsb_first = true; // LSB first is default for UART
priv->width = 8;
priv->data_inv = false;
priv->rx_inv = false;
priv->tx_inv = false;
priv->de_output = false;
priv->de_polarity = 1; // active high
// this should equal to a half-byte length when oversampling by 16 is used (default)
priv->de_assert_time = 8;
priv->de_clear_time = 8;
return E_SUCCESS;
}
// ------------------------------------------------------------------------
/** Load from a binary buffer stored in Flash */
static void UUSART_loadBinary(Unit *unit, PayloadParser *pp)
{
struct priv *priv = unit->data;
uint8_t version = pp_u8(pp);
(void)version;
priv->periph_num = pp_u8(pp);
priv->remap = pp_u8(pp);
priv->baudrate = pp_u32(pp);
priv->parity = pp_u8(pp);
priv->stopbits = pp_u8(pp);
priv->direction = pp_u8(pp);
priv->hw_flow_control = pp_u8(pp);
priv->clock_output = pp_bool(pp);
priv->cpol = pp_bool(pp);
priv->cpha = pp_bool(pp);
priv->lsb_first = pp_bool(pp);
priv->width = pp_u8(pp);
priv->data_inv = pp_bool(pp);
priv->rx_inv = pp_bool(pp);
priv->tx_inv = pp_bool(pp);
priv->de_output = pp_bool(pp);
priv->de_polarity = pp_bool(pp);
priv->de_assert_time = pp_u8(pp);
priv->de_clear_time = pp_u8(pp);
}
/** Write to a binary buffer for storing in Flash */
static void UUSART_writeBinary(Unit *unit, PayloadBuilder *pb)
{
struct priv *priv = unit->data;
pb_u8(pb, 0); // version
pb_u8(pb, priv->periph_num);
pb_u8(pb, priv->remap);
pb_u32(pb, priv->baudrate);
pb_u8(pb, priv->parity);
pb_u8(pb, priv->stopbits);
pb_u8(pb, priv->direction);
pb_u8(pb, priv->hw_flow_control);
pb_bool(pb, priv->clock_output);
pb_bool(pb, priv->cpol);
pb_bool(pb, priv->cpha);
pb_bool(pb, priv->lsb_first);
pb_u8(pb, priv->width);
pb_bool(pb, priv->data_inv);
pb_bool(pb, priv->rx_inv);
pb_bool(pb, priv->tx_inv);
pb_bool(pb, priv->de_output);
pb_bool(pb, priv->de_polarity);
pb_u8(pb, priv->de_assert_time);
pb_u8(pb, priv->de_clear_time);
}
// ------------------------------------------------------------------------
/** Parse a key-value pair from the INI file */
static error_t UUSART_loadIni(Unit *unit, const char *key, const char *value)
{
bool suc = true;
struct priv *priv = unit->data;
if (streq(key, "device")) {
priv->periph_num = (uint8_t) avr_atoi(value);
}
else if (streq(key, "remap")) {
priv->remap = (uint8_t) avr_atoi(value);
}
else if (streq(key, "baud-rate")) {
priv->baudrate = (uint32_t ) avr_atoi(value);
}
else if (streq(key, "parity")) {
priv->parity = (uint8_t) str_parse_3(value,
"NONE", 0,
"ODD", 1,
"EVEN", 2, &suc);
}
else if (streq(key, "stop-bits")) {
priv->stopbits = (uint8_t) str_parse_4(value,
"0.5", 0,
"1", 1,
"1.5", 2,
"2", 3, &suc);
}
else if (streq(key, "direction")) {
priv->direction = (uint8_t) str_parse_3(value,
"RX", 1,
"TX", 2,
"RXTX", 3, &suc);
}
else if (streq(key, "hw-flow-control")) {
priv->hw_flow_control = (uint8_t) str_parse_4(value,
"NONE", 0,
"RTS", 1,
"CTS", 2,
"FULL", 3, &suc);
}
else if (streq(key, "word-width")) {
priv->width = (uint8_t ) avr_atoi(value);
}
else if (streq(key, "first-bit")) {
priv->lsb_first = (bool)str_parse_2(value, "MSB", 0, "LSB", 1, &suc);
}
else if (streq(key, "clock-output")) {
priv->clock_output = str_parse_yn(value, &suc);
}
else if (streq(key, "cpol")) {
priv->cpol = (bool) avr_atoi(value);
}
else if (streq(key, "cpha")) {
priv->cpha = (bool) avr_atoi(value);
}
else if (streq(key, "de-output")) {
priv->de_output = str_parse_yn(value, &suc);
}
else if (streq(key, "de-polarity")) {
priv->de_polarity = (bool) avr_atoi(value);
}
else if (streq(key, "de-assert-time")) {
priv->de_assert_time = (uint8_t) avr_atoi(value);
}
else if (streq(key, "de-clear-time")) {
priv->de_clear_time = (uint8_t) avr_atoi(value);
}
else {
return E_BAD_KEY;
}
if (!suc) return E_BAD_VALUE;
return E_SUCCESS;
}
/** Generate INI file section for the unit */
static void UUSART_writeIni(Unit *unit, IniWriter *iw)
{
struct priv *priv = unit->data;
iw_comment(iw, "Peripheral number (UARTx 1-4)");
iw_entry(iw, "device", "%d", (int)priv->periph_num);
iw_comment(iw, "Pin mappings (TX,RX,CK,CTS,RTS/DE)");
#if GEX_PLAT_F072_DISCOVERY
iw_comment(iw, " USART1: (0) A9,A10,A8,A11,A12 (1) B6,B7,A8,A11,A12");
iw_comment(iw, " USART2: (0) A2,A3,A4,A0,A1 (1) A14,A15,A4,A0,A1");
iw_comment(iw, " USART3: (0) B10,B11,B12,B13,B14");
iw_comment(iw, " USART4: (0) A0,A1,C12,B7,A15 (1) C10,C11,C12,B7,A15");
#elif GEX_PLAT_F103_BLUEPILL
#error "NO IMPL"
#elif GEX_PLAT_F303_DISCOVERY
#error "NO IMPL"
#elif GEX_PLAT_F407_DISCOVERY
#error "NO IMPL"
#else
#error "BAD PLATFORM!"
#endif
iw_entry(iw, "remap", "%d", (int)priv->remap);
iw_cmt_newline(iw);
iw_comment(iw, "Baud rate in bps (eg. 9600, 115200)"); // TODO examples/range
iw_entry(iw, "baud-rate", "%d", (int)priv->baudrate);
iw_comment(iw, "Parity type (NONE, ODD, EVEN)");
iw_entry(iw, "parity", "%s", str_3(priv->parity,
0, "NONE",
1, "ODD",
2, "EVEN"));
iw_comment(iw, "Number of stop bits (0.5, 1, 1.5, 2)");
iw_entry(iw, "stop-bits", "%s", str_4(priv->stopbits,
0, "0.5",
1, "1",
2, "1.5",
3, "2"));
iw_comment(iw, "Bit order (LSB or MSB first)");
iw_entry(iw, "first-bit", str_2((uint32_t)priv->lsb_first,
0, "MSB",
1, "LSB"));
iw_comment(iw, "Word width (7,8,9) - including parity bit if used");
iw_entry(iw, "word-width", "%d", (int)priv->width);
iw_comment(iw, "Enabled lines (RX,TX,RXTX)");
iw_entry(iw, "direction", str_3(priv->direction,
1, "RX",
2, "TX",
3, "RXTX"));
iw_comment(iw, "Hardware flow control (NONE, RTS, CTS, FULL)");
iw_entry(iw, "hw-flow-control", "%s", str_4(priv->hw_flow_control,
0, "NONE",
1, "RTS",
2, "CTS",
3, "FULL"));
iw_cmt_newline(iw);
iw_comment(iw, "Generate serial clock (Y,N)");
iw_entry(iw, "clock-output", str_yn(priv->clock_output));
iw_comment(iw, "Output clock polarity: 0,1 (clock idle level)");
iw_entry(iw, "cpol", "%d", (int)priv->cpol);
iw_comment(iw, "Output clock phase: 0,1 (active edge, 0-first, 1-second)");
iw_entry(iw, "cpha", "%d", (int)priv->cpha);
iw_cmt_newline(iw);
iw_comment(iw, "Generate RS485 Driver Enable signal (Y,N) - uses RTS pin");
iw_entry(iw, "de-output", str_yn(priv->de_output));
iw_comment(iw, "DE active level: 0,1");
iw_entry(iw, "de-polarity", "%d", (int)(priv->de_polarity));
iw_comment(iw, "DE assert time (0-31)");
iw_entry(iw, "de-assert-time", "%d", (int)(priv->de_assert_time));
iw_comment(iw, "DE clear time (0-31)");
iw_entry(iw, "de-clear-time", "%d", (int)(priv->de_clear_time));
}
// ------------------------------------------------------------------------
/** Claim the peripheral and assign priv->periph */
static error_t UUSART_ClaimPeripheral(Unit *unit)
{
struct priv *priv = unit->data;
if (!(priv->periph_num >= 1 && priv->periph_num <= 5)) {
dbg("!! Bad USART periph");
return E_BAD_CONFIG;
}
// assign and claim the peripheral
if (priv->periph_num == 1) {
TRY(rsc_claim(unit, R_USART1));
priv->periph = USART1;
}
else if (priv->periph_num == 2) {
TRY(rsc_claim(unit, R_USART2));
priv->periph = USART2;
}
else if (priv->periph_num == 3) {
TRY(rsc_claim(unit, R_USART3));
priv->periph = USART3;
}
#if defined(USART4)
else if (priv->periph_num == 4) {
TRY(rsc_claim(unit, R_USART4));
priv->periph = USART4;
}
#endif
#if defined(USART5)
else if (priv->periph_num == 5) {
TRY(rsc_claim(unit, R_USART5));
priv->periph = USART5;
}
#endif
else return E_BAD_CONFIG;
return E_SUCCESS;
}
/** Claim and configure GPIOs used */
static error_t UUSART_ConfigurePins(Unit *unit)
{
struct priv *priv = unit->data;
// This is written for F072, other platforms will need adjustments
// Configure UART pins (AF)
#define want_ck_pin(priv) ((priv)->clock_output)
#define want_tx_pin(priv) (bool)((priv)->direction & 2)
#define want_rx_pin(priv) (bool)((priv)->direction & 1)
#define want_cts_pin(priv) ((priv)->hw_flow_control==2 || (priv)->hw_flow_control==3)
#define want_rts_pin(priv) ((priv)->de_output || (priv)->hw_flow_control==1 || (priv)->hw_flow_control==3)
/* List of required pins based on the user config */
bool pins_wanted[5] = {
want_ck_pin(priv),
want_tx_pin(priv),
want_rx_pin(priv),
want_cts_pin(priv),
want_rts_pin(priv)
};
#if GEX_PLAT_F072_DISCOVERY
const struct PinAF *mappings = NULL;
// TODO adjust this, possibly remove / split to individual pin config for ..
// the final board
const struct PinAF mapping_1_0[5] = {
{'A', 8, LL_GPIO_AF_1}, // CK
{'A', 9, LL_GPIO_AF_1}, // TX
{'A', 10, LL_GPIO_AF_1}, // RX
{'A', 11, LL_GPIO_AF_1}, // CTS - collides with USB
{'A', 12, LL_GPIO_AF_1}, // RTS - collides with USB
};
const struct PinAF mapping_1_1[5] = {
{'A', 8, LL_GPIO_AF_1}, // CK*
{'B', 6, LL_GPIO_AF_1}, // TX
{'B', 7, LL_GPIO_AF_1}, // RX
{'A', 11, LL_GPIO_AF_1}, // CTS* - collides with USB
{'A', 12, LL_GPIO_AF_1}, // RTS* - collides with USB
};
const struct PinAF mapping_2_0[5] = {
{'A', 4, LL_GPIO_AF_1}, // CK
{'A', 2, LL_GPIO_AF_1}, // TX
{'A', 3, LL_GPIO_AF_1}, // RX
{'A', 0, LL_GPIO_AF_1}, // CTS
{'A', 1, LL_GPIO_AF_1}, // RTS
};
const struct PinAF mapping_2_1[5] = {
{'A', 4, LL_GPIO_AF_1}, // CK*
{'A', 14, LL_GPIO_AF_1}, // TX
{'A', 15, LL_GPIO_AF_1}, // RX
{'A', 0, LL_GPIO_AF_1}, // CTS*
{'A', 1, LL_GPIO_AF_1}, // RTS*
};
const struct PinAF mapping_3_0[5] = {
{'B', 12, LL_GPIO_AF_4}, // CK
{'B', 10, LL_GPIO_AF_4}, // TX
{'B', 11, LL_GPIO_AF_4}, // RX
{'B', 13, LL_GPIO_AF_4}, // CTS
{'B', 14, LL_GPIO_AF_4}, // RTS
};
const struct PinAF mapping_4_0[5] = {
{'C', 12, LL_GPIO_AF_0}, // CK
{'A', 0, LL_GPIO_AF_4}, // TX
{'A', 1, LL_GPIO_AF_4}, // RX
{'B', 7, LL_GPIO_AF_4}, // CTS
{'A', 15, LL_GPIO_AF_4}, // RTS
};
const struct PinAF mapping_4_1[5] = {
{'C', 12, LL_GPIO_AF_0}, // CK*
{'C', 10, LL_GPIO_AF_0}, // TX
{'C', 11, LL_GPIO_AF_0}, // RX
{'B', 7, LL_GPIO_AF_4}, // CTS*
{'A', 15, LL_GPIO_AF_4}, // RTS*
};
if (priv->periph_num == 1) {
// USART1
if (priv->remap == 0) mappings = &mapping_1_0[0];
else if (priv->remap == 1) mappings = &mapping_1_1[0];
else return E_BAD_CONFIG;
}
else if (priv->periph_num == 2) {
// USART2
if (priv->remap == 0) mappings = &mapping_2_0[0];
else if (priv->remap == 1) mappings = &mapping_2_1[0];
else return E_BAD_CONFIG;
}
else if (priv->periph_num == 3) {
// USART3
if (priv->remap == 0) mappings = &mapping_3_0[0];
else return E_BAD_CONFIG;
}
else if (priv->periph_num == 4) {
// USART3
if (priv->remap == 0) mappings = &mapping_4_0[0];
else if (priv->remap == 1) mappings = &mapping_4_1[0];
else return E_BAD_CONFIG;
}
else return E_BAD_CONFIG;
// Apply mappings based on the 'wanted' table
for (int i = 0; i < 5; i++) {
if (pins_wanted[i]) {
if (mappings[i].port == 0) return E_BAD_CONFIG;
TRY(rsc_claim_pin(unit, mappings[i].port, mappings[i].pin));
configure_gpio_alternate(mappings[i].port, mappings[i].pin, mappings[i].af);
}
}
#elif GEX_PLAT_F103_BLUEPILL
#error "NO IMPL"
#elif GEX_PLAT_F303_DISCOVERY
#error "NO IMPL"
#elif GEX_PLAT_F407_DISCOVERY
#error "NO IMPL"
#else
#error "BAD PLATFORM!"
#endif
return E_SUCCESS;
}
/** Finalize unit set-up */
static error_t UUSART_init(Unit *unit)
{
bool suc = true;
struct priv *priv = unit->data;
TRY(UUSART_ClaimPeripheral(unit));
TRY(UUSART_ConfigurePins(unit));
// --- Configure the peripheral ---
// Enable clock for the peripheral used
if (priv->periph_num == 1) {
__HAL_RCC_USART1_CLK_ENABLE();
}
else if (priv->periph_num == 2) {
__HAL_RCC_USART2_CLK_ENABLE();
}
else if (priv->periph_num == 3) {
__HAL_RCC_USART3_CLK_ENABLE();
}
#ifdef USART4
else if (priv->periph_num == 4) {
__HAL_RCC_USART4_CLK_ENABLE();
}
#endif
#ifdef USART5
else if (priv->periph_num == 5) {
__HAL_RCC_USART5_CLK_ENABLE();
}
#endif
LL_USART_Disable(priv->periph);
{
LL_USART_DeInit(priv->periph);
LL_USART_SetBaudRate(priv->periph, PLAT_APB1_HZ, LL_USART_OVERSAMPLING_16, priv->baudrate);
LL_USART_SetParity(priv->periph,
priv->parity == 0 ? LL_USART_PARITY_NONE :
priv->parity == 1 ? LL_USART_PARITY_ODD
: LL_USART_PARITY_EVEN);
LL_USART_SetStopBitsLength(priv->periph,
priv->stopbits == 0 ? LL_USART_STOPBITS_0_5 :
priv->stopbits == 1 ? LL_USART_STOPBITS_1 :
priv->stopbits == 2 ? LL_USART_STOPBITS_1_5
: LL_USART_STOPBITS_2);
LL_USART_SetTransferDirection(priv->periph,
priv->direction == 1 ? LL_USART_DIRECTION_RX :
priv->direction == 2 ? LL_USART_DIRECTION_TX
: LL_USART_DIRECTION_TX_RX);
LL_USART_SetHWFlowCtrl(priv->periph,
priv->hw_flow_control == 0 ? LL_USART_HWCONTROL_NONE :
priv->hw_flow_control == 1 ? LL_USART_HWCONTROL_RTS :
priv->hw_flow_control == 2 ? LL_USART_HWCONTROL_CTS
: LL_USART_HWCONTROL_RTS_CTS);
LL_USART_ConfigClock(priv->periph,
priv->cpha ? LL_USART_PHASE_2EDGE : LL_USART_PHASE_1EDGE,
priv->cpol ? LL_USART_POLARITY_HIGH : LL_USART_POLARITY_LOW,
true); // clock on last bit - TODO configurable?
if (priv->clock_output)
LL_USART_EnableSCLKOutput(priv->periph);
else
LL_USART_DisableSCLKOutput(priv->periph);
LL_USART_SetTransferBitOrder(priv->periph,
priv->lsb_first ? LL_USART_BITORDER_LSBFIRST
: LL_USART_BITORDER_MSBFIRST);
LL_USART_SetDataWidth(priv->periph,
priv->width == 7 ? LL_USART_DATAWIDTH_7B :
priv->width == 8 ? LL_USART_DATAWIDTH_8B
: LL_USART_DATAWIDTH_9B);
LL_USART_SetBinaryDataLogic(priv->periph,
priv->data_inv ? LL_USART_BINARY_LOGIC_NEGATIVE
: LL_USART_BINARY_LOGIC_POSITIVE);
LL_USART_SetRXPinLevel(priv->periph, priv->rx_inv ? LL_USART_RXPIN_LEVEL_INVERTED
: LL_USART_RXPIN_LEVEL_STANDARD);
LL_USART_SetTXPinLevel(priv->periph, priv->tx_inv ? LL_USART_TXPIN_LEVEL_INVERTED
: LL_USART_TXPIN_LEVEL_STANDARD);
if (priv->de_output)
LL_USART_EnableDEMode(priv->periph);
else
LL_USART_DisableDEMode(priv->periph);
LL_USART_SetDESignalPolarity(priv->periph,
priv->de_polarity ? LL_USART_DE_POLARITY_HIGH
: LL_USART_DE_POLARITY_LOW);
LL_USART_SetDEAssertionTime(priv->periph, priv->de_assert_time);
LL_USART_SetDEDeassertionTime(priv->periph, priv->de_clear_time);
}
LL_USART_Enable(priv->periph);
return E_SUCCESS;
}
/** Tear down the unit */
static void UUSART_deInit(Unit *unit)
{
struct priv *priv = unit->data;
// de-init the pins & peripheral only if inited correctly
if (unit->status == E_SUCCESS) {
assert_param(priv->periph);
LL_USART_DeInit(priv->periph);
// Disable clock
if (priv->periph_num == 1) {
__HAL_RCC_USART1_CLK_DISABLE();
}
else if (priv->periph_num == 2) {
__HAL_RCC_USART2_CLK_DISABLE();
}
else if (priv->periph_num == 3) {
__HAL_RCC_USART3_CLK_DISABLE();
}
#ifdef USART4
else if (priv->periph_num == 4) {
__HAL_RCC_USART4_CLK_DISABLE();
}
#endif
#ifdef USART5
else if (priv->periph_num == 5) {
__HAL_RCC_USART5_CLK_DISABLE();
}
#endif
}
// Release all resources
rsc_teardown(unit);
// Free memory
free(unit->data);
unit->data = NULL;
}
// ------------------------------------------------------------------------
static error_t usart_wait_until_flag(struct priv *priv, uint32_t flag, bool stop_state)
{
uint32_t t_start = HAL_GetTick();
while (((priv->periph->ISR & flag) != 0) != stop_state) {
if (HAL_GetTick() - t_start > 10) {
return E_HW_TIMEOUT;
}
}
return E_SUCCESS;
}
static error_t sync_send(struct priv *priv, const uint8_t *buf, uint32_t len)
{
while (len > 0) {
TRY(usart_wait_until_flag(priv, USART_ISR_TXE, 1));
priv->periph->TDR = *buf++;
len--;
}
TRY(usart_wait_until_flag(priv, USART_ISR_TC, 1));
return E_SUCCESS;
}
enum PinCmd_ {
CMD_WRITE = 0,
};
/** Handle a request message */
static error_t UUSART_handleRequest(Unit *unit, TF_ID frame_id, uint8_t command, PayloadParser *pp)
{
struct priv *priv = unit->data;
switch (command) {
case CMD_WRITE:;
uint32_t len;
const uint8_t *pld = pp_tail(pp, &len);
TRY(sync_send(priv, pld, len));
return E_SUCCESS;
//return E_NOT_IMPLEMENTED;
default:
return E_UNKNOWN_COMMAND;
}
}
// ------------------------------------------------------------------------
/** Unit template */
const UnitDriver UNIT_USART = {
.name = "USART",
.description = "Serial port",
// Settings
.preInit = UUSART_preInit,
.cfgLoadBinary = UUSART_loadBinary,
.cfgWriteBinary = UUSART_writeBinary,
.cfgLoadIni = UUSART_loadIni,
.cfgWriteIni = UUSART_writeIni,
// Init
.init = UUSART_init,
.deInit = UUSART_deInit,
// Function
.handleRequest = UUSART_handleRequest,
};