// // Created by MightyPork on 2018/02/04. // #include "platform.h" #include "unit_base.h" #include "unit_adc.h" #define ADC_INTERNAL #include "_adc_internal.h" #define DMA_POS(priv) ((priv)->buf_itemcount - (priv)->DMA_CHx->CNDTR) static void UADC_JobSendBlockChunk(Job *job) { Unit *unit = job->unit; struct priv *priv = unit->data; const uint32_t start = job->data1; const uint32_t count = job->data2; const bool close = (bool) (job->data3 & 0x80); const bool tc = (bool) (job->data3 & 0x01); TF_TYPE type = close ? EVT_CAPT_DONE : EVT_CAPT_MORE; TF_Msg msg = { .frame_id = priv->stream_frame_id, .len = (TF_LEN) (1 /*seq*/ + count * sizeof(uint16_t)), .type = type, }; TF_Respond_Multipart(comm, &msg); TF_Multipart_Payload(comm, &priv->stream_serial, 1); TF_Multipart_Payload(comm, (uint8_t *) (priv->dma_buffer + start), count * sizeof(uint16_t)); TF_Multipart_Close(comm); if (tc) priv->tc_pending = false; else priv->ht_pending = false; priv->stream_serial++; } static void UADC_JobSendTriggerCaptureHeader(Job *job) { Unit *unit = job->unit; struct priv *priv = unit->data; EventReport er = { .unit = unit, .type = EVT_CAPT_START, .timestamp = job->timestamp, .length = (priv->pretrig_len+1) * priv->nb_channels * sizeof(uint16_t) + 4 /*pretrig len*/ + 1 /*edge*/ + 1 /* seq */ }; uint32_t index_trigd = job->data1; uint8_t edge = (uint8_t) job->data2; EventReport_Start(&er); priv->stream_frame_id = er.sent_msg_id; { // preamble uint8_t buf[4]; PayloadBuilder pb = pb_start(buf, 4, NULL); pb_u32(&pb, priv->pretrig_len); pb_u8(&pb, edge); pb_u8(&pb, priv->stream_serial++); // This is the serial counter for the first chunk // (containing the pre-trigger, or empty if no pretrig configured) EventReport_PB(&pb); if (priv->pretrig_len > 0) { // pretrig uint32_t pretrig_remain = (priv->pretrig_len + 1) * priv->nb_channels; // +1 because we want pretrig 0 to exactly start with the triggering sample assert_param(index_trigd <= priv->buf_itemcount); // this is one past the last entry of the triggering capture group if (pretrig_remain > index_trigd) { // used items in the wrap-around part of the buffer uint32_t items_from_end = pretrig_remain - index_trigd; assert_param(priv->buf_itemcount - items_from_end >= index_trigd); EventReport_Data((uint8_t *) &priv->dma_buffer[priv->buf_itemcount - items_from_end], items_from_end * sizeof(uint16_t)); assert_param(items_from_end <= pretrig_remain); pretrig_remain -= items_from_end; } assert_param(pretrig_remain <= index_trigd); EventReport_Data((uint8_t *) &priv->dma_buffer[index_trigd - pretrig_remain], pretrig_remain * sizeof(uint16_t)); } } EventReport_End(); } static void UADC_JobSendEndOfStreamMsg(Job *job) { TF_Msg msg = { .type = EVT_CAPT_DONE, .frame_id = (TF_ID) job->data1 }; TF_Respond(comm, &msg); } void UADC_ReportEndOfStream(Unit *unit) { struct priv *priv = unit->data; Job j = { .unit = unit, .data1 = priv->stream_frame_id, .cb = UADC_JobSendEndOfStreamMsg }; scheduleJob(&j); } static void handle_httc(Unit *unit, bool tc) { struct priv *priv = unit->data; uint32_t start = priv->stream_startpos; uint32_t end; const bool ht = !tc; const bool m_trigd = priv->opmode == ADC_OPMODE_TRIGD; const bool m_stream = priv->opmode == ADC_OPMODE_STREAM; const bool m_fixcpt = priv->opmode == ADC_OPMODE_BLCAP; if (ht) { end = (priv->buf_itemcount / 2); LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); } else { end = priv->buf_itemcount; LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); } if (start != end) { uint32_t sgcount = (end - start) / priv->nb_channels; if (m_trigd || m_fixcpt) { sgcount = MIN(priv->trig_stream_remain, sgcount); priv->trig_stream_remain -= sgcount; } bool close = !m_stream && priv->trig_stream_remain == 0; if ((tc && priv->tc_pending) || (ht && priv->ht_pending)) { dbg("(!) ADC DMA not handled in time, abort capture"); UADC_SwitchMode(unit, ADC_OPMODE_EMERGENCY_SHUTDOWN); return; } // Here we set the tc/ht pending flags for detecting overrun Job j = { .unit = unit, .data1 = start, .data2 = sgcount * priv->nb_channels, .data3 = (uint32_t) (close*0x80) | (tc*1), // bitfields to indicate what's happening .cb = UADC_JobSendBlockChunk }; if (tc) priv->tc_pending = true; else priv->ht_pending = true; if (!scheduleJob(&j)) { // Abort if we can't queue - the stream would tear and we'd hog the system with error messages UADC_SwitchMode(unit, ADC_OPMODE_EMERGENCY_SHUTDOWN); return; } if (close) { // If auto-arm enabled, we need to re-arm again. // However, EOS irq is disabled during the capture. // We have to wait for the next EOS interrupt to occur. UADC_SwitchMode(unit, (priv->auto_rearm && m_trigd) ? ADC_OPMODE_REARM_PENDING : ADC_OPMODE_IDLE); } } if (tc) { priv->stream_startpos = 0; } else { priv->stream_startpos = end; } } void UADC_DMA_Handler(void *arg) { Unit *unit = arg; struct priv *priv = unit->data; if (priv->opmode == ADC_OPMODE_UNINIT) { LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); LL_DMA_ClearFlag_TE(priv->DMAx, priv->dma_chnum); return; } const uint32_t isrsnapshot = priv->DMAx->ISR; if (LL_DMA_IsActiveFlag_G(isrsnapshot, priv->dma_chnum)) { const bool tc = LL_DMA_IsActiveFlag_TC(isrsnapshot, priv->dma_chnum); const bool ht = LL_DMA_IsActiveFlag_HT(isrsnapshot, priv->dma_chnum); const bool te = LL_DMA_IsActiveFlag_TE(isrsnapshot, priv->dma_chnum); // check what mode we're in const bool m_trigd = priv->opmode == ADC_OPMODE_TRIGD; const bool m_stream = priv->opmode == ADC_OPMODE_STREAM; const bool m_fixcpt = priv->opmode == ADC_OPMODE_BLCAP; if (m_trigd || m_stream || m_fixcpt) { if (ht || tc) { if (ht && tc) { const uint32_t half = (uint32_t) (priv->buf_itemcount / 2); if (priv->stream_startpos > half) { handle_httc(unit, true); // TC handle_httc(unit, false); // HT } else { handle_httc(unit, false); // HT handle_httc(unit, true); // TC } } else { handle_httc(unit, tc); } } } else { // This shouldn't happen, the interrupt should be disabled in this opmode dbg("(!) not streaming, ADC DMA IT should be disabled"); if (ht) { LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); } else { LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); } } if (te) { // this shouldn't happen - error adc_dbg("ADC DMA TE!"); LL_DMA_ClearFlag_TE(priv->DMAx, priv->dma_chnum); } } } void UADC_ADC_EOS_Handler(void *arg) { Unit *unit = arg; struct priv *priv = unit->data; // Normally uint64_t timestamp = 0; if (priv->opmode == ADC_OPMODE_ARMED) timestamp = PTIM_GetMicrotime(); LL_ADC_ClearFlag_EOS(priv->ADCx); if (priv->opmode == ADC_OPMODE_UNINIT) return; // Wait for the DMA to complete copying the last sample uint32_t dmapos; hw_wait_while((dmapos = DMA_POS(priv)) % priv->nb_channels != 0, 100); // XXX this could be changed to reading it from the DR instead uint32_t sample_pos; if (dmapos == 0) { sample_pos = (uint32_t) (priv->buf_itemcount); } else { sample_pos = dmapos; } sample_pos -= priv->nb_channels; int cnt = 0; // index of the sample within the group const bool can_average = priv->real_frequency_int < UADC_MAX_FREQ_FOR_AVERAGING; const uint32_t channels_mask = priv->channels_mask; for (uint8_t i = 0; i < 18; i++) { if (channels_mask & (1 << i)) { const uint16_t val = priv->dma_buffer[sample_pos+cnt]; cnt++; if (can_average) { priv->averaging_bins[i] = priv->averaging_bins[i] * (1.0f - priv->avg_factor_as_float) + ((float) val) * priv->avg_factor_as_float; } priv->last_samples[i] = val; } } if (priv->opmode == ADC_OPMODE_ARMED) { const uint16_t val = priv->last_samples[priv->trigger_source]; if ((priv->trig_prev_level < priv->trig_level) && val >= priv->trig_level && (bool) (priv->trig_edge & 0b01)) { // Rising edge UADC_HandleTrigger(unit, 1, timestamp); } else if ((priv->trig_prev_level > priv->trig_level) && val <= priv->trig_level && (bool) (priv->trig_edge & 0b10)) { // Falling edge UADC_HandleTrigger(unit, 2, timestamp); } priv->trig_prev_level = val; } // auto-rearm was waiting for the next sample if (priv->opmode == ADC_OPMODE_REARM_PENDING) { if (!priv->auto_rearm) { // It looks like the flag was cleared by DISARM before we got a new sample. // Let's just switch to IDLE UADC_SwitchMode(unit, ADC_OPMODE_IDLE); } else { // Re-arming for a new trigger UADC_SwitchMode(unit, ADC_OPMODE_ARMED); } } } void UADC_HandleTrigger(Unit *unit, uint8_t edge_type, uint64_t timestamp) { struct priv *priv = unit->data; if (priv->opmode == ADC_OPMODE_UNINIT) return; if (priv->trig_holdoff != 0 && priv->trig_holdoff_remain > 0) { // Trig discarded due to holdoff return; } if (priv->trig_holdoff > 0) { priv->trig_holdoff_remain = priv->trig_holdoff; // Start the tick unit->tick_interval = 1; unit->_tick_cnt = 1; } priv->stream_startpos = DMA_POS(priv); priv->trig_stream_remain = priv->trig_len; priv->stream_serial = 0; Job j = { .unit = unit, .timestamp = timestamp, .data1 = priv->stream_startpos, .data2 = edge_type, .cb = UADC_JobSendTriggerCaptureHeader }; scheduleJob(&j); UADC_SwitchMode(unit, ADC_OPMODE_TRIGD); } void UADC_StartBlockCapture(Unit *unit, uint32_t len, TF_ID frame_id) { struct priv *priv = unit->data; if (priv->opmode == ADC_OPMODE_UNINIT) return; priv->stream_frame_id = frame_id; priv->stream_startpos = DMA_POS(priv); priv->trig_stream_remain = len; priv->stream_serial = 0; UADC_SwitchMode(unit, ADC_OPMODE_BLCAP); } /** Start stream */ void UADC_StartStream(Unit *unit, TF_ID frame_id) { struct priv *priv = unit->data; if (priv->opmode == ADC_OPMODE_UNINIT) return; priv->stream_frame_id = frame_id; priv->stream_startpos = DMA_POS(priv); priv->stream_serial = 0; UADC_SwitchMode(unit, ADC_OPMODE_STREAM); } /** End stream */ void UADC_StopStream(Unit *unit) { struct priv *priv = unit->data; if (priv->opmode == ADC_OPMODE_UNINIT) return; UADC_ReportEndOfStream(unit); UADC_SwitchMode(unit, ADC_OPMODE_IDLE); } /** Handle unit update tick - expire the trigger hold-off */ void UADC_updateTick(Unit *unit) { struct priv *priv = unit->data; // Recover from shutdown after a delay if (priv->opmode == ADC_OPMODE_EMERGENCY_SHUTDOWN) { adc_dbg("ADC recovering from emergency shutdown"); UADC_SwitchMode(unit, ADC_OPMODE_IDLE); LL_TIM_EnableCounter(priv->TIMx); UADC_ReportEndOfStream(unit); unit->tick_interval = 0; return; } if (priv->trig_holdoff_remain > 0) { priv->trig_holdoff_remain--; if (priv->trig_holdoff_remain == 0) { unit->tick_interval = 0; unit->_tick_cnt = 0; } } } void UADC_SwitchMode(Unit *unit, enum uadc_opmode new_mode) { struct priv *priv = unit->data; const enum uadc_opmode old_mode = priv->opmode; if (new_mode == old_mode) return; // nothing to do // if un-itied, can go only to IDLE assert_param((old_mode != ADC_OPMODE_UNINIT) || (new_mode == ADC_OPMODE_IDLE)); priv->opmode = ADC_OPMODE_UNINIT; if (new_mode == ADC_OPMODE_UNINIT) { adc_dbg("ADC switch -> UNINIT"); // Stop the DMA, timer and disable ADC - this is called before tearing down the unit LL_TIM_DisableCounter(priv->TIMx); // Switch off the ADC if (LL_ADC_IsEnabled(priv->ADCx)) { // Cancel ongoing conversion if (LL_ADC_REG_IsConversionOngoing(priv->ADCx)) { LL_ADC_REG_StopConversion(priv->ADCx); hw_wait_while(LL_ADC_REG_IsStopConversionOngoing(priv->ADCx), 100); } LL_ADC_Disable(priv->ADCx); hw_wait_while(LL_ADC_IsDisableOngoing(priv->ADCx), 100); } LL_DMA_DisableChannel(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_HT(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_TC(priv->DMAx, priv->dma_chnum); } else if (new_mode == ADC_OPMODE_IDLE || new_mode == ADC_OPMODE_REARM_PENDING) { // IDLE and ARMED are identical with the exception that the trigger condition is not checked // ARMED can be only entered from IDLE, thus we do the init only here. priv->tc_pending = false; priv->ht_pending = false; // In IDLE, we don't need the DMA interrupts LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_HT(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_TC(priv->DMAx, priv->dma_chnum); // Use End Of Sequence to recover results for averaging from the DMA buffer and DR LL_ADC_ClearFlag_EOS(priv->ADCx); LL_ADC_EnableIT_EOS(priv->ADCx); if (old_mode == ADC_OPMODE_UNINIT) { // Nothing is started yet - this is the only way to leave UNINIT LL_ADC_Enable(priv->ADCx); LL_DMA_EnableChannel(priv->DMAx, priv->dma_chnum); LL_TIM_EnableCounter(priv->TIMx); LL_ADC_REG_StartConversion(priv->ADCx); } } else if (new_mode == ADC_OPMODE_EMERGENCY_SHUTDOWN) { adc_dbg("ADC switch -> EMERGENCY_STOP"); // Emergency shutdown is used when the job queue overflows and the stream is torn // This however doesn't help in the case when user sets such a high frequency // that the whole app becomes unresponsive due to the completion ISR, need to verify the value manually. LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_HT(priv->DMAx, priv->dma_chnum); LL_DMA_DisableIT_TC(priv->DMAx, priv->dma_chnum); LL_TIM_DisableCounter(priv->TIMx); UADC_SetSampleRate(unit, 10000); // fallback to a known safe value LL_ADC_ClearFlag_EOS(priv->ADCx); LL_ADC_DisableIT_EOS(priv->ADCx); unit->tick_interval = 0; unit->_tick_cnt = 250; // 1-off } else if (new_mode == ADC_OPMODE_ARMED) { adc_dbg("ADC switch -> ARMED"); assert_param(old_mode == ADC_OPMODE_IDLE || old_mode == ADC_OPMODE_REARM_PENDING); // avoid firing immediately by the value jumping across the scale priv->trig_prev_level = priv->last_samples[priv->trigger_source]; } else if (new_mode == ADC_OPMODE_TRIGD || new_mode == ADC_OPMODE_STREAM || new_mode == ADC_OPMODE_BLCAP) { adc_dbg("ADC switch -> CAPTURE"); assert_param(old_mode == ADC_OPMODE_ARMED || old_mode == ADC_OPMODE_IDLE); // during the capture, we disallow direct readout and averaging to reduce overhead LL_ADC_DisableIT_EOS(priv->ADCx); // Enable the DMA buffer interrupts // we must first clear the flags, otherwise it will cause WEIRD bugs in the handler LL_DMA_ClearFlag_HT(priv->DMAx, priv->dma_chnum); LL_DMA_ClearFlag_TC(priv->DMAx, priv->dma_chnum); LL_DMA_EnableIT_HT(priv->DMAx, priv->dma_chnum); LL_DMA_EnableIT_TC(priv->DMAx, priv->dma_chnum); } priv->opmode = new_mode; }