// // Created by MightyPork on 2018/02/20. // #include "platform.h" #define FCAP_INTERNAL #include "_fcap_internal.h" static void UFCAP_PWMBurstReportJob(Job *job) { Unit *unit = job->unit; struct priv * const priv = unit->data; uint8_t buf[20]; PayloadBuilder pb = pb_start(buf, 20, NULL); pb_u16(&pb, PLAT_AHB_MHZ); pb_u16(&pb, priv->pwm_burst.n_count); pb_u64(&pb, priv->pwm_burst.period_acu); pb_u64(&pb, priv->pwm_burst.ontime_acu); assert_param(pb.ok); com_respond_pb(priv->request_id, MSG_SUCCESS, &pb); // timer is already stopped, now in OPMODE_BUSY priv->opmode = OPMODE_IDLE; } void UFCAP_TimerHandler(void *arg) { Unit *unit = arg; assert_param(unit); struct priv * const priv = unit->data; assert_param(priv); TIM_TypeDef * const TIMx = priv->TIMx; if (priv->opmode == OPMODE_PWM_CONT) { if (LL_TIM_IsActiveFlag_CC1(TIMx)) { // assert_param(!LL_TIM_IsActiveFlag_CC1OVR(TIMx)); priv->pwm_cont.last_period = LL_TIM_IC_GetCaptureCH1(TIMx); priv->pwm_cont.last_ontime = priv->pwm_cont.ontime; LL_TIM_ClearFlag_CC1(TIMx); LL_TIM_ClearFlag_CC1OVR(TIMx); } if (LL_TIM_IsActiveFlag_CC2(TIMx)) { // assert_param(!LL_TIM_IsActiveFlag_CC2OVR(TIMx)); priv->pwm_cont.ontime = LL_TIM_IC_GetCaptureCH2(TIMx); LL_TIM_ClearFlag_CC2(TIMx); LL_TIM_ClearFlag_CC2OVR(TIMx); } } else if (priv->opmode == OPMODE_PWM_BURST) { if (LL_TIM_IsActiveFlag_CC1(TIMx)) { // assert_param(!LL_TIM_IsActiveFlag_CC1OVR(TIMx)); const uint32_t period = LL_TIM_IC_GetCaptureCH1(TIMx); const uint32_t ontime = priv->pwm_burst.ontime; if (priv->pwm_burst.n_skip > 0) { priv->pwm_burst.n_skip--; } else { priv->pwm_burst.ontime_acu += ontime; priv->pwm_burst.period_acu += period; if (++priv->pwm_burst.n_count == priv->pwm_burst.n_target) { priv->opmode = OPMODE_BUSY; UFCAP_StopMeasurement(unit); Job j = { .cb = UFCAP_PWMBurstReportJob, .unit = unit, }; scheduleJob(&j); } } LL_TIM_ClearFlag_CC1(TIMx); LL_TIM_ClearFlag_CC1OVR(TIMx); } if (LL_TIM_IsActiveFlag_CC2(TIMx)) { // assert_param(!LL_TIM_IsActiveFlag_CC2OVR(TIMx)); priv->pwm_burst.ontime = LL_TIM_IC_GetCaptureCH2(TIMx); LL_TIM_ClearFlag_CC2(TIMx); LL_TIM_ClearFlag_CC2OVR(TIMx); } } else if (priv->opmode == OPMODE_IDLE) { // clear everything - in idle it would cycle in the handler forever TIMx->SR = 0; } } static void UFCAP_ClearTimerConfig(Unit *unit) { struct priv * const priv = unit->data; TIM_TypeDef * const TIMx = priv->TIMx; // CLEAR CURRENT STATE, STOP UFCAP_StopMeasurement(unit); // CONFIGURE TIMER BASIC PARAMS LL_TIM_SetPrescaler(TIMx, 0); LL_TIM_SetAutoReload(TIMx, 0xFFFFFFFF); LL_TIM_EnableARRPreload(TIMx); LL_TIM_GenerateEvent_UPDATE(TIMx); } void UFCAP_StopMeasurement(Unit *unit) { struct priv * const priv = unit->data; TIM_TypeDef * const TIMx = priv->TIMx; LL_TIM_DisableCounter(TIMx); LL_TIM_DisableIT_CC1(TIMx); LL_TIM_DisableIT_CC2(TIMx); LL_TIM_ClearFlag_CC1(TIMx); LL_TIM_ClearFlag_CC2(TIMx); LL_TIM_ClearFlag_CC1OVR(TIMx); LL_TIM_ClearFlag_CC2OVR(TIMx); LL_TIM_SetCounter(TIMx, 0); } void UFCAP_SwitchMode(Unit *unit, enum fcap_opmode opmode) { struct priv * const priv = unit->data; if (opmode == priv->opmode) return; priv->opmode = opmode; switch (opmode) { case OPMODE_IDLE: // XXX maybe we should report the abort to the PC-side listener UFCAP_StopMeasurement(unit); break; case OPMODE_PWM_CONT: priv->pwm_cont.last_ontime = 0; priv->pwm_cont.last_period = 0; priv->pwm_cont.ontime = 0; UFCAP_ConfigureForPWMCapture(unit); // is also stopped and restarted break; case OPMODE_PWM_BURST: priv->pwm_burst.ontime = 0; priv->pwm_burst.n_count = 0; priv->pwm_burst.n_skip = 1; // discard the first cycle (will be incomplete) priv->pwm_burst.period_acu = 0; priv->pwm_burst.ontime_acu = 0; UFCAP_ConfigureForPWMCapture(unit); // is also stopped and restarted break; default: trap("Unhandled opmode %d", (int)opmode); } } void UFCAP_ConfigureForPWMCapture(Unit *unit) { struct priv * const priv = unit->data; TIM_TypeDef * const TIMx = priv->TIMx; const uint32_t ll_ch_a = priv->ll_ch_a; const uint32_t ll_ch_b = priv->ll_ch_b; UFCAP_ClearTimerConfig(unit); // Enable channels and select mapping to TIx signals // A - will be used to measure period // B - will be used to measure the duty cycle // _________ ______ // _______| |________________| // A B A // irq irq,cap irq // reset // B irq may be used if we want to measure a pulse width // Normally TI1 = CH1, TI2 = CH2. // It's possible to select the other channel, which we use to connect both TIx to the shame CHx. LL_TIM_IC_SetActiveInput(TIMx, ll_ch_a, priv->a_direct ? LL_TIM_ACTIVEINPUT_DIRECTTI : LL_TIM_ACTIVEINPUT_INDIRECTTI); LL_TIM_IC_SetActiveInput(TIMx, ll_ch_b, priv->a_direct ? LL_TIM_ACTIVEINPUT_INDIRECTTI : LL_TIM_ACTIVEINPUT_DIRECTTI); LL_TIM_CC_EnableChannel(TIMx, ll_ch_a | ll_ch_b); LL_TIM_IC_SetPolarity(TIMx, ll_ch_a, LL_TIM_IC_POLARITY_RISING); LL_TIM_IC_SetPolarity(TIMx, ll_ch_b, LL_TIM_IC_POLARITY_FALLING); LL_TIM_SetSlaveMode(TIMx, LL_TIM_SLAVEMODE_RESET); LL_TIM_SetTriggerInput(TIMx, LL_TIM_TS_TI1FP1); // Use Filtered Input 1 (TI1) LL_TIM_EnableMasterSlaveMode(TIMx); LL_TIM_EnableIT_CC1(TIMx); LL_TIM_EnableIT_CC2(TIMx); LL_TIM_EnableCounter(TIMx); }