ESPTerm - ESP8266 terminal emulator. Branches: [master] patches, [work] next release
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Jeroen Domburg 24e00aa7e1 Also generate memspecific ldscript for separate build 9 years ago
html Make the 'connecting'-screen a bit more friendly by eg telling the user the IP the ESP has connected to. 10 years ago
include Big-arse structure change: readying esphttpd for a split into a library and an usage example 10 years ago
libesphttpd@fc41eb64be Update libesphttpd 9 years ago
user Added flash upload function 9 years ago
.gitignore Separate ways to build the esphttpd demo app 9 years ago
.gitmodules Git module fix 10 years ago
Makefile Slight readme update; reset Makefile things to default for ESP-01 modules 9 years ago
Makefile.combined Different tld for captive portal (.local is for mdns), added options to make esptool.py also capable of flashing the stupid DIO-requiring NodeMCU version, fixed OTA Makefile 9 years ago
Makefile.ota Added flash upload function 9 years ago
Makefile.separate Also generate memspecific ldscript for separate build 9 years ago
README Slight readme update; reset Makefile things to default for ESP-01 modules 9 years ago
esphttpdconfig.mk Big-arse structure change: readying esphttpd for a split into a library and an usage example 10 years ago

README

esp-httpd README

This is the demonstration project for the small but powerful libesphttpd webserver
for ESP8266(EX) chips. It is an example of how to make a module that can have
the AP it connects to configured over a webbrowser. It also illustrates multiple
flash layouts and some OTA update functionality.

ABOUT THE WEBSERVER

The Good (aka: what's awesome)
- Supports multiple connections, for eg simultaneous html/css/js/images downloading
- Static files stored in flash, in an (optionally compressed) RO filesystem
- Pluggable using external cgi routines
- Simple template engine for mixed c and html things

The Bad (aka: what can be improved)
- Not built for speediness, although it's reasonable fast.
- Built according to what I remember of the HTTP protocol, not according to the
RFCs. Should work with most modern browsers, though.
- No support for https.

The Ugly (aka: bugs, misbehaviour)
- Possible buffer overflows (usually not remotely exploitable) due to no os_snprintf
This can be theoretically remedied by either Espressif including an os_snprintf in
their libs or by using some alternate printf lib, like elm-chans xprintf

SOURCE OF THIS CODE
The official esphttpd repo lives at http://git.spritesserver.nl/esphttpd.git/ and
http://git.spritesserver.nl/libesphttpd.git/ . If you're a fan of Github, you can also
peruse the official mirror at https://github.com/Spritetm/esphttpd and https://github.com/Spritetm/libesphttpd . If
you want to discuss this code, there is a subforum at esp8266.com: http://www.esp8266.com/viewforum.php?f=34 .


ABOUT THE EXAMPLE

When you flash the example into an ESP8266(EX) module, you get a small webserver with a few example
pages. If you've already connected your module to your WLAN before, it'll keep those settings. When
you haven't or the settings are wrong, keep GPIO0 for >5 seconds. The module will reboot into
its STA+AP mode. Connect a computer to the newly formed access point and browse to
http://192.168.4.1/wifi in order to connect the module to your WiFi network. The example also
allows you to control a LED that's connected to GPIO2.

BUILDING EVERYTHING

For this, you need an environment that can compile ESP8266 firmware. Environments for this still
are in flux at the moment, but I'm using esp-open-sdk: https://github.com/pfalcon/esp-open-sdk .
You probably also need an UNIX-like system; I'm working on Debian Linux myself.

To manage the paths to all this, you can source a small shell fragment into your current session. For
example, I source a file with these contents:
export PATH=${PWD}/esp-open-sdk/xtensa-lx106-elf/bin:$PATH
export SDK_BASE=${PWD}/esp-open-sdk/sdk
export ESPTOOL=${PWD}/esptool/esptool.py
export ESPPORT=/dev/ttyUSB0
export ESPBAUD=460800

Actual setup of the SDK and toolchain is out of the scope of this document, so I hope this helps you
enough to set up your own if you haven't already.

If you have that, you can clone out the source code:
git clone http://git.spritesserver.nl/esphttpd.git/

This project makes use of heatshrink, which is a git submodule. To fetch the code:
cd esphttpd
git submodule init
git submodule update

Now, build the code:
make

Flash the code happens in 2 steps. First the code itself gets flashed. Reset the module into bootloader
mode and enter 'make flash'.

The 2nd step is to pack the static files the webserver will serve and flash that. Reset the module into
bootloader mode again and enter 'make htmlflash'.

You should have a working webserver now.

WRITING CODE FOR THE WEBSERVER

...errm... to be done. For now, look at the examples. Hey, you probably managed to find out how
the SDK works, this shouldn't be too hard :P


CHANGE FROM SDK 0.9.3 (and earlier) TO SDK 0.9.4 (and later):
Change all occurences of
espconn_sent(connData->conn, (uint8 *)buff, len);
to
httpdSend(connData, buff, len)
please. The reason for this is that you can't do multiple espconn_sent calls serially anymore, so
httpd needs to buffer the writes now. This is only needed in your own code; the code that comes
with httpd already has this changed.