
Quick Reference

Communication UART (Rx, Tx) can be configured in the System Settings.

Boot log and debug messages are available on pin GPIO2 (P2) at 115200 baud, 1 stop
bit, no parity. Those messages may be disabled through compile flags.

Loopback test: Connect the Rx and Tx pins with a piece of wire. Anything you type in the
browser should appear on the screen. Set Parser Timeout = 0 in Terminal Settings to be
able to manually enter escape sequences.

There is very little RAM available to the webserver, and it can support at most 4
connections at the same time. Each terminal session (open window with the terminal
screen) uses one persistent connection for screen updates. Avoid leaving unused
windows open, or either the RAM or connections may be exhausted.

For best performance, use the module in Client mode (connected to external network)
and minimize the number of simultaneous connections. Enabling AP consumes extra RAM
because the DHCP server and Captive Portal DNS server are started.

In AP mode, check that the WiFi channel used is clear; interference may cause flaky
connection. A good mobile app to use for this is WiFi Analyzer (Google Play). Adjust the
hotspot strength and range using the Tx Power setting.

Hold the BOOT button (GPIO0 to GND) for ~1 second to force enable AP. Hold it for ~6
seconds to restore default settings. (This is indicated by the blue LED rapidly flashing).
Default settings can be overwritten in the System Settings.

ESPTerm emulates VT102 (pictured) with some additions
from later VT models and Xterm. All commonly used
attributes and commands are supported. ESPTerm is
capable of displaying ncurses applications such as
Midnight Commander using agetty.

ESPTerm accepts UTF-8 characters received on the
communication UART and displays them on the screen,
interpreting some codes as Control Characters. Those
are e.g. Carriage Return (13), Line Feed (10), Tab (9),
Backspace (8) and Bell (7).

Escape sequences start with the control character ESC
(27), followed by any number of ASCII characters forming the body of the command.

Nomenclature & Command Types

Examples on this help page use the following symbols for special characters and command
types:

Tips & Troubleshooting

Basic Intro & Nomenclature

https://espterm.github.io/cfg_system.html
https://espterm.github.io/cfg_term.html
https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer
https://espterm.github.io/cfg_system.html

(spaces are for clarity only, DO NOT include them in the commands!)

Name Symbol ASCII C string Function

ESC \e ESC (27)
"\e" , "\x1b" ,
"\033"

Introduces an escape
sequence. (Note: \e is a GCC
extension)

Bell \a BEL (7) "\a" , "\x7" ,
"\07"

Audible beep

String
Terminator ST

ESC \ (27 92)
or \a (7)

"\x1b\\" ,
"\a"

Terminates a string command
(\a can be used as an
alternative)

Control
Sequence
Introducer

CSI ESC ["\x1b["

Starts a CSI command.
Examples: \e[?7;10h ,
\e[2J

Operating
System
Command

OSC ESC] "\x1b]"

Starts an OSC command. Is
followed by a command string
terminated by ST . Example:
\e]0;My Screen Title\a

Select
Graphic
Rendition

SGR CSI n;n;nm "\x1b[1;2;3m"

Set text attributes, like color or
style. 0 to 10 numbers can be
used, \e[m is treated as
\e[0m

There are also some other commands that don't follow the CSI, SGR or OSC pattern, such as
\e7 or \e#8 . A list of the most important escape sequences is presented in the following
sections.

The initial screen size, title text and button labels can be configured in Terminal Settings.

Screen updates are sent to the browser through a WebSocket after some time of inactivity on
the communication UART (called "Redraw Delay"). After an update is sent, at least a time of
"Redraw Cooldown" must elapse before the next update can be sent. Those delays are used is
to avoid burdening the server with tiny updates during a large screen repaint. If you experience
issues (broken image due to dropped bytes), try adjusting those config options. It may also be
useful to try different baud rates.

Keyboard

Screen Behavior & Refreshing

User Input: Keyboard, Mouse

https://espterm.github.io/cfg_term.html

The user can input text using their keyboard, or on Android, using the on-screen keyboard which
is open using a button beneath the screen. Supported are all printable characters, as well as
many control keys, such as arrows, Ctrl+letters and function keys. Sequences sent by function
keys are based on VT102 and Xterm.

The codes sent by Home, End, F1-F4 and cursor keys are affected by various keyboard modes
(Application Cursor Keys, Application Numpad Mode, SS3 Fn Keys Mode). Some can be set in
the Terminal Settings, others via commands.

Here are some examples of control key codes:

Key Code Key Code

Up \e[A , \eOA F1 \eOP , \e[11~

Down \e[B , \eOB F2 \eOQ , \e[12~

Right \e[C , \eOC F3 \eOR , \e[13~

Left \e[D , \eOD F4 \eOS , \e[14~

Home \eOH , \e[H , \e[1~ F5 \e[15

End \eOF , \e[F , \e[4~ F6 \e[17~

Insert \e[2~ F7 \e[18~

Delete \e[3~ F8 \e[19~

Page Up \e[5~ F9 \e[20~

Page Down \e[6~ F10 \e[21~

Enter \r (13) F11 \e[23~

Ctrl+Enter \n (10) F12 \e[24~

Tab \t (9) ESC \e (27)

Backspace \b (8) Ctrl+A..Z ASCII 1-26

Action buttons

The blue buttons under the screen send ASCII codes 1, 2, 3, 4, 5, which incidentally correspond
to Ctrl+A,B,C,D,E. This choice was made to make button press parsing as simple as possible.

Mouse

ESPTerm implements standard mouse tracking modes based on Xterm. Mouse tracking can be
used to implement powerful user interactions such as on-screen buttons, draggable sliders or
dials, menus etc. ESPTerm's mouse tracking was tested using VTTest and should be compatible
with all terminal applications that request mouse tracking.

Mouse can be tracked in different ways; some are easier to parse, others more powerful. The
coordinates can also be encoded in different ways. All mouse tracking options are set using

https://espterm.github.io/cfg_term.html

option commands: CSI ? n h to enable, CSI ? n l to disable option n.

Mouse Tracking Modes

All tracking modes produce three numbers which are then encoded and send to the application.
First is the event number N, then the X and Y coordinates, 1-based.

Mouse buttons are numbered: 1=left, 2=middle, 3=right. Wheel works as two buttons (4 and 5)
which generate only press events (no release).

Option Name Description

9 X10 mode
This is the most basic tracking mode, in which only button
presses are reported. N = button - 1: (0 left, 1 middle, 2 right, 3, 4
wheel).

1000 Normal mode

In Normal mode, both button presses and releases are reported.
The lower two bits of N indicate the button pressed: 00b (0) left,
01b (1) middle, 10b (2) right, 11b (3) button release. Wheel
buttons are reported as 0 and 1 with added 64 (e.g. 64 and 65).
Normal mode also supports tracking of modifier keys, which are
added to N as bit masks: 4=Shift, 8=Meta/Alt, 16=Control/Cmd.
Example: middle button with Shift = 1 + 4 = 101b (5).

1002
Button-Event
tracking

This is similar to Normal mode (1000), but mouse motion with a
button held is also reported. A motion event is generated when the
mouse cursor moves between screen character cells. A motion
event has the same N as a press event, but 32 is added. For
example, drag-drop event with the middle button will produce N = 1
(press), 33 (dragging) and 3 (release).

1003
Any-Event
tracking

This mode is almost identical to Button Event tracking (1002), but
motion events are sent even when no mouse buttons are held. This
could be used to draw on-screen mouse cursor, for example.
Motion events with no buttons will use N = 32 + 11b (35).

1004 Focus tracking

Focus tracking is a separate function from the other mouse tracking
modes, therefore they can be enabled together. Focus tracking
reports when the terminal window (in Xterm) gets or loses focus, or
in ESPTerm's case, when any user is connected. This can be used
to pause/resume a game or on-screen animations. Focus tracking
mode sends CSI I when the terminal receives, and CSI O when
it loses focus.

Mouse Report Encoding

The following encoding schemes can be used with any of the tracking modes (except Focus
tracking, which is not affected).

Option Name Description

Option Name Description

-- Normal encoding

This is the default encoding scheme used when no other option
is selected. In this mode, a mouse report has the format
CSI M n x y , where n, x and y are characters with ASCII
value = 32 (space) + the respective number, e.g. 0 becomes 32
(space), 1 becomes 33 (!). The reason for adding 32 is to avoid
producing control characters. Example: \e[M !! - left button
press at coordinates 1,1 when using X10 mode.

1005 UTF-8 encoding

This scheme should encode each of the numbers as a UTF-8
code point, expanding the maximum possible value. Since
ESPTerm's screen size is limited and this has no practical
benefit, this serves simply as an alias to the normal scheme.

1006 SGR encoding

In SGR encoding, the response looks like a SGR sequence with
the three numbers as semicolon-separated ASCII values. In this
case 32 is not added like in the Normal and UTF-8 schemes,
because it would serve nor purpose here. Also, button release is
not reported as 11b, but using the normal button code while
changing the final SGR character: M for button press and m for
button release. Example: \e[2;80;24m - the right button was
released at row 80, column 24.

1015 URXVT encoding

This is similar to SGR encoding, but the final character is always
M and the numbers are like in the Normal scheme, with 32
added. This scheme has no real advantage over the previous
schemes and was added solely for completeness.

ESPTerm implements Alternate Character Sets as a way to print box drawing characters and
special symbols. A character set can change what each received ASCII character is printed as
on the screen (eg. "{" is "π" in codepage 0). The implementation is based on the original VT
devices.

Since ESPTerm also supports UTF-8, this feature is the most useful for applications which can't
print UTF-8 or already use alternate character sets for historical reasons.

Supported codepages

B - US ASCII (default)

A - UK ASCII: # replaced with £

0 - Symbols and basic line drawing (standard DEC alternate character set)

1 - Symbols and advanced line drawing (based on DOS codepage 437, ESPTerm specific)

All codepages use codes 32-127, 32 being space. A character with no entry in the active
codepage stays unchanged.

Alternate Character Sets

Codepage A

Codepage 0

Codepage 1

Switching commands

There are two character set slots, G0 and G1. Those slots are selected as active using ASCII
codes Shift In and Shift Out (those originally served for shifting a red-black typewriter tape).
Often only G0 is used for simplicity.

Each slot (G0 and G1) can have a different codepage assigned. G0 and G1 and the active slot
number are saved and restored with the cursor and cleared with a screen reset (\ec).

The following commands are used:

Code Meaning

35 #

₤

96 `

♦

97 a

▒

98 b

␉

99 c

␌

100 d

␍

101 e

␊

102 f

°

103 g

±

104 h

␤

105 i

␋

106 j

┘

107 k

┐

108 l

┌

109m

└

110 n

┼

111 o

⎺

112 p

⎻

113 q

─

114 r

⎼

115 s

⎽

116 t

├

117 u

┤

118 v

┴

119 w

┬

120 x

│

121 y

≤

122 z

≥

123 {

π

124 |

≠

125 }

₤

126 ~

·

33 !

☺

34 "

☻

35 #

♥

36 $

♦

37 %

♣

38 &

♠

39 '

•

40 (

⌛

41)

○

42 *

↯

43 +

♪

44 ,

♫

45 -

☼

46 .

⌂

47 /

☢

48 0

░

49 1

▒

50 2

▓

51 3

│

52 4

┤

53 5

╡

54 6

╢

55 7

╖

56 8

╕

57 9

╣

58 :

║

59 ;

╗

60 <

╝

61 =

╜

62 >

╛

63 ?

┐

64 @

└

65 A

┴

66 B

┬

67 C

├

68 D

─

69 E

┼

70 F

╞

71 G

╟

72 H

╚

73 I

╔

74 J

╩

75 K

╦

76 L

╠

77 M

═

78 N

╬

79 O

╧

80 P

╨

81 Q

╤

82 R

╥

83 S

╙

84 T

╘

85 U

╒

86 V

╓

87 W

╫

88 X

╪

89 Y

┘

90 Z

┌

91 [

█

92 \

▄

93]

▌

94 ^

▐

95 _

▀

96 `

↕

97 a

↑

98 b

↓

99 c

→

100 d

←

101 e

↔

102 f

▲

103 g

▼

104 h

►

105 i

◄

106 j

◢

107 k

◣

108 l

◤

109m

◥

110 n

╭

111 o

╮

112 p

╯

113 q

╰

114 r

r

115 s

s

116 t

t

117 u

u

118 v

v

119 w

w

120 x

x

121 y

y

122 z

z

123 {

{

124 |

|

125 }

✔

126 ~

✘

Code Meaning

\e(x Set G0 = codepage x

\e)x Set G1 = codepage x

SO (14) Activate G0

SI (15) Activate G1

All text attributes are set using SGR commands like \e[10;20;30m , with up to 10 numbers
separated by semicolons. To restore all attributes to their default states, use SGR 0: \e[0m or
\e[m .

Those are the supported text attributes SGR codes:

Style Enable Disable

Bold 1 21, 22

2 22

Italic 3 23

Underlined 4 24

Blink 5 25

Inverse 7 27

Striked 9 29

𝔉𝔯𝔞𝔨𝔱𝔲𝔯 20 23

Colors are set using SGR commands (like \e[10;20;30m). The following tables list the SGR
codes to use. Selected colors are used for any new text entered, as well as for empty space
when using line and screen clearing commands. The configured default colors can be restored
using SGR 39 for foreground and SGR 49 for background.

The actual color representation depends on a color theme which can be selected in Terminal
Settings.

Foreground colors

30 31 32 33 34 35 36 37

90 91 92 93 94 95 96 97

Commands: Style SGR

Faint

Commands: Color SGR

https://espterm.github.io/cfg_term.html

Background colors

40 41 42 43 44 45 46 47

100 101 102 103 104 105 106 107

The coordinates are 1-based, origin is top left. The cursor can move within the entire screen, or
in the active Scrolling Region if Origin Mode is enabled.

After writing a character, the cursor advances to the right. If it has reached the end of the row, it
stays on the same line, but writing the next character makes it jump to the start of the next line
first, scrolling up if needed. If Auto-wrap mode is disabled, the cursor never wraps or scrolls the
screen.

Legend: Italic letters such as n are ASCII numbers that serve as arguments, separated with a
semicolon. If an argument is left out, it's treated as 0 or 1, depending on what makes sense for
the command.

Movement

Code Meaning

\e[nA

\e[nB

\e[nC

\e[nD

Move cursor up (A), down (B), right (C), left (D)

\e[nF

\e[nE
Go n lines up (F) or down (E), start of line

\e[rd

\e[cG

\e[r;cH

Go to absolute position - row (d), column (G), or both (H). Use \e[H to go
to 1,1.

\e[6n Query cursor position. Sent back as \e[r;cR .

Save / restore

Code Meaning

\e[s

\e[u
Save (s) or restore (u) cursor position

\e7

\e8
Save (7) or restore (8) cursor position and attributes

Scrolling Region

Commands: Cursor Functions

Code Meaning

\e[a;br

Set scrolling region to rows a through b and go to 1,1. By default, the
scrolling region spans the entire screen height. The cursor can leave the
region using absolute position commands, unless Origin Mode (see below)
is active.

\e[?6h

\e[?6l

Enable (h) or disable (l) Origin Mode and go to 1,1. In Origin Mode, all
coordinates are relative to the Scrolling Region and the cursor can't leave
the region.

\e[nS

\e[nT

Move contents of the Scrolling Region up (S) or down (T), pad with empty
lines of the current background color. This is similar to what happens when
AutoWrap is enabled and some text is printed at the very end of the screen.

Tab stops

Code Meaning

\eH
Set tab stop at the current column. There are, by default, tabs every 8
columns.

\e[nI

\e[nZ

Advance (I) or go back (Z) n tab stops or end/start of line. ASCII TAB (9) is
equivalent to \e[1I

\e[0g

\e[3g
Clear tab stop at the current column (0), or all columns (3).

Other options

Code Meaning

\e[?7h

\e[?7l
Enable (h) or disable (l) cursor auto-wrap and screen auto-scroll

\e[?25h

\e[?25l
Show (h) or hide (l) the cursor

Legend: Italic letters such as n are ASCII numbers that serve as arguments, separated with a
semicolon. If an argument is left out, it's treated as 0 or 1, depending on what makes sense for
the command.

Code Meaning

\e[mJ Clear part of screen. m: 0 - from cursor, 1 - to cursor, 2 - all

\e[mK Erase part of line. m: 0 - from cursor, 1 - to cursor, 2 - all

\e[nX Erase n characters in line.

Commands: Screen Functions

Code Meaning

\e[nL

\e[nM

Insert (L) or delete (M) n lines. Following lines are pulled up or pushed
down.

\e[n@

\e[nP

Insert (@) or delete (P) n characters. The rest of the line is pulled left or
pushed right. Characters going past the end of line are lost.

It's possible to dynamically change the screen title text and action button labels. Setting an
empty label to a button makes it look disabled. The buttons send ASCII 1-5 when clicked. Those
changes are not retained after restart.

Code Meaning

\ec
Clear screen, reset attributes and cursor. The screen size, title and button
labels remain unchanged.

\e[5n

Query device status, ESPTerm replies with \e[0n "device is OK". Can be
used to check if the terminal has booted up and is ready to receive
commands.

CAN (24)

This ASCII code is not a command, but is sent by ESPTerm when it
becomes ready to receive commands. When this code is received on the
UART, it means ESPTerm has restarted and is ready. Use this to detect
spontaneous restarts which require a full screen repaint.

\e]0;t\a Set screen title to t (this is a standard OSC command)

\e]80+n;t\a
Set label for button n = 1-5 (code 81-85) to t - e.g.\e]81;Yes\a sets the
first button text to "Yes".

\e]90+n;m\a
Set message for button n = 1-5 (code 81-85) to m - e.g.\e]94;iv\a sets
the 3rd button to send string "iv" when pressed.

\e[?800h

\e[?800l
Show (h) or hide (l) action buttons (the blue buttons under the screen).

\e[?801h

\e[?801l
Show (h) or hide (l) menu/help links under the screen.

\e[12h

\e[12l

Enable (h) or disable (l) Send-Receive Mode (SRM). SRM is the opposite
of Local Echo, meaning \e[12h disables and \e[12l enables Local Echo.

\e[8;r;ct
Set screen size to r rows and c columns (this is a command borrowed from
Xterm)

Commands: System Functions

