/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
* Description: Floating-point complex conjugate
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_conj Complex Conjugate
*
* Conjugates the elements of a complex data vector.
*
* The pSrc
points to the source data and
* pDst
points to the where the result should be written.
* numSamples
specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of 2*numSamples
values.
* The underlying algorithm is used:
*
*
* for(n=0; n* * There are separate functions for floating-point, Q15, and Q31 data types. */ /** * @addtogroup cmplx_conj * @{ */ /** * @brief Floating-point complex conjugate. * @param *pSrc points to the input vector * @param *pDst points to the output vector * @param numSamples number of complex samples in each vector * @return none. */ void arm_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* loop counter */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t inR1, inR2, inR3, inR4; float32_t inI1, inI2, inI3, inI4; /*loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ /* read real input samples */ inR1 = pSrc[0]; /* store real samples to destination */ pDst[0] = inR1; inR2 = pSrc[2]; pDst[2] = inR2; inR3 = pSrc[4]; pDst[4] = inR3; inR4 = pSrc[6]; pDst[6] = inR4; /* read imaginary input samples */ inI1 = pSrc[1]; inI2 = pSrc[3]; /* conjugate input */ inI1 = -inI1; /* read imaginary input samples */ inI3 = pSrc[5]; /* conjugate input */ inI2 = -inI2; /* read imaginary input samples */ inI4 = pSrc[7]; /* conjugate input */ inI3 = -inI3; /* store imaginary samples to destination */ pDst[1] = inI1; pDst[3] = inI2; /* conjugate input */ inI4 = -inI4; /* store imaginary samples to destination */ pDst[5] = inI3; /* increment source pointer by 8 to process next sampels */ pSrc += 8U; /* store imaginary sample to destination */ pDst[7] = inI4; /* increment destination pointer by 8 to store next samples */ pDst += 8U; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; #else /* Run the below code for Cortex-M0 */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0U) { /* realOut + j (imagOut) = realIn + j (-1) imagIn */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; *pDst++ = -*pSrc++; /* Decrement the loop counter */ blkCnt--; } } /** * @} end of cmplx_conj group */