/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mult_f32.c * Description: Floating-point vector multiplication * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @defgroup BasicMult Vector Multiplication * * Element-by-element multiplication of two vectors. * *
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize. ** * There are separate functions for floating-point, Q7, Q15, and Q31 data types. */ /** * @addtogroup BasicMult * @{ */ /** * @brief Floating-point vector multiplication. * @param[in] *pSrcA points to the first input vector * @param[in] *pSrcB points to the second input vector * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in each vector * @return none. */ void arm_mult_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counters */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t inA1, inA2, inA3, inA4; /* temporary input variables */ float32_t inB1, inB2, inB3, inB4; /* temporary input variables */ float32_t out1, out2, out3, out4; /* temporary output variables */ /* loop Unrolling */ blkCnt = blockSize >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C = A * B */ /* Multiply the inputs and store the results in output buffer */ /* read sample from sourceA */ inA1 = *pSrcA; /* read sample from sourceB */ inB1 = *pSrcB; /* read sample from sourceA */ inA2 = *(pSrcA + 1); /* read sample from sourceB */ inB2 = *(pSrcB + 1); /* out = sourceA * sourceB */ out1 = inA1 * inB1; /* read sample from sourceA */ inA3 = *(pSrcA + 2); /* read sample from sourceB */ inB3 = *(pSrcB + 2); /* out = sourceA * sourceB */ out2 = inA2 * inB2; /* read sample from sourceA */ inA4 = *(pSrcA + 3); /* store result to destination buffer */ *pDst = out1; /* read sample from sourceB */ inB4 = *(pSrcB + 3); /* out = sourceA * sourceB */ out3 = inA3 * inB3; /* store result to destination buffer */ *(pDst + 1) = out2; /* out = sourceA * sourceB */ out4 = inA4 * inB4; /* store result to destination buffer */ *(pDst + 2) = out3; /* store result to destination buffer */ *(pDst + 3) = out4; /* update pointers to process next samples */ pSrcA += 4U; pSrcB += 4U; pDst += 4U; /* Decrement the blockSize loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0U) { /* C = A * B */ /* Multiply the inputs and store the results in output buffer */ *pDst++ = (*pSrcA++) * (*pSrcB++); /* Decrement the blockSize loop counter */ blkCnt--; } } /** * @} end of BasicMult group */