You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
449 lines
13 KiB
449 lines
13 KiB
2 years ago
|
/*
|
||
|
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS NN Library
|
||
|
* Title: arm_pool_q7_HWC.c
|
||
|
* Description: Pooling function implementations
|
||
|
*
|
||
|
* $Date: 17. January 2018
|
||
|
* $Revision: V.1.0.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M cores
|
||
|
*
|
||
|
* -------------------------------------------------------------------- */
|
||
|
|
||
|
#include "arm_math.h"
|
||
|
#include "arm_nnfunctions.h"
|
||
|
|
||
|
#if defined (ARM_MATH_DSP)
|
||
|
|
||
|
/**
|
||
|
* @brief A few utility functions used by pooling functions
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
static void buffer_scale_back_q15_to_q7(q15_t * buffer, q7_t * target, uint16_t length, uint16_t scale)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < length; i++)
|
||
|
{
|
||
|
target[i] = (q7_t) (buffer[i] / scale);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void compare_and_replace_if_larger_q7(q7_t * base, // base data
|
||
|
q7_t * target, // compare target
|
||
|
const uint16_t length // data length
|
||
|
)
|
||
|
{
|
||
|
q7_t *pIn = base;
|
||
|
q7_t *pCom = target;
|
||
|
union arm_nnword in;
|
||
|
union arm_nnword com;
|
||
|
uint16_t cnt = length >> 2;
|
||
|
|
||
|
while (cnt > 0u)
|
||
|
{
|
||
|
in.word = *__SIMD32(pIn);
|
||
|
com.word = *__SIMD32(pCom)++;
|
||
|
|
||
|
// if version
|
||
|
if (com.bytes[0] > in.bytes[0])
|
||
|
in.bytes[0] = com.bytes[0];
|
||
|
if (com.bytes[1] > in.bytes[1])
|
||
|
in.bytes[1] = com.bytes[1];
|
||
|
if (com.bytes[2] > in.bytes[2])
|
||
|
in.bytes[2] = com.bytes[2];
|
||
|
if (com.bytes[3] > in.bytes[3])
|
||
|
in.bytes[3] = com.bytes[3];
|
||
|
|
||
|
*__SIMD32(pIn)++ = in.word;
|
||
|
|
||
|
cnt--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void accumulate_q7_to_q15(q15_t * base, q7_t * target, const uint16_t length)
|
||
|
{
|
||
|
q15_t *pCnt = base;
|
||
|
q7_t *pV = target;
|
||
|
q31_t v1, v2, vo1, vo2;
|
||
|
uint16_t cnt = length >> 2;
|
||
|
q31_t in;
|
||
|
|
||
|
while (cnt > 0u)
|
||
|
{
|
||
|
q31_t value = *__SIMD32(pV)++;
|
||
|
v1 = __SXTB16(__ROR(value, 8));
|
||
|
v2 = __SXTB16(value);
|
||
|
#ifndef ARM_MATH_BIG_ENDIAN
|
||
|
|
||
|
vo2 = __PKHTB(v1, v2, 16);
|
||
|
vo1 = __PKHBT(v2, v1, 16);
|
||
|
|
||
|
#else
|
||
|
|
||
|
vo1 = __PKHTB(v1, v2, 16);
|
||
|
vo2 = __PKHBT(v2, v1, 16);
|
||
|
|
||
|
#endif
|
||
|
|
||
|
in = *__SIMD32(pCnt);
|
||
|
*__SIMD32(pCnt)++ = __QADD16(vo1, in);
|
||
|
|
||
|
in = *__SIMD32(pCnt);
|
||
|
*__SIMD32(pCnt)++ = __QADD16(vo2, in);
|
||
|
|
||
|
cnt--;
|
||
|
}
|
||
|
cnt = length & 0x3;
|
||
|
while (cnt > 0u)
|
||
|
{
|
||
|
*pCnt++ += *pV++;
|
||
|
cnt--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // ARM_MATH_DSP
|
||
|
|
||
|
/**
|
||
|
* @ingroup groupNN
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @addtogroup Pooling
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 max pooling function
|
||
|
* @param[in, out] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimention
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @return none.
|
||
|
*
|
||
|
* @details
|
||
|
*
|
||
|
* <b>Buffer size:</b>
|
||
|
*
|
||
|
* bufferA size: 0
|
||
|
*
|
||
|
* The pooling function is implemented as split x-pooling then
|
||
|
* y-pooling.
|
||
|
*
|
||
|
* This pooling function is input-destructive. Input data is undefined
|
||
|
* after calling this function.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
arm_maxpool_q7_HWC(q7_t * Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
|
||
|
{
|
||
|
|
||
|
#if defined (ARM_MATH_DSP)
|
||
|
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||
|
|
||
|
int16_t i_x, i_y;
|
||
|
|
||
|
/* first does the pooling along x axis */
|
||
|
for (i_y = 0; i_y < dim_im_in; i_y++)
|
||
|
{
|
||
|
|
||
|
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||
|
{
|
||
|
/* for each output pixel */
|
||
|
q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
|
||
|
q7_t *win_start;
|
||
|
q7_t *win_stop;
|
||
|
if (i_x * stride - padding < 0)
|
||
|
{
|
||
|
win_start = target;
|
||
|
} else
|
||
|
{
|
||
|
win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
|
||
|
}
|
||
|
|
||
|
if (i_x * stride - padding + dim_kernel >= dim_im_in)
|
||
|
{
|
||
|
win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
|
||
|
} else
|
||
|
{
|
||
|
win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
|
||
|
}
|
||
|
|
||
|
/* first step is to copy over initial data */
|
||
|
/* arm_copy_q7(win_start, target, ch_im_in); */
|
||
|
memmove(target, win_start, ch_im_in);
|
||
|
|
||
|
/* start the max operation from the second part */
|
||
|
win_start += ch_im_in;
|
||
|
for (; win_start < win_stop; win_start += ch_im_in)
|
||
|
{
|
||
|
compare_and_replace_if_larger_q7(target, win_start, ch_im_in);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* then does the pooling along y axis */
|
||
|
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||
|
{
|
||
|
|
||
|
/* for each output row */
|
||
|
q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
|
||
|
q7_t *row_start;
|
||
|
q7_t *row_end;
|
||
|
/* setting the starting row */
|
||
|
if (i_y * stride - padding < 0)
|
||
|
{
|
||
|
row_start = Im_in;
|
||
|
} else
|
||
|
{
|
||
|
row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
|
||
|
}
|
||
|
/* setting the stopping row */
|
||
|
if (i_y * stride - padding + dim_kernel >= dim_im_in)
|
||
|
{
|
||
|
row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
|
||
|
} else
|
||
|
{
|
||
|
row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
|
||
|
}
|
||
|
|
||
|
/* copy over the first row */
|
||
|
/* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */
|
||
|
memmove(target, row_start, dim_im_out * ch_im_in);
|
||
|
|
||
|
/* move over to next row */
|
||
|
row_start += ch_im_in * dim_im_in;
|
||
|
|
||
|
for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
|
||
|
{
|
||
|
compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||
|
|
||
|
int16_t i_ch_in, i_x, i_y;
|
||
|
int16_t k_x, k_y;
|
||
|
|
||
|
for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
|
||
|
{
|
||
|
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||
|
{
|
||
|
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||
|
{
|
||
|
int max = -129;
|
||
|
for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
|
||
|
{
|
||
|
for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
|
||
|
{
|
||
|
if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
|
||
|
{
|
||
|
if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max)
|
||
|
{
|
||
|
max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* ARM_MATH_DSP */
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 average pooling function
|
||
|
* @param[in,out] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimention
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @return none.
|
||
|
*
|
||
|
* @details
|
||
|
*
|
||
|
* <b>Buffer size:</b>
|
||
|
*
|
||
|
* bufferA size: 2*dim_im_out*ch_im_in
|
||
|
*
|
||
|
* The pooling function is implemented as split x-pooling then
|
||
|
* y-pooling.
|
||
|
*
|
||
|
* This pooling function is input-destructive. Input data is undefined
|
||
|
* after calling this function.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
arm_avepool_q7_HWC(q7_t * Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
|
||
|
{
|
||
|
|
||
|
#if defined (ARM_MATH_DSP)
|
||
|
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||
|
|
||
|
q15_t *buffer = (q15_t *) bufferA;
|
||
|
int16_t i_x, i_y;
|
||
|
int16_t count = 0;
|
||
|
|
||
|
/* first does the pooling along x axis */
|
||
|
for (i_y = 0; i_y < dim_im_in; i_y++)
|
||
|
{
|
||
|
|
||
|
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||
|
{
|
||
|
/* for each output pixel */
|
||
|
q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
|
||
|
q7_t *win_start;
|
||
|
q7_t *win_stop;
|
||
|
if (i_x * stride - padding < 0)
|
||
|
{
|
||
|
win_start = target;
|
||
|
} else
|
||
|
{
|
||
|
win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
|
||
|
}
|
||
|
|
||
|
if (i_x * stride - padding + dim_kernel >= dim_im_in)
|
||
|
{
|
||
|
win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
|
||
|
} else
|
||
|
{
|
||
|
win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
|
||
|
}
|
||
|
|
||
|
/* first step is to copy over initial data */
|
||
|
arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in);
|
||
|
count = 1;
|
||
|
|
||
|
/* start the max operation from the second part */
|
||
|
win_start += ch_im_in;
|
||
|
for (; win_start < win_stop; win_start += ch_im_in)
|
||
|
{
|
||
|
accumulate_q7_to_q15(buffer, win_start, ch_im_in);
|
||
|
count++;
|
||
|
}
|
||
|
buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* then does the pooling along y axis */
|
||
|
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||
|
{
|
||
|
/* for each output row */
|
||
|
q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
|
||
|
q7_t *row_start;
|
||
|
q7_t *row_end;
|
||
|
/* setting the starting row */
|
||
|
if (i_y * stride - padding < 0)
|
||
|
{
|
||
|
row_start = Im_in;
|
||
|
} else
|
||
|
{
|
||
|
row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
|
||
|
}
|
||
|
/* setting the stopping row */
|
||
|
if (i_y * stride - padding + dim_kernel >= dim_im_in)
|
||
|
{
|
||
|
row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
|
||
|
} else
|
||
|
{
|
||
|
row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
|
||
|
}
|
||
|
|
||
|
/* copy over the first row */
|
||
|
arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in);
|
||
|
count = 1;
|
||
|
|
||
|
/* move over to next row */
|
||
|
row_start += ch_im_in * dim_im_in;
|
||
|
|
||
|
for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
|
||
|
{
|
||
|
accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in);
|
||
|
count++;
|
||
|
}
|
||
|
buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||
|
|
||
|
int16_t i_ch_in, i_x, i_y;
|
||
|
int16_t k_x, k_y;
|
||
|
|
||
|
for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
|
||
|
{
|
||
|
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||
|
{
|
||
|
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||
|
{
|
||
|
int sum = 0;
|
||
|
int count = 0;
|
||
|
for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
|
||
|
{
|
||
|
for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
|
||
|
{
|
||
|
if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
|
||
|
{
|
||
|
sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* ARM_MATH_DSP */
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @} end of Pooling group
|
||
|
*/
|