/** ****************************************************************************** * @file stm8s_i2c.h * @author MCD Application Team * @version V2.2.0 * @date 30-September-2014 * @brief This file contains all functions prototype and macros for the I2C peripheral. ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM8S_I2C_H #define __STM8S_I2C_H /* Includes ------------------------------------------------------------------*/ #include "stm8s.h" /* Exported types ------------------------------------------------------------*/ /** @addtogroup I2C_Exported_Types * @{ */ /** * @brief I2C duty cycle (fast mode only) */ typedef enum { I2C_DUTYCYCLE_2 = (uint8_t) 0x00, /*!< Fast mode Tlow/THigh = 2 */ I2C_DUTYCYCLE_16_9 = (uint8_t) 0x40 /*!< Fast mode Tlow/Thigh = 16/9 */ } I2C_DutyCycle_TypeDef; /** * @brief I2C Acknowledgement configuration */ typedef enum { I2C_ACK_NONE = (uint8_t) 0x00, /*!< No acknowledge */ I2C_ACK_CURR = (uint8_t) 0x01, /*!< Acknowledge on the current byte */ I2C_ACK_NEXT = (uint8_t) 0x02 /*!< Acknowledge on the next byte */ } I2C_Ack_TypeDef; /** * @brief I2C Addressing Mode (slave mode only) */ typedef enum { I2C_ADDMODE_7BIT = (uint8_t) 0x00, /*!< 7-bit slave address (10-bit address not acknowledged) */ I2C_ADDMODE_10BIT = (uint8_t) 0x80 /*!< 10-bit slave address (7-bit address not acknowledged) */ } I2C_AddMode_TypeDef; /** * @brief I2C Interrupt sources * Warning: the values correspond to the bit position in the ITR register */ typedef enum { I2C_IT_ERR = (uint8_t) 0x01, /*!< Error Interruption */ I2C_IT_EVT = (uint8_t) 0x02, /*!< Event Interruption */ I2C_IT_BUF = (uint8_t) 0x04 /*!< Buffer Interruption */ } I2C_IT_TypeDef; /** * @brief I2C transfer direction * Warning: the values correspond to the ADD0 bit position in the OARL register */ typedef enum { I2C_DIRECTION_TX = (uint8_t) 0x00, /*!< Transmission direction */ I2C_DIRECTION_RX = (uint8_t) 0x01 /*!< Reception direction */ } I2C_Direction_TypeDef; /** * @brief I2C Flags * @brief Elements values convention: 0xXXYY * X = SRx registers index * X = 1 : SR1 * X = 2 : SR2 * X = 3 : SR3 * Y = Flag mask in the register */ typedef enum { /* SR1 register flags */ I2C_FLAG_TXEMPTY = (uint16_t) 0x0180, /*!< Transmit Data Register Empty flag */ I2C_FLAG_RXNOTEMPTY = (uint16_t) 0x0140, /*!< Read Data Register Not Empty flag */ I2C_FLAG_STOPDETECTION = (uint16_t) 0x0110, /*!< Stop detected flag */ I2C_FLAG_HEADERSENT = (uint16_t) 0x0108, /*!< 10-bit Header sent flag */ I2C_FLAG_TRANSFERFINISHED = (uint16_t) 0x0104, /*!< Data Byte Transfer Finished flag */ I2C_FLAG_ADDRESSSENTMATCHED = (uint16_t) 0x0102, /*!< Address Sent/Matched (master/slave) flag */ I2C_FLAG_STARTDETECTION = (uint16_t) 0x0101, /*!< Start bit sent flag */ /* SR2 register flags */ I2C_FLAG_WAKEUPFROMHALT = (uint16_t) 0x0220, /*!< Wake Up From Halt Flag */ I2C_FLAG_OVERRUNUNDERRUN = (uint16_t) 0x0208, /*!< Overrun/Underrun flag */ I2C_FLAG_ACKNOWLEDGEFAILURE = (uint16_t) 0x0204, /*!< Acknowledge Failure Flag */ I2C_FLAG_ARBITRATIONLOSS = (uint16_t) 0x0202, /*!< Arbitration Loss Flag */ I2C_FLAG_BUSERROR = (uint16_t) 0x0201, /*!< Misplaced Start or Stop condition */ /* SR3 register flags */ I2C_FLAG_GENERALCALL = (uint16_t) 0x0310, /*!< General Call header received Flag */ I2C_FLAG_TRANSMITTERRECEIVER = (uint16_t) 0x0304, /*!< Transmitter Receiver Flag */ I2C_FLAG_BUSBUSY = (uint16_t) 0x0302, /*!< Bus Busy Flag */ I2C_FLAG_MASTERSLAVE = (uint16_t) 0x0301 /*!< Master Slave Flag */ } I2C_Flag_TypeDef; /** * @brief I2C Pending bits * Elements values convention: 0xXYZZ * X = SRx registers index * X = 1 : SR1 * X = 2 : SR2 * Y = Position of the corresponding Interrupt * ZZ = flag mask in the dedicated register(X register) */ typedef enum { /* SR1 register flags */ I2C_ITPENDINGBIT_TXEMPTY = (uint16_t) 0x1680, /*!< Transmit Data Register Empty */ I2C_ITPENDINGBIT_RXNOTEMPTY = (uint16_t) 0x1640, /*!< Read Data Register Not Empty */ I2C_ITPENDINGBIT_STOPDETECTION = (uint16_t) 0x1210, /*!< Stop detected */ I2C_ITPENDINGBIT_HEADERSENT = (uint16_t) 0x1208, /*!< 10-bit Header sent */ I2C_ITPENDINGBIT_TRANSFERFINISHED = (uint16_t) 0x1204, /*!< Data Byte Transfer Finished */ I2C_ITPENDINGBIT_ADDRESSSENTMATCHED = (uint16_t) 0x1202, /*!< Address Sent/Matched (master/slave) */ I2C_ITPENDINGBIT_STARTDETECTION = (uint16_t) 0x1201, /*!< Start bit sent */ /* SR2 register flags */ I2C_ITPENDINGBIT_WAKEUPFROMHALT = (uint16_t) 0x2220, /*!< Wake Up From Halt */ I2C_ITPENDINGBIT_OVERRUNUNDERRUN = (uint16_t) 0x2108, /*!< Overrun/Underrun */ I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE = (uint16_t) 0x2104, /*!< Acknowledge Failure */ I2C_ITPENDINGBIT_ARBITRATIONLOSS = (uint16_t) 0x2102, /*!< Arbitration Loss */ I2C_ITPENDINGBIT_BUSERROR = (uint16_t) 0x2101 /*!< Misplaced Start or Stop condition */ } I2C_ITPendingBit_TypeDef; /** * @brief I2C possible events * Values convention: 0xXXYY * XX = Event SR3 corresponding value * YY = Event SR1 corresponding value * @note if Event = EV3_2 the rule above does not apply * YY = Event SR2 corresponding value */ typedef enum { /*======================================== I2C Master Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start * * After sending the START condition (I2C_GenerateSTART() function) the master * has to wait for this event. It means that the Start condition has been correctly * released on the I2C bus (the bus is free, no other devices is communicating). * */ /* --EV5 */ I2C_EVENT_MASTER_MODE_SELECT = (uint16_t) 0x0301, /*!< BUSY, MSL and SB flag */ /** * @brief Address Acknowledge * * After checking on EV5 (start condition correctly released on the bus), the * master sends the address of the slave(s) with which it will communicate * (I2C_Send7bitAddress() function, it also determines the direction of the communication: * Master transmitter or Receiver). * Then the master has to wait that a slave acknowledges his address. * If an acknowledge is sent on the bus, one of the following events will * be set: * * 1) In case of Master Receiver (7-bit addressing): * the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED event is set. * * 2) In case of Master Transmitter (7-bit addressing): * the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED is set * * 3) In case of 10-Bit addressing mode, the master (just after generating the START * and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData() * function). * Then master should wait on EV9. It means that the 10-bit addressing * header has been correctly sent on the bus. * Then master should send the second part of the 10-bit address (LSB) using * the function I2C_Send7bitAddress(). Then master should wait for event EV6. * */ /* --EV6 */ I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED = (uint16_t) 0x0782, /*!< BUSY, MSL, ADDR, TXE and TRA flags */ I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED = (uint16_t) 0x0302, /*!< BUSY, MSL and ADDR flags */ /* --EV9 */ I2C_EVENT_MASTER_MODE_ADDRESS10 = (uint16_t) 0x0308, /*!< BUSY, MSL and ADD10 flags */ /** * @brief Communication events * * If a communication is established (START condition generated and slave address * acknowledged) then the master has to check on one of the following events for * communication procedures: * * 1) Master Receiver mode: The master has to wait on the event EV7 then to read * the data received from the slave (I2C_ReceiveData() function). * * 2) Master Transmitter mode: The master has to send data (I2C_SendData() * function) then to wait on event EV8 or EV8_2. * These two events are similar: * - EV8 means that the data has been written in the data register and is * being shifted out. * - EV8_2 means that the data has been physically shifted out and output * on the bus. * In most cases, using EV8 is sufficient for the application. * Using EV8_2 leads to a slower communication but ensures more reliable test. * EV8_2 is also more suitable than EV8 for testing on the last data transmission * (before Stop condition generation). * * @note In case the user software does not guarantee that this event EV7 is * managed before the current byte end of transfer, then user may check on EV7 * and BTF flag at the same time (ie. (I2C_EVENT_MASTER_BYTE_RECEIVED | I2C_FLAG_BTF)). * In this case the communication may be slower. * */ /* Master RECEIVER mode -----------------------------*/ /* --EV7 */ I2C_EVENT_MASTER_BYTE_RECEIVED = (uint16_t) 0x0340, /*!< BUSY, MSL and RXNE flags */ /* Master TRANSMITTER mode --------------------------*/ /* --EV8 */ I2C_EVENT_MASTER_BYTE_TRANSMITTING = (uint16_t) 0x0780, /*!< TRA, BUSY, MSL, TXE flags */ /* --EV8_2 */ I2C_EVENT_MASTER_BYTE_TRANSMITTED = (uint16_t) 0x0784, /*!< EV8_2: TRA, BUSY, MSL, TXE and BTF flags */ /*======================================== I2C Slave Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start events * * Wait on one of these events at the start of the communication. It means that * the I2C peripheral detected a Start condition on the bus (generated by master * device) followed by the peripheral address. * The peripheral generates an ACK condition on the bus (if the acknowledge * feature is enabled through function I2C_AcknowledgeConfig()) and the events * listed above are set : * * 1) In normal case (only one address managed by the slave), when the address * sent by the master matches the own address of the peripheral (configured by * I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set * (where XXX could be TRANSMITTER or RECEIVER). * * 2) In case the address sent by the master is General Call (address 0x00) and * if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd()) * the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED. * */ /* --EV1 (all the events below are variants of EV1) */ /* 1) Case of One Single Address managed by the slave */ I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED = (uint16_t) 0x0202, /*!< BUSY and ADDR flags */ I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED = (uint16_t) 0x0682, /*!< TRA, BUSY, TXE and ADDR flags */ /* 2) Case of General Call enabled for the slave */ I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED = (uint16_t) 0x1200, /*!< EV2: GENCALL and BUSY flags */ /** * @brief Communication events * * Wait on one of these events when EV1 has already been checked : * * - Slave RECEIVER mode: * - EV2: When the application is expecting a data byte to be received. * - EV4: When the application is expecting the end of the communication: * master sends a stop condition and data transmission is stopped. * * - Slave Transmitter mode: * - EV3: When a byte has been transmitted by the slave and the application * is expecting the end of the byte transmission. * The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and I2C_EVENT_SLAVE_BYTE_TRANSMITTING * are similar. The second one can optionally be used when the user software * doesn't guarantee the EV3 is managed before the current byte end of transfer. * - EV3_2: When the master sends a NACK in order to tell slave that data transmission * shall end (before sending the STOP condition). * In this case slave has to stop sending data bytes and expect a Stop * condition on the bus. * * @note In case the user software does not guarantee that the event EV2 is * managed before the current byte end of transfer, then user may check on EV2 * and BTF flag at the same time (ie. (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_BTF)). * In this case the communication may be slower. * */ /* Slave RECEIVER mode --------------------------*/ /* --EV2 */ I2C_EVENT_SLAVE_BYTE_RECEIVED = (uint16_t) 0x0240, /*!< BUSY and RXNE flags */ /* --EV4 */ I2C_EVENT_SLAVE_STOP_DETECTED = (uint16_t) 0x0010, /*!< STOPF flag */ /* Slave TRANSMITTER mode -----------------------*/ /* --EV3 */ I2C_EVENT_SLAVE_BYTE_TRANSMITTED = (uint16_t) 0x0684, /*!< TRA, BUSY, TXE and BTF flags */ I2C_EVENT_SLAVE_BYTE_TRANSMITTING = (uint16_t) 0x0680, /*!< TRA, BUSY and TXE flags */ /* --EV3_2 */ I2C_EVENT_SLAVE_ACK_FAILURE = (uint16_t) 0x0004 /*!< AF flag */ } I2C_Event_TypeDef; /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @addtogroup I2C_Exported_Constants * @{ */ #define I2C_MAX_STANDARD_FREQ ((uint32_t)100000) #define I2C_MAX_FAST_FREQ ((uint32_t)400000) #if defined(STM8S208) || defined(STM8S207) || defined(STM8S007) #define I2C_MAX_INPUT_FREQ ((uint8_t)24) #else #define I2C_MAX_INPUT_FREQ ((uint8_t)16) #endif /** *@} */ /* Exported macros -----------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup I2C_Private_Macros * @{ */ /** * @brief Macro used by the assert function to check the different functions parameters. */ /** * @brief Macro used by the assert function to check the different I2C duty cycles. */ #define IS_I2C_DUTYCYCLE_OK(DUTY) \ (((DUTY) == I2C_DUTYCYCLE_2) || \ ((DUTY) == I2C_DUTYCYCLE_16_9)) /** * @brief Macro used by the assert function to check the different acknowledgement configuration */ #define IS_I2C_ACK_OK(ACK) \ (((ACK) == I2C_ACK_NONE) || \ ((ACK) == I2C_ACK_CURR) || \ ((ACK) == I2C_ACK_NEXT)) /** * @brief Macro used by the assert function to check the different I2C addressing modes. */ #define IS_I2C_ADDMODE_OK(ADDMODE) \ (((ADDMODE) == I2C_ADDMODE_7BIT) || \ ((ADDMODE) == I2C_ADDMODE_10BIT)) /** * @brief Macro used by the assert function to check the different I2C interrupt types. */ #define IS_I2C_INTERRUPT_OK(IT) \ (((IT) == I2C_IT_ERR) || \ ((IT) == I2C_IT_EVT) || \ ((IT) == I2C_IT_BUF) || \ ((IT) == (I2C_IT_ERR | I2C_IT_EVT)) || \ ((IT) == (I2C_IT_ERR | I2C_IT_BUF)) || \ ((IT) == (I2C_IT_EVT | I2C_IT_BUF)) || \ ((IT) == (I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR))) /** * @brief Macro used by the assert function to check the different I2C communcation direction. */ #define IS_I2C_DIRECTION_OK(DIR) \ (((DIR) == I2C_DIRECTION_TX) || \ ((DIR) == I2C_DIRECTION_RX)) /** * @brief Macro used by the assert function to check the different I2C flags. */ #define IS_I2C_FLAG_OK(FLAG) \ (((FLAG) == I2C_FLAG_TXEMPTY) || \ ((FLAG) == I2C_FLAG_RXNOTEMPTY) || \ ((FLAG) == I2C_FLAG_STOPDETECTION) || \ ((FLAG) == I2C_FLAG_HEADERSENT) || \ ((FLAG) == I2C_FLAG_TRANSFERFINISHED) || \ ((FLAG) == I2C_FLAG_ADDRESSSENTMATCHED) || \ ((FLAG) == I2C_FLAG_STARTDETECTION) || \ ((FLAG) == I2C_FLAG_WAKEUPFROMHALT) || \ ((FLAG) == I2C_FLAG_OVERRUNUNDERRUN) || \ ((FLAG) == I2C_FLAG_ACKNOWLEDGEFAILURE) || \ ((FLAG) == I2C_FLAG_ARBITRATIONLOSS) || \ ((FLAG) == I2C_FLAG_BUSERROR) || \ ((FLAG) == I2C_FLAG_GENERALCALL) || \ ((FLAG) == I2C_FLAG_TRANSMITTERRECEIVER) || \ ((FLAG) == I2C_FLAG_BUSBUSY) || \ ((FLAG) == I2C_FLAG_MASTERSLAVE)) /** * @brief Macro used by the assert function to check the I2C flags to clear. */ #define IS_I2C_CLEAR_FLAG_OK(FLAG) ((((uint16_t)(FLAG) & (uint16_t)0xFD00) == 0x00) \ && ((uint16_t)(FLAG) != 0x00)) /** * @brief Macro used by the assert function to check the different I2C possible pending bits. */ #define IS_I2C_ITPENDINGBIT_OK(ITPENDINGBIT) \ (((ITPENDINGBIT) == I2C_ITPENDINGBIT_TXEMPTY) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_RXNOTEMPTY) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_STOPDETECTION) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_HEADERSENT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_TRANSFERFINISHED) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ADDRESSSENTMATCHED) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_STARTDETECTION) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_WAKEUPFROMHALT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_OVERRUNUNDERRUN) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ARBITRATIONLOSS) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_BUSERROR)) /** * @brief Macro used by the assert function to check the different I2C possible * pending bits to clear by writing 0. */ #define IS_I2C_CLEAR_ITPENDINGBIT_OK(ITPENDINGBIT) \ (((ITPENDINGBIT) == I2C_ITPENDINGBIT_WAKEUPFROMHALT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_OVERRUNUNDERRUN) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ARBITRATIONLOSS) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_BUSERROR)) /** * @brief Macro used by the assert function to check the different I2C possible events. */ #define IS_I2C_EVENT_OK(EVENT) (((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_BYTE_RECEIVED) || \ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | (uint16_t)I2C_FLAG_GENERALCALL)) || \ ((EVENT) == I2C_EVENT_SLAVE_BYTE_TRANSMITTED) || \ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | (uint16_t)I2C_FLAG_GENERALCALL)) || \ ((EVENT) == I2C_EVENT_SLAVE_ACK_FAILURE) || \ ((EVENT) == I2C_EVENT_SLAVE_STOP_DETECTED) || \ ((EVENT) == I2C_EVENT_MASTER_MODE_SELECT) || \ ((EVENT) == I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) || \ ((EVENT) == I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_RECEIVED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTING) || \ ((EVENT) == I2C_EVENT_MASTER_MODE_ADDRESS10)) /** * @brief Macro used by the assert function to check the different I2C possible own address. */ #define IS_I2C_OWN_ADDRESS_OK(ADDRESS) \ ((ADDRESS) <= (uint16_t)0x03FF) /* The address must be even */ #define IS_I2C_ADDRESS_OK(ADD) \ (((ADD) & (uint8_t)0x01) == (uint8_t)0x00) /** * @brief Macro used by the assert function to check that I2C Input clock frequency must be between 1MHz and 50MHz. */ #define IS_I2C_INPUT_CLOCK_FREQ_OK(FREQ) \ (((FREQ) >= (uint8_t)1) && ((FREQ) <= I2C_MAX_INPUT_FREQ)) /** * @brief Macro used by the assert function to check that I2C Output clock frequency must be between 1Hz and 400kHz. */ #define IS_I2C_OUTPUT_CLOCK_FREQ_OK(FREQ) \ (((FREQ) >= (uint8_t)1) && ((FREQ) <= I2C_MAX_FAST_FREQ)) /** * @} */ /* Exported functions ------------------------------------------------------- */ /** @addtogroup I2C_Exported_Functions * @{ */ #if 0 void I2C_DeInit(void); void I2C_Init(uint32_t OutputClockFrequencyHz, uint16_t OwnAddress, I2C_DutyCycle_TypeDef I2C_DutyCycle, I2C_Ack_TypeDef Ack, I2C_AddMode_TypeDef AddMode, uint8_t InputClockFrequencyMHz); void I2C_Cmd(FunctionalState NewState); void I2C_GeneralCallCmd(FunctionalState NewState); void I2C_GenerateSTART(FunctionalState NewState); void I2C_GenerateSTOP(FunctionalState NewState); void I2C_SoftwareResetCmd(FunctionalState NewState); void I2C_StretchClockCmd(FunctionalState NewState); void I2C_AcknowledgeConfig(I2C_Ack_TypeDef Ack); void I2C_FastModeDutyCycleConfig(I2C_DutyCycle_TypeDef I2C_DutyCycle); void I2C_ITConfig(I2C_IT_TypeDef I2C_IT, FunctionalState NewState); uint8_t I2C_ReceiveData(void); void I2C_Send7bitAddress(uint8_t Address, I2C_Direction_TypeDef Direction); void I2C_SendData(uint8_t Data); #endif /** * @brief **************************************************************************************** * * I2C State Monitoring Functions * **************************************************************************************** * This I2C driver provides three different ways for I2C state monitoring * depending on the application requirements and constraints: * * * 1) Basic state monitoring: * Using I2C_CheckEvent() function: * It compares the status registers (SR1, SR2 and SR3) content to a given event * (can be the combination of one or more flags). * It returns SUCCESS if the current status includes the given flags * and returns ERROR if one or more flags are missing in the current status. * - When to use: * - This function is suitable for most applications as well as for startup * activity since the events are fully described in the product reference manual * (RM0016). * - It is also suitable for users who need to define their own events. * - Limitations: * - If an error occurs (ie. error flags are set besides to the monitored flags), * the I2C_CheckEvent() function may return SUCCESS despite the communication * hold or corrupted real state. * In this case, it is advised to use error interrupts to monitor the error * events and handle them in the interrupt IRQ handler. * * @note * For error management, it is advised to use the following functions: * - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR). * - I2C_IRQHandler() which is called when the I2C interrupts occur. * - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the * I2Cx_IRQHandler() function in order to determine which error occurred. * - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd() * and/or I2C_GenerateStop() in order to clear the error flag and * source and return to correct communication status. * * * 2) Advanced state monitoring: * Using the function I2C_GetLastEvent() which returns the image of both SR1 * & SR3 status registers in a single word (uint16_t) (Status Register 3 value * is shifted left by 8 bits and concatenated to Status Register 1). * - When to use: * - This function is suitable for the same applications above but it allows to * overcome the limitations of I2C_GetFlagStatus() function (see below). * The returned value could be compared to events already defined in the * library (stm8s_i2c.h) or to custom values defined by user. * - This function is suitable when multiple flags are monitored at the same time. * - At the opposite of I2C_CheckEvent() function, this function allows user to * choose when an event is accepted (when all events flags are set and no * other flags are set or just when the needed flags are set like * I2C_CheckEvent() function). * - Limitations: * - User may need to define his own events. * - Same remark concerning the error management is applicable for this * function if user decides to check only regular communication flags (and * ignores error flags). * * * 3) Flag-based state monitoring: * Using the function I2C_GetFlagStatus() which simply returns the status of * one single flag (ie. I2C_FLAG_RXNE ...). * - When to use: * - This function could be used for specific applications or in debug phase. * - It is suitable when only one flag checking is needed (most I2C events * are monitored through multiple flags). * - Limitations: * - When calling this function, the Status register is accessed. Some flags are * cleared when the status register is accessed. So checking the status * of one Flag, may clear other ones. * - Function may need to be called twice or more in order to monitor one * single event. * */ #if 0 /** * * 1) Basic state monitoring ******************************************************************************* */ ErrorStatus I2C_CheckEvent(I2C_Event_TypeDef I2C_Event); /** * * 2) Advanced state monitoring ******************************************************************************* */ I2C_Event_TypeDef I2C_GetLastEvent(void); /** * * 3) Flag-based state monitoring ******************************************************************************* */ FlagStatus I2C_GetFlagStatus(I2C_Flag_TypeDef I2C_Flag); /** * ******************************************************************************* */ void I2C_ClearFlag(I2C_Flag_TypeDef I2C_FLAG); ITStatus I2C_GetITStatus(I2C_ITPendingBit_TypeDef I2C_ITPendingBit); void I2C_ClearITPendingBit(I2C_ITPendingBit_TypeDef I2C_ITPendingBit); #endif /** @addtogroup STM8S_StdPeriph_Driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /** @defgroup I2C_Private_Defines * @{ */ /* I2C register mask */ #define _I2C_REGISTER_Mask ((uint16_t)0x3000) #define _I2C_REGISTER_SR1_Index ((uint16_t)0x0100) #define _I2C_REGISTER_SR2_Index ((uint16_t)0x0200) /* I2C Interrupt Enable mask */ #define _I2C_ITEN_Mask ((uint16_t)0x0700) /* I2C FLAG mask */ #define _I2C_FLAG_Mask ((uint16_t)0x00FF) /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** * @addtogroup I2C_Public_Functions * @{ */ /** * @brief Deinitializes the I2C peripheral registers to their default reset values. * @param None * @retval None */ inline void I2C_DeInit(void) { I2C->CR1 = I2C_CR1_RESET_VALUE; I2C->CR2 = I2C_CR2_RESET_VALUE; I2C->FREQR = I2C_FREQR_RESET_VALUE; I2C->OARL = I2C_OARL_RESET_VALUE; I2C->OARH = I2C_OARH_RESET_VALUE; I2C->ITR = I2C_ITR_RESET_VALUE; I2C->CCRL = I2C_CCRL_RESET_VALUE; I2C->CCRH = I2C_CCRH_RESET_VALUE; I2C->TRISER = I2C_TRISER_RESET_VALUE; } /** * @brief Enable or Disable the I2C acknowledge and position acknowledge feature. * @note This function must be called before data reception start * @param Ack : Specifies the acknowledge mode to apply. * This parameter can be any of the @ref I2C_Ack_TypeDef enumeration. * @retval None */ inline void I2C_AcknowledgeConfig(I2C_Ack_TypeDef Ack) { /* Check function parameters */ assert_param(IS_I2C_ACK_OK(Ack)); if (Ack == I2C_ACK_NONE) { /* Disable the acknowledgement */ I2C->CR2 &= (uint8_t) (~I2C_CR2_ACK); } else { /* Enable the acknowledgement */ I2C->CR2 |= I2C_CR2_ACK; if (Ack == I2C_ACK_CURR) { /* Configure (N)ACK on current byte */ I2C->CR2 &= (uint8_t) (~I2C_CR2_POS); } else { /* Configure (N)ACK on next byte */ I2C->CR2 |= I2C_CR2_POS; } } } /** * @brief Initializes the I2C according to the specified parameters in standard * or fast mode. * @param OutputClockFrequencyHz : Specifies the output clock frequency in Hz. * @param OwnAddress : Specifies the own address. * @param I2C_DutyCycle : Specifies the duty cycle to apply in fast mode. * This parameter can be any of the @ref I2C_DutyCycle_TypeDef enumeration. * @note This parameter don't have impact when the OutputClockFrequency lower * than 100KHz. * @param Ack : Specifies the acknowledge mode to apply. * This parameter can be any of the @ref I2C_Ack_TypeDef enumeration. * @param AddMode : Specifies the acknowledge address to apply. * This parameter can be any of the @ref I2C_AddMode_TypeDef enumeration. * @param InputClockFrequencyMHz : Specifies the input clock frequency in MHz. * @retval None */ inline void I2C_Init(uint32_t OutputClockFrequencyHz, uint16_t OwnAddress, I2C_DutyCycle_TypeDef I2C_DutyCycle, I2C_Ack_TypeDef Ack, I2C_AddMode_TypeDef AddMode, uint8_t InputClockFrequencyMHz) { uint16_t result = 0x0004; uint16_t tmpval = 0; uint8_t tmpccrh = 0; /* Check the parameters */ assert_param(IS_I2C_ACK_OK(Ack)); assert_param(IS_I2C_ADDMODE_OK(AddMode)); assert_param(IS_I2C_OWN_ADDRESS_OK(OwnAddress)); assert_param(IS_I2C_DUTYCYCLE_OK(I2C_DutyCycle)); assert_param(IS_I2C_INPUT_CLOCK_FREQ_OK(InputClockFrequencyMHz)); assert_param(IS_I2C_OUTPUT_CLOCK_FREQ_OK(OutputClockFrequencyHz)); /*------------------------- I2C FREQ Configuration ------------------------*/ /* Clear frequency bits */ I2C->FREQR &= (uint8_t) (~I2C_FREQR_FREQ); /* Write new value */ I2C->FREQR |= InputClockFrequencyMHz; /*--------------------------- I2C CCR Configuration ------------------------*/ /* Disable I2C to configure TRISER */ I2C->CR1 &= (uint8_t) (~I2C_CR1_PE); /* Clear CCRH & CCRL */ I2C->CCRH &= (uint8_t) (~(I2C_CCRH_FS | I2C_CCRH_DUTY | I2C_CCRH_CCR)); I2C->CCRL &= (uint8_t) (~I2C_CCRL_CCR); /* Detect Fast or Standard mode depending on the Output clock frequency selected */ if (OutputClockFrequencyHz > I2C_MAX_STANDARD_FREQ) /* FAST MODE */ { /* Set F/S bit for fast mode */ tmpccrh = I2C_CCRH_FS; if (I2C_DutyCycle == I2C_DUTYCYCLE_2) { /* Fast mode speed calculate: Tlow/Thigh = 2 */ result = (uint16_t) ((InputClockFrequencyMHz * 1000000) / (OutputClockFrequencyHz * 3)); } else /* I2C_DUTYCYCLE_16_9 */ { /* Fast mode speed calculate: Tlow/Thigh = 16/9 */ result = (uint16_t) ((InputClockFrequencyMHz * 1000000) / (OutputClockFrequencyHz * 25)); /* Set DUTY bit */ tmpccrh |= I2C_CCRH_DUTY; } /* Verify and correct CCR value if below minimum value */ if (result < (uint16_t) 0x01) { /* Set the minimum allowed value */ result = (uint16_t) 0x0001; } /* Set Maximum Rise Time: 300ns max in Fast Mode = [300ns/(1/InputClockFrequencyMHz.10e6)]+1 = [(InputClockFrequencyMHz * 3)/10]+1 */ tmpval = ((InputClockFrequencyMHz * 3) / 10) + 1; I2C->TRISER = (uint8_t) tmpval; } else /* STANDARD MODE */ { /* Calculate standard mode speed */ result = (uint16_t) ((InputClockFrequencyMHz * 1000000) / (OutputClockFrequencyHz << (uint8_t) 1)); /* Verify and correct CCR value if below minimum value */ if (result < (uint16_t) 0x0004) { /* Set the minimum allowed value */ result = (uint16_t) 0x0004; } /* Set Maximum Rise Time: 1000ns max in Standard Mode = [1000ns/(1/InputClockFrequencyMHz.10e6)]+1 = InputClockFrequencyMHz+1 */ I2C->TRISER = (uint8_t) (InputClockFrequencyMHz + (uint8_t) 1); } /* Write CCR with new calculated value */ I2C->CCRL = (uint8_t) result; I2C->CCRH = (uint8_t) ((uint8_t) ((uint8_t) (result >> 8) & I2C_CCRH_CCR) | tmpccrh); /* Enable I2C */ I2C->CR1 |= I2C_CR1_PE; /* Configure I2C acknowledgement */ I2C_AcknowledgeConfig(Ack); /*--------------------------- I2C OAR Configuration ------------------------*/ I2C->OARL = (uint8_t) (OwnAddress); I2C->OARH = (uint8_t) ((uint8_t) (AddMode | I2C_OARH_ADDCONF) | (uint8_t) ((OwnAddress & (uint16_t) 0x0300) >> (uint8_t) 7)); } /** * @brief Enables or disables the I2C peripheral. * @param NewState : Indicate the new I2C peripheral state. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_Cmd(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable I2C peripheral */ I2C->CR1 |= I2C_CR1_PE; } else /* NewState == DISABLE */ { /* Disable I2C peripheral */ I2C->CR1 &= (uint8_t) (~I2C_CR1_PE); } } /** * @brief Enables or disables the I2C General Call feature. * @param NewState : State of the General Call feature. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_GeneralCallCmd(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable General Call */ I2C->CR1 |= I2C_CR1_ENGC; } else /* NewState == DISABLE */ { /* Disable General Call */ I2C->CR1 &= (uint8_t) (~I2C_CR1_ENGC); } } /** * @brief Generates I2C communication START condition. * @note CCR must be programmed, i.e. I2C_Init function must have been called * with a valid I2C_ClockSpeed * @param NewState : Enable or disable the start condition. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_GenerateSTART(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Generate a START condition */ I2C->CR2 |= I2C_CR2_START; } else /* NewState == DISABLE */ { /* Disable the START condition generation */ I2C->CR2 &= (uint8_t) (~I2C_CR2_START); } } /** * @brief Generates I2C communication STOP condition. * @param NewState : Enable or disable the stop condition. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_GenerateSTOP(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Generate a STOP condition */ I2C->CR2 |= I2C_CR2_STOP; } else /* NewState == DISABLE */ { /* Disable the STOP condition generation */ I2C->CR2 &= (uint8_t) (~I2C_CR2_STOP); } } /** * @brief Enables or disables I2C software reset. * @param NewState : Specifies the new state of the I2C software reset. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_SoftwareResetCmd(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Peripheral under reset */ I2C->CR2 |= I2C_CR2_SWRST; } else /* NewState == DISABLE */ { /* Peripheral not under reset */ I2C->CR2 &= (uint8_t) (~I2C_CR2_SWRST); } } /** * @brief Enables or disables the I2C clock stretching. * @param NewState : Specifies the new state of the I2C Clock stretching. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_StretchClockCmd(FunctionalState NewState) { /* Check function parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Clock Stretching Enable */ I2C->CR1 &= (uint8_t) (~I2C_CR1_NOSTRETCH); } else /* NewState == DISABLE */ { /* Clock Stretching Disable (Slave mode) */ I2C->CR1 |= I2C_CR1_NOSTRETCH; } } /** * @brief Enables or disables the specified I2C interrupt. * @param ITName : Name of the interrupt to enable or disable. * This parameter can be any of the @ref I2C_IT_TypeDef enumeration. * @param NewState : State of the interrupt to apply. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ inline void I2C_ITConfig(I2C_IT_TypeDef I2C_IT, FunctionalState NewState) { /* Check functions parameters */ assert_param(IS_I2C_INTERRUPT_OK(I2C_IT)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the selected I2C interrupts */ I2C->ITR |= (uint8_t) I2C_IT; } else /* NewState == DISABLE */ { /* Disable the selected I2C interrupts */ I2C->ITR &= (uint8_t) (~(uint8_t) I2C_IT); } } /** * @brief Selects the specified I2C fast mode duty cycle. * @param I2C_DutyCycle : Specifies the duty cycle to apply. * This parameter can be any of the @ref I2C_DutyCycle_TypeDef enumeration. * @retval None */ inline void I2C_FastModeDutyCycleConfig(I2C_DutyCycle_TypeDef I2C_DutyCycle) { /* Check function parameters */ assert_param(IS_I2C_DUTYCYCLE_OK(I2C_DutyCycle)); if (I2C_DutyCycle == I2C_DUTYCYCLE_16_9) { /* I2C fast mode Tlow/Thigh = 16/9 */ I2C->CCRH |= I2C_CCRH_DUTY; } else /* I2C_DUTYCYCLE_2 */ { /* I2C fast mode Tlow/Thigh = 2 */ I2C->CCRH &= (uint8_t) (~I2C_CCRH_DUTY); } } /** * @brief Returns the most recent received data. * @param None * @retval uint8_t : The value of the received byte data. */ inline uint8_t I2C_ReceiveData(void) { /* Return the data present in the DR register */ return ((uint8_t) I2C->DR); } /** * @brief Transmits the 7-bit address (to select the) slave device. * @param Address : Specifies the slave address which will be transmitted. * @param Direction : Specifies whether the I2C device will be a Transmitter or a Receiver. * This parameter can be any of the @ref I2C_Direction_TypeDef enumeration. * @retval None */ inline void I2C_Send7bitAddress(uint8_t Address, I2C_Direction_TypeDef Direction) { /* Check function parameters */ assert_param(IS_I2C_ADDRESS_OK(Address)); assert_param(IS_I2C_DIRECTION_OK(Direction)); /* Clear bit0 (direction) just in case */ Address &= (uint8_t) 0xFE; /* Send the Address + Direction */ I2C->DR = (uint8_t) (Address | (uint8_t) Direction); } /** * @brief Send a byte by writing in the DR register. * @param Data : Byte to be sent. * @retval None */ inline void I2C_SendData(uint8_t Data) { /* Write in the DR register the data to be sent */ I2C->DR = Data; } /** * @brief **************************************************************************************** * * I2C State Monitoring Functions * **************************************************************************************** * This I2C driver provides three different ways for I2C state monitoring * depending on the application requirements and constraints: * * * 1) Basic state monitoring: * Using I2C_CheckEvent() function: * It compares the status registers (SR1, SR2 and SR3) content to a given event * (can be the combination of one or more flags). * It returns SUCCESS if the current status includes the given flags * and returns ERROR if one or more flags are missing in the current status. * - When to use: * - This function is suitable for most applications as well as for startup * activity since the events are fully described in the product reference manual * (RM0016). * - It is also suitable for users who need to define their own events. * - Limitations: * - If an error occurs (ie. error flags are set besides to the monitored flags), * the I2C_CheckEvent() function may return SUCCESS despite the communication * hold or corrupted real state. * In this case, it is advised to use error interrupts to monitor the error * events and handle them in the interrupt IRQ handler. * * @note * For error management, it is advised to use the following functions: * - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR). * - I2C_IRQHandler() which is called when the I2C interrupts occur. * - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the * I2C_IRQHandler() function in order to determine which error occurred. * - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd() * and/or I2C_GenerateStop() in order to clear the error flag and * source and return to correct communication status. * * * 2) Advanced state monitoring: * Using the function I2C_GetLastEvent() which returns the image of both SR1 * & SR3 status registers in a single word (uint16_t) (Status Register 3 value * is shifted left by 8 bits and concatenated to Status Register 1). * - When to use: * - This function is suitable for the same applications above but it allows to * overcome the limitations of I2C_GetFlagStatus() function (see below). * The returned value could be compared to events already defined in the * library (stm8s_i2c.h) or to custom values defined by user. * - This function is suitable when multiple flags are monitored at the same time. * - At the opposite of I2C_CheckEvent() function, this function allows user to * choose when an event is accepted (when all events flags are set and no * other flags are set or just when the needed flags are set like * I2C_CheckEvent() function). * - Limitations: * - User may need to define his own events. * - Same remark concerning the error management is applicable for this * function if user decides to check only regular communication flags (and * ignores error flags). * * * 3) Flag-based state monitoring: * Using the function I2C_GetFlagStatus() which simply returns the status of * one single flag (ie. I2C_FLAG_RXNE ...). * - When to use: * - This function could be used for specific applications or in debug phase. * - It is suitable when only one flag checking is needed (most I2C events * are monitored through multiple flags). * - Limitations: * - When calling this function, the Status register is accessed. Some flags are * cleared when the status register is accessed. So checking the status * of one Flag, may clear other ones. * - Function may need to be called twice or more in order to monitor one * single event. * * For detailed description of Events, please refer to section I2C_Events in * stm8s_i2c.h file. * */ /** * * 1) Basic state monitoring ******************************************************************************* */ /** * @brief Checks whether the last I2C Event is equal to the one passed * as parameter. * @param I2C_EVENT: specifies the event to be checked. * This parameter can be one of the following values: * @arg I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED : EV1 * @arg I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED : EV1 * @arg I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED : EV1 * @arg I2C_EVENT_SLAVE_BYTE_RECEIVED : EV2 * @arg (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL) : EV2 * @arg I2C_EVENT_SLAVE_BYTE_TRANSMITTED : EV3 * @arg (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL) : EV3 * @arg I2C_EVENT_SLAVE_ACK_FAILURE : EV3_2 * @arg I2C_EVENT_SLAVE_STOP_DETECTED : EV4 * @arg I2C_EVENT_MASTER_MODE_SELECT : EV5 * @arg I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED : EV6 * @arg I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED : EV6 * @arg I2C_EVENT_MASTER_BYTE_RECEIVED : EV7 * @arg I2C_EVENT_MASTER_BYTE_TRANSMITTING : EV8 * @arg I2C_EVENT_MASTER_BYTE_TRANSMITTED : EV8_2 * @arg I2C_EVENT_MASTER_MODE_ADDRESS10 : EV9 * * @note: For detailed description of Events, please refer to section * I2C_Events in stm8s_i2c.h file. * * @retval An ErrorStatus enumeration value: * - SUCCESS: Last event is equal to the I2C_EVENT * - ERROR: Last event is different from the I2C_EVENT */ inline ErrorStatus I2C_CheckEvent(I2C_Event_TypeDef I2C_Event) { __IO uint16_t lastevent = 0x00; uint8_t flag1 = 0x00; uint8_t flag2 = 0x00; ErrorStatus status = ERROR; /* Check the parameters */ assert_param(IS_I2C_EVENT_OK(I2C_Event)); if (I2C_Event == I2C_EVENT_SLAVE_ACK_FAILURE) { lastevent = I2C->SR2 & I2C_SR2_AF; } else { flag1 = I2C->SR1; flag2 = I2C->SR3; lastevent = ((uint16_t) ((uint16_t) flag2 << (uint16_t) 8) | (uint16_t) flag1); } /* Check whether the last event is equal to I2C_EVENT */ if (((uint16_t) lastevent & (uint16_t) I2C_Event) == (uint16_t) I2C_Event) { /* SUCCESS: last event is equal to I2C_EVENT */ status = SUCCESS; } else { /* ERROR: last event is different from I2C_EVENT */ status = ERROR; } /* Return status */ return status; } /** * * 2) Advanced state monitoring ******************************************************************************* */ /** * @brief Returns the last I2C Event. * * @note: For detailed description of Events, please refer to section * I2C_Events in stm8s_i2c.h file. * * @retval The last event * This parameter can be any of the @ref I2C_Event_TypeDef enumeration. */ inline I2C_Event_TypeDef I2C_GetLastEvent(void) { __IO uint16_t lastevent = 0; uint16_t flag1 = 0; uint16_t flag2 = 0; if ((I2C->SR2 & I2C_SR2_AF) != 0x00) { lastevent = I2C_EVENT_SLAVE_ACK_FAILURE; } else { /* Read the I2C status register */ flag1 = I2C->SR1; flag2 = I2C->SR3; /* Get the last event value from I2C status register */ lastevent = ((uint16_t) ((uint16_t) flag2 << 8) | (uint16_t) flag1); } /* Return status */ return (I2C_Event_TypeDef) lastevent; } /** * * 3) Flag-based state monitoring ******************************************************************************* */ /** * @brief Checks whether the specified I2C flag is set or not. * @param I2C_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg I2C_FLAG_GENERALCALL: General call header flag (Slave mode) * @arg I2C_FLAG_TRANSMITTERRECEIVER: Transmitter/Receiver flag * @arg I2C_FLAG_BUSBUSY: Bus busy flag * @arg I2C_FLAG_MASTERSLAVE: Master/Slave flag * @arg I2C_FLAG_WAKEUPFROMHALT: Wake up from HALT flag * @arg I2C_FLAG_OVERRUNUNDERRUN: Overrun/Underrun flag (Slave mode) * @arg I2C_FLAG_ACKNOWLEDGEFAILURE: Acknowledge failure flag * @arg I2C_FLAG_ARBITRATIONLOSS: Arbitration lost flag (Master mode) * @arg I2C_FLAG_BUSERROR: Bus error flag * @arg I2C_FLAG_TXEMPTY: Data register empty flag (Transmitter) * @arg I2C_FLAG_RXNOTEMPTY: Data register not empty (Receiver) flag * @arg I2C_FLAG_STOPDETECTION: Stop detection flag (Slave mode) * @arg I2C_FLAG_HEADERSENT: 10-bit header sent flag (Master mode) * @arg I2C_FLAG_TRANSFERFINISHED: Byte transfer finished flag * @arg I2C_FLAG_ADDRESSSENTMATCHED: Address sent flag (Master mode) 'ADSL' * Address matched flag (Slave mode)'ENDAD' * @arg I2C_FLAG_STARTDETECTION: Start bit flag (Master mode) * @retval The new state of I2C_FLAG (SET or RESET). */ inline FlagStatus I2C_GetFlagStatus(I2C_Flag_TypeDef I2C_Flag) { uint8_t tempreg = 0; uint8_t regindex = 0; FlagStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_I2C_FLAG_OK(I2C_Flag)); /* Read flag register index */ regindex = (uint8_t) ((uint16_t) I2C_Flag >> 8); /* Check SRx index */ switch (regindex) { /* Returns whether the status register to check is SR1 */ case 0x01: tempreg = (uint8_t) I2C->SR1; break; /* Returns whether the status register to check is SR2 */ case 0x02: tempreg = (uint8_t) I2C->SR2; break; /* Returns whether the status register to check is SR3 */ case 0x03: tempreg = (uint8_t) I2C->SR3; break; default: break; } /* Check the status of the specified I2C flag */ if ((tempreg & (uint8_t) I2C_Flag) != 0) { /* Flag is set */ bitstatus = SET; } else { /* Flag is reset */ bitstatus = RESET; } /* Return the flag status */ return bitstatus; } /** * @brief Clear flags * @param I2C_Flag : Specifies the flag to clear * This parameter can be any combination of the following values: * - I2C_FLAG_WAKEUPFROMHALT: Wakeup from Halt * - I2C_FLAG_OVERRUNUNDERRUN: Overrun/Underrun flag (Slave mode) * - I2C_FLAG_ACKNOWLEDGEFAILURE: Acknowledge failure flag * - I2C_FLAG_ARBITRATIONLOSS: Arbitration lost flag (Master mode) * - I2C_FLAG_BUSERROR: Bus error flag. * @note Notes: * - STOPF (STOP detection) is cleared by software * sequence: a read operation to I2C_SR1 register * (I2C_GetFlagStatus()) followed by a write operation * to I2C_CR2 register. * - ADD10 (10-bit header sent) is cleared by software * sequence: a read operation to I2C_SR1 * (I2C_GetFlagStatus()) followed by writing the * second byte of the address in DR register. * - BTF (Byte Transfer Finished) is cleared by software * sequence: a read operation to I2C_SR1 register * (I2C_GetFlagStatus()) followed by a read/write to * I2C_DR register (I2C_SendData()). * - ADDR (Address sent) is cleared by software sequence: * a read operation to I2C_SR1 register * (I2C_GetFlagStatus()) followed by a read operation to * I2C_SR3 register ((void)(I2C->SR3)). * - SB (Start Bit) is cleared software sequence: a read * operation to I2C_SR1 register (I2C_GetFlagStatus()) * followed by a write operation to I2C_DR register * (I2C_SendData()). * @retval None */ inline void I2C_ClearFlag(I2C_Flag_TypeDef I2C_FLAG) { uint16_t flagpos = 0; /* Check the parameters */ assert_param(IS_I2C_CLEAR_FLAG_OK(I2C_FLAG)); /* Get the I2C flag position */ flagpos = (uint16_t) I2C_FLAG & _I2C_FLAG_Mask; /* Clear the selected I2C flag */ I2C->SR2 = (uint8_t) ((uint16_t) (~flagpos)); } /** * @brief Checks whether the specified I2C interrupt has occurred or not. * @param I2C_ITPendingBit: specifies the interrupt source to check. * This parameter can be one of the following values: * - I2C_ITPENDINGBIT_WAKEUPFROMHALT: Wakeup from Halt * - I2C_ITPENDINGBIT_OVERRUNUNDERRUN: Overrun/Underrun flag (Slave mode) * - I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE: Acknowledge failure flag * - I2C_ITPENDINGBIT_ARBITRATIONLOSS: Arbitration lost flag (Master mode) * - I2C_ITPENDINGBIT_BUSERROR: Bus error flag * - I2C_ITPENDINGBIT_TXEMPTY: Data register empty flag (Transmitter) * - I2C_ITPENDINGBIT_RXNOTEMPTY: Data register not empty (Receiver) flag * - I2C_ITPENDINGBIT_STOPDETECTION: Stop detection flag (Slave mode) * - I2C_ITPENDINGBIT_HEADERSENT: 10-bit header sent flag (Master mode) * - I2C_ITPENDINGBIT_TRANSFERFINISHED: Byte transfer finished flag * - I2C_ITPENDINGBIT_ADDRESSSENTMATCHED: Address sent flag (Master mode) 'ADSL' * Address matched flag (Slave mode)'ENDAD' * - I2C_ITPENDINGBIT_STARTDETECTION: Start bit flag (Master mode) * @retval The new state of I2C_ITPendingBit * This parameter can be any of the @ref ITStatus enumeration. */ inline ITStatus I2C_GetITStatus(I2C_ITPendingBit_TypeDef I2C_ITPendingBit) { ITStatus bitstatus = RESET; __IO uint8_t enablestatus = 0; uint16_t tempregister = 0; /* Check the parameters */ assert_param(IS_I2C_ITPENDINGBIT_OK(I2C_ITPendingBit)); tempregister = (uint8_t) (((uint16_t) ((uint16_t) I2C_ITPendingBit & _I2C_ITEN_Mask)) >> 8); /* Check if the interrupt source is enabled or not */ enablestatus = (uint8_t) (I2C->ITR & (uint8_t) tempregister); if ((uint16_t) ((uint16_t) I2C_ITPendingBit & _I2C_REGISTER_Mask) == _I2C_REGISTER_SR1_Index) { /* Check the status of the specified I2C flag */ if (((I2C->SR1 & (uint8_t) I2C_ITPendingBit) != RESET) && enablestatus) { /* I2C_IT is set */ bitstatus = SET; } else { /* I2C_IT is reset */ bitstatus = RESET; } } else { /* Check the status of the specified I2C flag */ if (((I2C->SR2 & (uint8_t) I2C_ITPendingBit) != RESET) && enablestatus) { /* I2C_IT is set */ bitstatus = SET; } else { /* I2C_IT is reset */ bitstatus = RESET; } } /* Return the I2C_IT status */ return bitstatus; } /** * @brief Clear IT pending bit * @param I2C_IT: specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * - I2C_ITPENDINGBIT_WAKEUPFROMHALT: Wakeup from Halt * - I2C_ITPENDINGBIT_OVERRUNUNDERRUN: Overrun/Underrun interrupt (Slave mode) * - I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE: Acknowledge failure interrupt * - I2C_ITPENDINGBIT_ARBITRATIONLOSS: Arbitration lost interrupt (Master mode) * - I2C_ITPENDINGBIT_BUSERROR: Bus error interrupt * * Notes: * - STOPF (STOP detection) is cleared by software * sequence: a read operation to I2C_SR1 register * (I2C_GetITStatus()) followed by a write operation to * I2C_CR2 register (I2C_AcknowledgeConfig() to configure * the I2C peripheral Acknowledge). * - ADD10 (10-bit header sent) is cleared by software * sequence: a read operation to I2C_SR1 * (I2C_GetITStatus()) followed by writing the second * byte of the address in I2C_DR register. * - BTF (Byte Transfer Finished) is cleared by software * sequence: a read operation to I2C_SR1 register * (I2C_GetITStatus()) followed by a read/write to * I2C_DR register (I2C_SendData()). * - ADDR (Address sent) is cleared by software sequence: * a read operation to I2C_SR1 register (I2C_GetITStatus()) * followed by a read operation to I2C_SR3 register * ((void)(I2C->SR3)). * - SB (Start Bit) is cleared by software sequence: a * read operation to I2C_SR1 register (I2C_GetITStatus()) * followed by a write operation to I2C_DR register * (I2C_SendData()). * @retval None */ inline void I2C_ClearITPendingBit(I2C_ITPendingBit_TypeDef I2C_ITPendingBit) { uint16_t flagpos = 0; /* Check the parameters */ assert_param(IS_I2C_CLEAR_ITPENDINGBIT_OK(I2C_ITPendingBit)); /* Get the I2C flag position */ flagpos = (uint16_t) I2C_ITPendingBit & _I2C_FLAG_Mask; /* Clear the selected I2C flag */ I2C->SR2 = (uint8_t) ((uint16_t) ~flagpos); } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ /** * @} */ #endif /* __STM8S_I2C_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/