Dot matrix audio spectrum visualiser based on an stm32f107 STM eval board and several chained MAX2719 drivers
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
stm32f107-audio-dotmatrix-v.../User/user_main.c

479 lines
9.8 KiB

//
// Created by MightyPork on 2.9.16.
//
#include <inttypes.h>
#include <arm_math.h>
#include <arm_const_structs.h>
#include <stm32f1xx_hal_gpio.h>
#include "dotmatrix.h"
#include "adc.h"
#include "tim.h"
#include "user_main.h"
#include "debounce.h"
#include "debug.h"
#include "fft_windows.h"
// 512 = show 0-5 kHz
// 256 = show 0-10 kHz
// smaller range is OK since we have only a limited reception of higher frequencies anyway
#define SAMPLE_COUNT 512
#define BIN_COUNT (SAMPLE_COUNT/2)
#define CFFT_INST arm_cfft_sR_f32_len256
#define SCREEN_W 32
#define SCREEN_H 16
// Pins
#define BTN_CENTER 0
#define BTN_LEFT 1
#define BTN_RIGHT 2
#define BTN_UP 3
#define BTN_DOWN 4
// Y axis scaling factors
#define WAVEFORM_SCALE 0.02f
#define FFT_PRELOG_SCALE 1.0f
#define FFT_FINAL_SCALE 3.0f
#define FFT_PREFFT_SCALE 0.1f
#define VOL_STEP_TIME 50
#define VOL_STEP 0.05
#define VOL_STEP_LARGE 0.5
#define VOL_STEP_THRESH 0.01
#define VOL_STEP_SPEEDUP_TIME 1000
uint32_t audio_samples[SAMPLE_COUNT * 2]; // 2x size needed for complex FFT
float *audio_samples_f = (float *) audio_samples;
// counter for auto repeat
ms_time_t updn_press_timer = 0;
ms_time_t ltrt_press_timer = 0;
ms_time_t updn_hold_ts;
/** Dot matrix display instance */
DotMatrix_Cfg *disp;
/** Capture in progress flag */
volatile bool capture_pending = false;
/** scale & brightness config fields. Initial values. */
float y_scale = 1;
uint8_t brightness = 3;
/** active rendering mode (visualisation preset) */
enum {
MODE_SPECTRUM,
MODE_SPECTRUM2,
MODE_WAVEFORM,
MAX_MODE
} render_mode;
bool up_pressed = false;
bool down_pressed = false;
bool left_pressed = false;
bool right_pressed = false;
static void display_wave();
static void calculate_fft();
static void display_fft();
static void display_fft_spindle();
static void start_render();
// region Audio capture & display
/** Start DMA to capture audio */
void capture_start()
{
if (capture_pending) return;
capture_pending = true;
//uart_print("- Starting ADC DMA\n");
HAL_ADC_Start_DMA(&hadc1, audio_samples, SAMPLE_COUNT);
HAL_TIM_Base_Start(&htim3);
}
/** This callback is called by HAL after the transfer is complete */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
switch (render_mode) {
case MODE_WAVEFORM:
display_wave();
break;
case MODE_SPECTRUM:
calculate_fft();
display_fft();
break;
case MODE_SPECTRUM2:
calculate_fft();
display_fft_spindle();
break;
}
capture_pending = false;
}
/**
* Convert audio samples to float.
* NOTE: This trashes the original array of ints, they share the same memory location.
*/
void samples_to_float()
{
// Convert to float
for (int i = 0; i < SAMPLE_COUNT; i++) {
audio_samples_f[i] = (float) audio_samples[i];
}
// Obtain mean value
float mean;
arm_mean_f32(audio_samples_f, SAMPLE_COUNT, &mean);
// Subtract mean from all samples
for (int i = 0; i < SAMPLE_COUNT; i++) {
audio_samples_f[i] -= mean;
}
}
/** Spread numbers in the samples array so that they are interleaved by zeros (imaginary part) */
void spread_samples_for_fft()
{
for (int i = SAMPLE_COUNT - 1; i >= 0; i--) {
audio_samples_f[i * 2 + 1] = 0; // imaginary
audio_samples_f[i * 2] = audio_samples_f[i]; // * win_hamming_512[i]; // real
}
}
/** Display waveform preview */
void display_wave()
{
samples_to_float();
int x_offset = 0;
for (int i = 1; i < SAMPLE_COUNT; i++) {
if (audio_samples_f[i] > 0 && audio_samples_f[i - 1] < 0) {
x_offset = i;
break;
}
}
// make sure we're not gonna run out of range
if (x_offset >= SAMPLE_COUNT - SCREEN_W) {
x_offset = 0;
}
float totalmult = WAVEFORM_SCALE * y_scale;
start_render();
for (int i = 0; i < SCREEN_W; i++) {
dmtx_set(disp, i, 7 + roundf(audio_samples_f[i + x_offset] * totalmult), 1);
}
dmtx_show(disp);
}
/** Calculate FFT */
static void calculate_fft()
{
float *bins = audio_samples_f;
samples_to_float();
for (int i = 0; i < SAMPLE_COUNT; i++) {
bins[i] *= y_scale * FFT_PREFFT_SCALE; //win_hamming_512[i];
}
spread_samples_for_fft();
const arm_cfft_instance_f32 *S;
S = &CFFT_INST;
arm_cfft_f32(S, bins, 0, true); // bit reversed FFT
arm_cmplx_mag_f32(bins, bins, BIN_COUNT); // get magnitude (extract real values)
// Normalize & display
for (int i = 0; i < BIN_COUNT; i++) { // +1 because bin 0 is always 0
float bin = bins[i] * (1.0f / BIN_COUNT) * FFT_PRELOG_SCALE;
bin = log2f(bin);
bins[i] = bin * FFT_FINAL_SCALE;
}
}
/** Render classic FFT */
static void display_fft()
{
start_render();
float *bins = audio_samples_f;
for (int x = 0; x < SCREEN_W; x++) {
for (int j = 0; j < 1 + floorf(bins[x]); j++) {
dmtx_set(disp, x, j, 1);
}
}
dmtx_show(disp);
}
/** Render FFT "spindle" */
static void display_fft_spindle()
{
start_render();
float *bins = audio_samples_f;
for (int x = 0; x < SCREEN_W; x++) {
for (int j = 0; j < 1 + floorf(bins[x] * 0.5f); j++) {
dmtx_set(disp, x, 7 + j, 1);
dmtx_set(disp, x, 7 - j, 1);
}
}
dmtx_show(disp);
}
// endregion
// region UI
/** Clear screen & render "HUD" - button feedback lights */
void start_render()
{
dmtx_clear(disp);
if (up_pressed) dmtx_set(disp, SCREEN_W - 2, SCREEN_H - 1, 1);
if (down_pressed) dmtx_set(disp, SCREEN_W - 2, SCREEN_H - 3, 1);
if (left_pressed) dmtx_set(disp, SCREEN_W - 3, SCREEN_H - 2, 1);
if (right_pressed) dmtx_set(disp, SCREEN_W - 1, SCREEN_H - 2, 1);
}
/** Callback when button press state changes */
static void gamepad_button_cb(uint32_t btn, bool press)
{
dbg("Button press %d, state %d", btn, press);
switch (btn) {
case BTN_UP:
up_pressed = press;
if (press) {
updn_hold_ts = ms_now();
updn_press_timer = 0;
y_scale += VOL_STEP;
}
break;
case BTN_DOWN:
down_pressed = press;
if (press) {
updn_hold_ts = ms_now();
updn_press_timer = 0;
if (y_scale > VOL_STEP + VOL_STEP_THRESH) {
y_scale -= VOL_STEP;
}
}
break;
case BTN_LEFT:
left_pressed = press;
if (press) {
ltrt_press_timer = 0;
if (brightness > 0) brightness--;
}
break;
case BTN_RIGHT:
right_pressed = press;
if (press) {
ltrt_press_timer = 0;
if (brightness < 15) brightness++;
}
break;
case BTN_CENTER:
if (!press) {
// center button released
// cycle through modes
if (++render_mode == MAX_MODE) {
render_mode = 0;
}
}
info("Switched to render mode %d", render_mode);
break;
}
}
// endregion
/**
* Increment timebase counter each ms.
* This is called by HAL, weak override.
*/
void HAL_SYSTICK_Callback(void)
{
timebase_ms_cb();
}
/** Init the application */
void user_init()
{
// Enable audio input
HAL_GPIO_WritePin(AUDIO_NSTBY_GPIO_Port, AUDIO_NSTBY_Pin, 1);
// Init display
DotMatrix_Init disp_init;
disp_init.cols = 4;
disp_init.rows = 2;
disp_init.CS_GPIOx = SPI1_CS_GPIO_Port;
disp_init.CS_PINx = SPI1_CS_Pin;
disp_init.SPIx = SPI1;
disp = dmtx_init(&disp_init);
dmtx_intensity(disp, brightness);
dmtx_clear(disp);
dmtx_show(disp);
timebase_init(5, 5);
debounce_init(5);
// Gamepad
debo_init_t debo;
debo.debo_time = 50;
debo.invert = true;
debo.callback = gamepad_button_cb;
// Central button
debo.cb_payload = BTN_CENTER;
debo.GPIOx = BTN_CE_GPIO_Port;
debo.pin = BTN_CE_Pin;
debo_register_pin(&debo);
// Left
debo.cb_payload = BTN_LEFT;
debo.GPIOx = BTN_L_GPIO_Port;
debo.pin = BTN_L_Pin;
debo_register_pin(&debo);
// Right
debo.cb_payload = BTN_RIGHT;
debo.GPIOx = BTN_R_GPIO_Port;
debo.pin = BTN_R_Pin;
debo_register_pin(&debo);
// Up
debo.cb_payload = BTN_UP;
debo.GPIOx = BTN_UP_GPIO_Port;
debo.pin = BTN_UP_Pin;
debo_register_pin(&debo);
// Down
debo.cb_payload = BTN_DOWN;
debo.GPIOx = BTN_DN_GPIO_Port;
debo.pin = BTN_DN_Pin;
debo_register_pin(&debo);
}
/** Main function, called from MX-generated main.c */
void user_main()
{
banner("== USER CODE STARTING ==");
user_init();
ms_time_t counter1 = 0;
ms_time_t counter2 = 0;
while (1) {
if (ms_loop_elapsed(&counter1, 500)) {
// Blink
HAL_GPIO_TogglePin(LED1_GPIO_Port, LED1_Pin);
}
// hold-to-repeat
// This is not the correct way to do it, but good enough
if (ms_loop_elapsed(&updn_press_timer, VOL_STEP_TIME)) {
if (up_pressed) {
if (ms_now() - updn_hold_ts > VOL_STEP_SPEEDUP_TIME) {
y_scale += VOL_STEP_LARGE;
} else {
y_scale += VOL_STEP;
}
}
if (down_pressed) {
if (ms_now() - updn_hold_ts > VOL_STEP_SPEEDUP_TIME) {
if (y_scale > VOL_STEP_LARGE + VOL_STEP_THRESH) {
y_scale -= VOL_STEP_LARGE;
} else if (y_scale > VOL_STEP + VOL_STEP_THRESH) {
y_scale -= VOL_STEP;
}
} else {
if (y_scale > VOL_STEP + VOL_STEP_THRESH) {
y_scale -= VOL_STEP;
}
}
}
if (up_pressed || down_pressed) {
dbg("scale = %.2f", y_scale);
}
}
if (ms_loop_elapsed(&ltrt_press_timer, 250)) {
if (left_pressed) {
if (brightness > 0) {
brightness--;
}
}
if (right_pressed) {
if (brightness < 15) {
brightness++;
}
}
if (left_pressed || right_pressed) {
dmtx_intensity(disp, brightness);
}
}
// capture a sample to update display
//if (ms_loop_elapsed(&counter2, 10)) {
if (!capture_pending) {
capture_start();
}
//}
}
}
//region Error handlers
/** Called from MX-generated HAL error handler */
void user_Error_Handler()
{
error("HAL error occurred.\n");
while (1);
}
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void user_assert_failed(uint8_t *file, uint32_t line)
{
user_error_file_line("Assert failed", (const char *) file, line);
}
void user_error_file_line(const char *message, const char *file, uint32_t line)
{
error("%s in file %s on line %d", message, file, line);
while (1);
}
// endregion