B3M38SPD seminar project - beehive monitor with LoRa reporting
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2514 lines
80 KiB

/**
******************************************************************************
* @file stm32l0xx_ll_rcc.h
* @author MCD Application Team
* @brief Header file of RCC LL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L0xx_LL_RCC_H
#define __STM32L0xx_LL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx.h"
/** @addtogroup STM32L0xx_LL_Driver
* @{
*/
#if defined(RCC)
/** @defgroup RCC_LL RCC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Constants RCC Private Constants
* @{
*/
/* Defines used for the bit position in the register and perform offsets*/
#define RCC_POSITION_HPRE (uint32_t)4U /*!< field position in register RCC_CFGR */
#define RCC_POSITION_PPRE1 (uint32_t)8U /*!< field position in register RCC_CFGR */
#define RCC_POSITION_PPRE2 (uint32_t)11U /*!< field position in register RCC_CFGR */
#define RCC_POSITION_PLLDIV (uint32_t)22U /*!< field position in register RCC_CFGR */
#define RCC_POSITION_PLLMUL (uint32_t)18U /*!< field position in register RCC_CFGR */
#define RCC_POSITION_HSICAL (uint32_t)0U /*!< field position in register RCC_ICSCR */
#define RCC_POSITION_HSITRIM (uint32_t)8U /*!< field position in register RCC_ICSCR */
#define RCC_POSITION_MSIRANGE (uint32_t)13U /*!< field position in register RCC_ICSCR */
#define RCC_POSITION_MSICAL (uint32_t)16U /*!< field position in register RCC_ICSCR */
#define RCC_POSITION_MSITRIM (uint32_t)24U /*!< field position in register RCC_ICSCR */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_POSITION_HSI48CAL (uint32_t)8U /*!< field position in register RCC_CRRCR */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Exported_Types RCC Exported Types
* @{
*/
/** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure
* @{
*/
/**
* @brief RCC Clocks Frequency Structure
*/
typedef struct
{
uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */
uint32_t HCLK_Frequency; /*!< HCLK clock frequency */
uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */
uint32_t PCLK2_Frequency; /*!< PCLK2 clock frequency */
} LL_RCC_ClocksTypeDef;
/**
* @}
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation
* @brief Defines used to adapt values of different oscillators
* @note These values could be modified in the user environment according to
* HW set-up.
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000U) /*!< Value of the HSE oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the HSI oscillator in Hz */
#endif /* HSI_VALUE */
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768U) /*!< Value of the LSE oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSI_VALUE)
#define LSI_VALUE ((uint32_t)37000U) /*!< Value of the LSI oscillator in Hz */
#endif /* LSI_VALUE */
#if defined(RCC_HSI48_SUPPORT)
#if !defined (HSI48_VALUE)
#define HSI48_VALUE ((uint32_t)48000000U) /*!< Value of the HSI48 oscillator in Hz */
#endif /* HSI48_VALUE */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_RCC_WriteReg function
* @{
*/
#define LL_RCC_CICR_LSIRDYC RCC_CICR_LSIRDYC /*!< LSI Ready Interrupt Clear */
#define LL_RCC_CICR_LSERDYC RCC_CICR_LSERDYC /*!< LSE Ready Interrupt Clear */
#define LL_RCC_CICR_HSIRDYC RCC_CICR_HSIRDYC /*!< HSI Ready Interrupt Clear */
#define LL_RCC_CICR_HSERDYC RCC_CICR_HSERDYC /*!< HSE Ready Interrupt Clear */
#define LL_RCC_CICR_PLLRDYC RCC_CICR_PLLRDYC /*!< PLL Ready Interrupt Clear */
#define LL_RCC_CICR_MSIRDYC RCC_CICR_MSIRDYC /*!< MSI Ready Interrupt Clear */
#if defined(RCC_HSI48_SUPPORT)
#define LL_RCC_CICR_HSI48RDYC RCC_CICR_HSI48RDYC /*!< HSI48 Ready Interrupt Clear */
#endif /* RCC_HSI48_SUPPORT */
#define LL_RCC_CICR_LSECSSC RCC_CICR_LSECSSC /*!< LSE Clock Security System Interrupt Clear */
#define LL_RCC_CICR_CSSC RCC_CICR_CSSC /*!< Clock Security System Interrupt Clear */
/**
* @}
*/
/** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_RCC_ReadReg function
* @{
*/
#define LL_RCC_CIFR_LSIRDYF RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define LL_RCC_CIFR_LSERDYF RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define LL_RCC_CIFR_HSIRDYF RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define LL_RCC_CIFR_HSERDYF RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#define LL_RCC_CIFR_PLLRDYF RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */
#define LL_RCC_CIFR_MSIRDYF RCC_CIFR_MSIRDYF /*!< MSI Ready Interrupt flag */
#if defined(RCC_HSI48_SUPPORT)
#define LL_RCC_CIFR_HSI48RDYF RCC_CIFR_HSI48RDYF /*!< HSI48 Ready Interrupt flag */
#endif /* RCC_HSI48_SUPPORT */
#define LL_RCC_CIFR_LSECSSF RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#define LL_RCC_CIFR_CSSF RCC_CIFR_CSSF /*!< Clock Security System Interrupt flag */
#define LL_RCC_CSR_FWRSTF RCC_CSR_FWRSTF /*!< Firewall reset flag */
#define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */
#define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */
#define LL_RCC_CSR_PORRSTF RCC_CSR_PORRSTF /*!< POR/PDR reset flag */
#define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */
#define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */
#define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */
#define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low-Power reset flag */
/**
* @}
*/
/** @defgroup RCC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions
* @{
*/
#define LL_RCC_CIER_LSIRDYIE RCC_CIER_LSIRDYIE /*!< LSI Ready Interrupt Enable */
#define LL_RCC_CIER_LSERDYIE RCC_CIER_LSERDYIE /*!< LSE Ready Interrupt Enable */
#define LL_RCC_CIER_HSIRDYIE RCC_CIER_HSIRDYIE /*!< HSI Ready Interrupt Enable */
#define LL_RCC_CIER_HSERDYIE RCC_CIER_HSERDYIE /*!< HSE Ready Interrupt Enable */
#define LL_RCC_CIER_PLLRDYIE RCC_CIER_PLLRDYIE /*!< PLL Ready Interrupt Enable */
#define LL_RCC_CIER_MSIRDYIE RCC_CIER_MSIRDYIE /*!< MSI Ready Interrupt Enable */
#if defined(RCC_HSI48_SUPPORT)
#define LL_RCC_CIER_HSI48RDYIE RCC_CIER_HSI48RDYIE /*!< HSI48 Ready Interrupt Enable */
#endif /* RCC_HSI48_SUPPORT */
#define LL_RCC_CIER_LSECSSIE RCC_CIER_LSECSSIE /*!< LSE CSS Interrupt Enable */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability
* @{
*/
#define LL_RCC_LSEDRIVE_LOW ((uint32_t)0x00000000U) /*!< Xtal mode lower driving capability */
#define LL_RCC_LSEDRIVE_MEDIUMLOW RCC_CSR_LSEDRV_0 /*!< Xtal mode medium low driving capability */
#define LL_RCC_LSEDRIVE_MEDIUMHIGH RCC_CSR_LSEDRV_1 /*!< Xtal mode medium high driving capability */
#define LL_RCC_LSEDRIVE_HIGH RCC_CSR_LSEDRV /*!< Xtal mode higher driving capability */
/**
* @}
*/
/** @defgroup RCC_LL_EC_RTC_HSE_DIV RTC HSE Prescaler
* @{
*/
#define LL_RCC_RTC_HSE_DIV_2 (uint32_t)0x00000000U/*!< HSE is divided by 2 for RTC clock */
#define LL_RCC_RTC_HSE_DIV_4 RCC_CR_RTCPRE_0 /*!< HSE is divided by 4 for RTC clock */
#define LL_RCC_RTC_HSE_DIV_8 RCC_CR_RTCPRE_1 /*!< HSE is divided by 8 for RTC clock */
#define LL_RCC_RTC_HSE_DIV_16 RCC_CR_RTCPRE /*!< HSE is divided by 16 for RTC clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MSIRANGE MSI clock ranges
* @{
*/
#define LL_RCC_MSIRANGE_0 RCC_ICSCR_MSIRANGE_0 /*!< MSI = 65.536 KHz */
#define LL_RCC_MSIRANGE_1 RCC_ICSCR_MSIRANGE_1 /*!< MSI = 131.072 KHz*/
#define LL_RCC_MSIRANGE_2 RCC_ICSCR_MSIRANGE_2 /*!< MSI = 262.144 KHz */
#define LL_RCC_MSIRANGE_3 RCC_ICSCR_MSIRANGE_3 /*!< MSI = 524.288 KHz */
#define LL_RCC_MSIRANGE_4 RCC_ICSCR_MSIRANGE_4 /*!< MSI = 1.048 MHz */
#define LL_RCC_MSIRANGE_5 RCC_ICSCR_MSIRANGE_5 /*!< MSI = 2.097 MHz */
#define LL_RCC_MSIRANGE_6 RCC_ICSCR_MSIRANGE_6 /*!< MSI = 4.194 MHz */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_MSI RCC_CFGR_SW_MSI /*!< MSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_PLL RCC_CFGR_SW_PLL /*!< PLL selection as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_STATUS_MSI RCC_CFGR_SWS_MSI /*!< MSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_PLL RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler
* @{
*/
#define LL_RCC_SYSCLK_DIV_1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */
#define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */
#define LL_RCC_SYSCLK_DIV_4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */
#define LL_RCC_SYSCLK_DIV_8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */
#define LL_RCC_SYSCLK_DIV_16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */
#define LL_RCC_SYSCLK_DIV_64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */
#define LL_RCC_SYSCLK_DIV_128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */
#define LL_RCC_SYSCLK_DIV_256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */
#define LL_RCC_SYSCLK_DIV_512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB1_DIV APB low-speed prescaler (APB1)
* @{
*/
#define LL_RCC_APB1_DIV_1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */
#define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */
#define LL_RCC_APB1_DIV_4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */
#define LL_RCC_APB1_DIV_8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */
#define LL_RCC_APB1_DIV_16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB2_DIV APB high-speed prescaler (APB2)
* @{
*/
#define LL_RCC_APB2_DIV_1 RCC_CFGR_PPRE2_DIV1 /*!< HCLK not divided */
#define LL_RCC_APB2_DIV_2 RCC_CFGR_PPRE2_DIV2 /*!< HCLK divided by 2 */
#define LL_RCC_APB2_DIV_4 RCC_CFGR_PPRE2_DIV4 /*!< HCLK divided by 4 */
#define LL_RCC_APB2_DIV_8 RCC_CFGR_PPRE2_DIV8 /*!< HCLK divided by 8 */
#define LL_RCC_APB2_DIV_16 RCC_CFGR_PPRE2_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_STOP_WAKEUPCLOCK Wakeup from Stop and CSS backup clock selection
* @{
*/
#define LL_RCC_STOP_WAKEUPCLOCK_MSI ((uint32_t)0x00000000U) /*!< MSI selection after wake-up from STOP */
#define LL_RCC_STOP_WAKEUPCLOCK_HSI RCC_CFGR_STOPWUCK /*!< HSI selection after wake-up from STOP */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection
* @{
*/
#define LL_RCC_MCO1SOURCE_NOCLOCK RCC_CFGR_MCOSEL_NOCLOCK /*!< MCO output disabled, no clock on MCO */
#define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_SYSCLK /*!< SYSCLK selection as MCO source */
#define LL_RCC_MCO1SOURCE_HSI RCC_CFGR_MCOSEL_HSI /*!< HSI selection as MCO source */
#define LL_RCC_MCO1SOURCE_MSI RCC_CFGR_MCOSEL_MSI /*!< MSI selection as MCO source */
#define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_HSE /*!< HSE selection as MCO source */
#define LL_RCC_MCO1SOURCE_LSI RCC_CFGR_MCOSEL_LSI /*!< LSI selection as MCO source */
#define LL_RCC_MCO1SOURCE_LSE RCC_CFGR_MCOSEL_LSE /*!< LSE selection as MCO source */
#if defined(RCC_CFGR_MCOSEL_HSI48)
#define LL_RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_HSI48 /*!< HSI48 selection as MCO source */
#endif /* RCC_CFGR_MCOSEL_HSI48 */
#define LL_RCC_MCO1SOURCE_PLLCLK RCC_CFGR_MCOSEL_PLL /*!< PLLCLK selection as MCO source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler
* @{
*/
#define LL_RCC_MCO1_DIV_1 RCC_CFGR_MCOPRE_DIV1 /*!< MCO Clock divided by 1 */
#define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_DIV2 /*!< MCO Clock divided by 2 */
#define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_DIV4 /*!< MCO Clock divided by 4 */
#define LL_RCC_MCO1_DIV_8 RCC_CFGR_MCOPRE_DIV8 /*!< MCO Clock divided by 8 */
#define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_DIV16 /*!< MCO Clock divided by 16 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency
* @{
*/
#define LL_RCC_PERIPH_FREQUENCY_NO (uint32_t)0x00000000U /*!< No clock enabled for the peripheral */
#define LL_RCC_PERIPH_FREQUENCY_NA (uint32_t)0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup RCC_LL_EC_USART1_CLKSOURCE Peripheral USART clock source selection
* @{
*/
#if defined(RCC_CCIPR_USART1SEL)
#define LL_RCC_USART1_CLKSOURCE_PCLK2 (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | 0x00000000U) /*!< PCLK2 selected as USART1 clock */
#define LL_RCC_USART1_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_0) /*!< SYSCLK selected as USART1 clock */
#define LL_RCC_USART1_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_1) /*!< HSI selected as USART1 clock */
#define LL_RCC_USART1_CLKSOURCE_LSE (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL) /*!< LSE selected as USART1 clock*/
#endif /* RCC_CCIPR_USART1SEL */
#define LL_RCC_USART2_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | 0x00000000U) /*!< PCLK1 selected as USART2 clock */
#define LL_RCC_USART2_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_0) /*!< SYSCLK selected as USART2 clock */
#define LL_RCC_USART2_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_1) /*!< HSI selected as USART2 clock */
#define LL_RCC_USART2_CLKSOURCE_LSE (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL) /*!< LSE selected as USART2 clock*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPUART1_CLKSOURCE Peripheral LPUART clock source selection
* @{
*/
#define LL_RCC_LPUART1_CLKSOURCE_PCLK1 (uint32_t)0x00000000U /*!< PCLK1 selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_SYSCLK RCC_CCIPR_LPUART1SEL_0 /*!< SYSCLK selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_HSI RCC_CCIPR_LPUART1SEL_1 /*!< HSI selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_LSE RCC_CCIPR_LPUART1SEL /*!< LSE selected as LPUART1 clock*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2C1_CLKSOURCE Peripheral I2C clock source selection
* @{
*/
#define LL_RCC_I2C1_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (0x00000000U >> 4U)) /*!< PCLK1 selected as I2C1 clock */
#define LL_RCC_I2C1_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (RCC_CCIPR_I2C1SEL_0 >> 4U)) /*!< SYSCLK selected as I2C1 clock */
#define LL_RCC_I2C1_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (RCC_CCIPR_I2C1SEL_1 >> 4U)) /*!< HSI selected as I2C1 clock */
#if defined(RCC_CCIPR_I2C3SEL)
#define LL_RCC_I2C3_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (0x00000000U >> 4U)) /*!< PCLK1 selected as I2C3 clock */
#define LL_RCC_I2C3_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (RCC_CCIPR_I2C3SEL_0 >> 4U)) /*!< SYSCLK selected as I2C3 clock */
#define LL_RCC_I2C3_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (RCC_CCIPR_I2C3SEL_1 >> 4U)) /*!< HSI selected as I2C3 clock */
#endif /*RCC_CCIPR_I2C3SEL*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPTIM1_CLKSOURCE Peripheral LPTIM clock source selection
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE_PCLK1 (uint32_t)(0x00000000U) /*!< PCLK1 selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_LSI (uint32_t)RCC_CCIPR_LPTIM1SEL_0 /*!< LSI selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_HSI (uint32_t)RCC_CCIPR_LPTIM1SEL_1 /*!< HSI selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_LSE (uint32_t)RCC_CCIPR_LPTIM1SEL /*!< LSE selected as LPTIM1 clock*/
/**
* @}
*/
#if defined(RCC_CCIPR_HSI48SEL)
#if defined(RNG)
/** @defgroup RCC_LL_EC_RNG_CLKSOURCE Peripheral RNG clock source selection
* @{
*/
#define LL_RCC_RNG_CLKSOURCE_PLL (uint32_t)(0x00000000U) /*!< PLL selected as RNG clock */
#define LL_RCC_RNG_CLKSOURCE_HSI48 (uint32_t)(RCC_CCIPR_HSI48SEL) /*!< HSI48 selected as RNG clock*/
/**
* @}
*/
#endif /* RNG */
#if defined(USB)
/** @defgroup RCC_LL_EC_USB_CLKSOURCE Peripheral USB clock source selection
* @{
*/
#define LL_RCC_USB_CLKSOURCE_PLL (uint32_t)(0x00000000U) /*!< PLL selected as USB clock */
#define LL_RCC_USB_CLKSOURCE_HSI48 (uint32_t)(RCC_CCIPR_HSI48SEL) /*!< HSI48 selected as USB clock*/
/**
* @}
*/
#endif /* USB */
#endif /* RCC_CCIPR_HSI48SEL */
/** @defgroup RCC_LL_EC_USART1 Peripheral USART get clock source
* @{
*/
#if defined(RCC_CCIPR_USART1SEL)
#define LL_RCC_USART1_CLKSOURCE RCC_CCIPR_USART1SEL /*!< USART1 clock source selection bits */
#endif /* RCC_CCIPR_USART1SEL */
#define LL_RCC_USART2_CLKSOURCE RCC_CCIPR_USART2SEL /*!< USART2 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPUART1 Peripheral LPUART get clock source
* @{
*/
#define LL_RCC_LPUART1_CLKSOURCE RCC_CCIPR_LPUART1SEL /*!< LPUART1 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2C1 Peripheral I2C get clock source
* @{
*/
#define LL_RCC_I2C1_CLKSOURCE RCC_CCIPR_I2C1SEL /*!< I2C1 clock source selection bits */
#if defined(RCC_CCIPR_I2C3SEL)
#define LL_RCC_I2C3_CLKSOURCE RCC_CCIPR_I2C3SEL /*!< I2C3 clock source selection bits */
#endif /*RCC_CCIPR_I2C3SEL*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPTIM1 Peripheral LPTIM get clock source
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE RCC_CCIPR_LPTIM1SEL /*!< LPTIM1 clock source selection bits */
/**
* @}
*/
#if defined(RCC_CCIPR_HSI48SEL)
#if defined(RNG)
/** @defgroup RCC_LL_EC_RNG Peripheral RNG get clock source
* @{
*/
#define LL_RCC_RNG_CLKSOURCE RCC_CCIPR_HSI48SEL /*!< HSI48 RC clock source selection bit for RNG*/
/**
* @}
*/
#endif /* RNG */
#if defined(USB)
/** @defgroup RCC_LL_EC_USB Peripheral USB get clock source
* @{
*/
#define LL_RCC_USB_CLKSOURCE RCC_CCIPR_HSI48SEL /*!< HSI48 RC clock source selection bit for USB*/
/**
* @}
*/
#endif /* USB */
#endif /* RCC_CCIPR_HSI48SEL */
/** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection
* @{
*/
#define LL_RCC_RTC_CLKSOURCE_NONE (uint32_t)0x00000000U /*!< No clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSE RCC_CSR_RTCSEL_LSE /*!< LSE oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSI RCC_CSR_RTCSEL_LSI /*!< LSI oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_HSE RCC_CSR_RTCSEL_HSE /*!< HSE oscillator clock divided by a programmable prescaler
(selection through @ref LL_RCC_SetRTC_HSEPrescaler function ) */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLL_MUL PLL Multiplicator factor
* @{
*/
#define LL_RCC_PLL_MUL_3 RCC_CFGR_PLLMUL3 /*!< PLL input clock * 3 */
#define LL_RCC_PLL_MUL_4 RCC_CFGR_PLLMUL4 /*!< PLL input clock * 4 */
#define LL_RCC_PLL_MUL_6 RCC_CFGR_PLLMUL6 /*!< PLL input clock * 6 */
#define LL_RCC_PLL_MUL_8 RCC_CFGR_PLLMUL8 /*!< PLL input clock * 8 */
#define LL_RCC_PLL_MUL_12 RCC_CFGR_PLLMUL12 /*!< PLL input clock * 12 */
#define LL_RCC_PLL_MUL_16 RCC_CFGR_PLLMUL16 /*!< PLL input clock * 16 */
#define LL_RCC_PLL_MUL_24 RCC_CFGR_PLLMUL24 /*!< PLL input clock * 24 */
#define LL_RCC_PLL_MUL_32 RCC_CFGR_PLLMUL32 /*!< PLL input clock * 32 */
#define LL_RCC_PLL_MUL_48 RCC_CFGR_PLLMUL48 /*!< PLL input clock * 48 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLL_DIV PLL division factor
* @{
*/
#define LL_RCC_PLL_DIV_2 RCC_CFGR_PLLDIV2 /*!< PLL clock output = PLLVCO / 2 */
#define LL_RCC_PLL_DIV_3 RCC_CFGR_PLLDIV3 /*!< PLL clock output = PLLVCO / 3 */
#define LL_RCC_PLL_DIV_4 RCC_CFGR_PLLDIV4 /*!< PLL clock output = PLLVCO / 4 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLSOURCE PLL SOURCE
* @{
*/
#define LL_RCC_PLLSOURCE_HSI RCC_CFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in RCC register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG(RCC->__REG__, (__VALUE__))
/**
* @brief Read a value in RCC register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__)
/**
* @}
*/
/** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies
* @{
*/
/**
* @brief Helper macro to calculate the PLLCLK frequency
* @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE,
* @ref LL_RCC_PLL_GetMultiplicator (),
* @ref LL_RCC_PLL_GetDivider ());
* @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI)
* @param __PLLMUL__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_3
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_12
* @arg @ref LL_RCC_PLL_MUL_16
* @arg @ref LL_RCC_PLL_MUL_24
* @arg @ref LL_RCC_PLL_MUL_32
* @arg @ref LL_RCC_PLL_MUL_48
* @param __PLLDIV__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_DIV_2
* @arg @ref LL_RCC_PLL_DIV_3
* @arg @ref LL_RCC_PLL_DIV_4
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__, __PLLDIV__) ((__INPUTFREQ__) * (PLLMulTable[(__PLLMUL__) >> RCC_POSITION_PLLMUL]) / (((__PLLDIV__) >> RCC_POSITION_PLLDIV)+1U))
/**
* @brief Helper macro to calculate the HCLK frequency
* @note: __AHBPRESCALER__ be retrieved by @ref LL_RCC_GetAHBPrescaler
* ex: __LL_RCC_CALC_HCLK_FREQ(LL_RCC_GetAHBPrescaler())
* @param __SYSCLKFREQ__ SYSCLK frequency (based on MSI/HSE/HSI/PLLCLK)
* @param __AHBPRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__, __AHBPRESCALER__) ((__SYSCLKFREQ__) >> AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_POSITION_HPRE])
/**
* @brief Helper macro to calculate the PCLK1 frequency (ABP1)
* @note: __APB1PRESCALER__ be retrieved by @ref LL_RCC_GetAPB1Prescaler
* ex: __LL_RCC_CALC_PCLK1_FREQ(LL_RCC_GetAPB1Prescaler())
* @param __HCLKFREQ__ HCLK frequency
* @param __APB1PRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval PCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB1PRESCALER__) >> RCC_POSITION_PPRE1])
/**
* @brief Helper macro to calculate the PCLK2 frequency (ABP2)
* @note: __APB2PRESCALER__ be retrieved by @ref LL_RCC_GetAPB2Prescaler
* ex: __LL_RCC_CALC_PCLK2_FREQ(LL_RCC_GetAPB2Prescaler())
* @param __HCLKFREQ__ HCLK frequency
* @param __APB2PRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval PCLK2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK2_FREQ(__HCLKFREQ__, __APB2PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB2PRESCALER__) >> RCC_POSITION_PPRE2])
/**
* @brief Helper macro to calculate the MSI frequency (in Hz)
* @note: __MSIRANGE__can be retrieved by @ref LL_RCC_MSI_GetRange
* ex: __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange())
* @param __MSIRANGE__: This parameter can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
* @retval MSI clock frequency (in Hz)
*/
#define __LL_RCC_CALC_MSI_FREQ(__MSIRANGE__) ((32768U * ( 1U << (((__MSIRANGE__) >> RCC_POSITION_MSIRANGE) + 1U))))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_LL_EF_HSE HSE
* @{
*/
#if defined(RCC_HSECSS_SUPPORT)
/**
* @brief Enable the Clock Security System.
* @rmtoll CR CSSHSEON LL_RCC_HSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON);
}
#endif /* RCC_HSECSS_SUPPORT */
/**
* @brief Enable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableBypass(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Disable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableBypass(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Enable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Disable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Check if HSE oscillator Ready
* @rmtoll CR HSERDY LL_RCC_HSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY));
}
/**
* @brief Configure the RTC prescaler (divider)
* @rmtoll CR RTCPRE LL_RCC_SetRTC_HSEPrescaler
* @param Div This parameter can be one of the following values:
* @arg @ref LL_RCC_RTC_HSE_DIV_2
* @arg @ref LL_RCC_RTC_HSE_DIV_4
* @arg @ref LL_RCC_RTC_HSE_DIV_8
* @arg @ref LL_RCC_RTC_HSE_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRTC_HSEPrescaler(uint32_t Div)
{
MODIFY_REG(RCC->CR, RCC_CR_RTCPRE, Div);
}
/**
* @brief Get the RTC divider (prescaler)
* @rmtoll CR RTCPRE LL_RCC_GetRTC_HSEPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RTC_HSE_DIV_2
* @arg @ref LL_RCC_RTC_HSE_DIV_4
* @arg @ref LL_RCC_RTC_HSE_DIV_8
* @arg @ref LL_RCC_RTC_HSE_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetRTC_HSEPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_RTCPRE));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSI HSI
* @{
*/
/**
* @brief Enable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Disable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Check if HSI clock is ready
* @rmtoll CR HSIRDY LL_RCC_HSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY));
}
/**
* @brief Enable HSI even in stop mode
* @note HSI oscillator is forced ON even in Stop mode
* @rmtoll CR HSIKERON LL_RCC_HSI_EnableInStopMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_EnableInStopMode(void)
{
SET_BIT(RCC->CR, RCC_CR_HSIKERON);
}
/**
* @brief Disable HSI in stop mode
* @rmtoll CR HSIKERON LL_RCC_HSI_DisableInStopMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_DisableInStopMode(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON);
}
/**
* @brief Enable HSI Divider (it divides by 4)
* @rmtoll CR HSIDIVEN LL_RCC_HSI_EnableDivider
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_EnableDivider(void)
{
SET_BIT(RCC->CR, RCC_CR_HSIDIVEN);
}
/**
* @brief Disable HSI Divider (it divides by 4)
* @rmtoll CR HSIDIVEN LL_RCC_HSI_DisableDivider
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_DisableDivider(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSIDIVEN);
}
#if defined(RCC_CR_HSIOUTEN)
/**
* @brief Enable HSI Output
* @rmtoll CR HSIOUTEN LL_RCC_HSI_EnableOutput
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_EnableOutput(void)
{
SET_BIT(RCC->CR, RCC_CR_HSIOUTEN);
}
/**
* @brief Disable HSI Output
* @rmtoll CR HSIOUTEN LL_RCC_HSI_DisableOutput
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_DisableOutput(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSIOUTEN);
}
#endif /* RCC_CR_HSIOUTEN */
/**
* @brief Get HSI Calibration value
* @note When HSITRIM is written, HSICAL is updated with the sum of
* HSITRIM and the factory trim value
* @rmtoll ICSCR HSICAL LL_RCC_HSI_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSICAL) >> RCC_POSITION_HSICAL);
}
/**
* @brief Set HSI Calibration trimming
* @note user-programmable trimming value that is added to the HSICAL
* @note Default value is 16, which, when added to the HSICAL value,
* should trim the HSI to 16 MHz +/- 1 %
* @rmtoll ICSCR HSITRIM LL_RCC_HSI_SetCalibTrimming
* @param Value between Min_Data = 0x00 and Max_Data = 0x1F
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, Value << RCC_POSITION_HSITRIM);
}
/**
* @brief Get HSI Calibration trimming
* @rmtoll ICSCR HSITRIM LL_RCC_HSI_GetCalibTrimming
* @retval Between Min_Data = 0x00 and Max_Data = 0x1F
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_POSITION_HSITRIM);
}
/**
* @}
*/
#if defined(RCC_HSI48_SUPPORT)
/** @defgroup RCC_LL_EF_HSI48 HSI48
* @{
*/
/**
* @brief Enable HSI48
* @rmtoll CRRCR HSI48ON LL_RCC_HSI48_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_Enable(void)
{
SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON);
}
/**
* @brief Disable HSI48
* @rmtoll CRRCR HSI48ON LL_RCC_HSI48_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_Disable(void)
{
CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON);
}
/**
* @brief Check if HSI48 oscillator Ready
* @rmtoll CRRCR HSI48RDY LL_RCC_HSI48_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_IsReady(void)
{
return (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == (RCC_CRRCR_HSI48RDY));
}
/**
* @brief Get HSI48 Calibration value
* @rmtoll CRRCR HSI48CAL LL_RCC_HSI48_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48CAL) >> RCC_POSITION_HSI48CAL);
}
#if defined(RCC_CRRCR_HSI48DIV6OUTEN)
/**
* @brief Enable HSI48 Divider (it divides by 6)
* @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_EnableDivider
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_EnableDivider(void)
{
SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN);
}
/**
* @brief Disable HSI48 Divider (it divides by 6)
* @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_DisableDivider
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_DisableDivider(void)
{
CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN);
}
/**
* @brief Check if HSI48 Divider is enabled (it divides by 6)
* @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_IsDivided
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_IsDivided(void)
{
return (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN) == (RCC_CRRCR_HSI48DIV6OUTEN));
}
#endif /*RCC_CRRCR_HSI48DIV6OUTEN*/
/**
* @}
*/
#endif /* RCC_HSI48_SUPPORT */
/** @defgroup RCC_LL_EF_LSE LSE
* @{
*/
/**
* @brief Enable Low Speed External (LSE) crystal.
* @rmtoll CSR LSEON LL_RCC_LSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSEON);
}
/**
* @brief Disable Low Speed External (LSE) crystal.
* @rmtoll CSR LSEON LL_RCC_LSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEON);
}
/**
* @brief Enable external clock source (LSE bypass).
* @rmtoll CSR LSEBYP LL_RCC_LSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableBypass(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSEBYP);
}
/**
* @brief Disable external clock source (LSE bypass).
* @rmtoll CSR LSEBYP LL_RCC_LSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableBypass(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEBYP);
}
/**
* @brief Set LSE oscillator drive capability
* @note The oscillator is in Xtal mode when it is not in bypass mode.
* @rmtoll CSR LSEDRV LL_RCC_LSE_SetDriveCapability
* @param LSEDrive This parameter can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH
* @arg @ref LL_RCC_LSEDRIVE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive)
{
MODIFY_REG(RCC->CSR, RCC_CSR_LSEDRV, LSEDrive);
}
/**
* @brief Get LSE oscillator drive capability
* @rmtoll CSR LSEDRV LL_RCC_LSE_GetDriveCapability
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH
* @arg @ref LL_RCC_LSEDRIVE_HIGH
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void)
{
return (uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_LSEDRV));
}
/**
* @brief Enable Clock security system on LSE.
* @rmtoll CSR LSECSSON LL_RCC_LSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableCSS(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSECSSON);
}
/**
* @brief Disable Clock security system on LSE.
* @note Clock security system can be disabled only after a LSE
* failure detection. In that case it MUST be disabled by software.
* @rmtoll CSR LSECSSON LL_RCC_LSE_DisableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableCSS(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSECSSON);
}
/**
* @brief Check if LSE oscillator Ready
* @rmtoll CSR LSERDY LL_RCC_LSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LSERDY) == (RCC_CSR_LSERDY));
}
/**
* @brief Check if CSS on LSE failure Detection
* @rmtoll CSR LSECSSD LL_RCC_LSE_IsCSSDetected
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsCSSDetected(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LSECSSD) == (RCC_CSR_LSECSSD));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSI LSI
* @{
*/
/**
* @brief Enable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Disable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Check if LSI is Ready
* @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MSI MSI
* @{
*/
/**
* @brief Enable MSI oscillator
* @rmtoll CR MSION LL_RCC_MSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_MSION);
}
/**
* @brief Disable MSI oscillator
* @rmtoll CR MSION LL_RCC_MSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_MSION);
}
/**
* @brief Check if MSI oscillator Ready
* @rmtoll CR MSIRDY LL_RCC_MSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == (RCC_CR_MSIRDY));
}
/**
* @brief Configure the Internal Multi Speed oscillator (MSI) clock range in run mode.
* @rmtoll ICSCR MSIRANGE LL_RCC_MSI_SetRange
* @param Range This parameter can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_SetRange(uint32_t Range)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSIRANGE, Range);
}
/**
* @brief Get the Internal Multi Speed oscillator (MSI) clock range in run mode.
* @rmtoll ICSCR MSIRANGE LL_RCC_MSI_GetRange
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetRange(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSIRANGE));
}
/**
* @brief Get MSI Calibration value
* @note When MSITRIM is written, MSICAL is updated with the sum of
* MSITRIM and the factory trim value
* @rmtoll ICSCR MSICAL LL_RCC_MSI_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSICAL) >> RCC_POSITION_MSICAL);
}
/**
* @brief Set MSI Calibration trimming
* @note user-programmable trimming value that is added to the MSICAL
* @rmtoll ICSCR MSITRIM LL_RCC_MSI_SetCalibTrimming
* @param Value between Min_Data = 0x00 and Max_Data = 0xFF
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSITRIM, Value << RCC_POSITION_MSITRIM);
}
/**
* @brief Get MSI Calibration trimming
* @rmtoll ICSCR MSITRIM LL_RCC_MSI_GetCalibTrimming
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_POSITION_MSITRIM);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_System System
* @{
*/
/**
* @brief Configure the system clock source
* @rmtoll CFGR SW LL_RCC_SetSysClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_MSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_PLL
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source);
}
/**
* @brief Get the system clock source
* @rmtoll CFGR SWS LL_RCC_GetSysClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_MSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL
*/
__STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS));
}
/**
* @brief Set AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler);
}
/**
* @brief Set APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_SetAPB1Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, Prescaler);
}
/**
* @brief Set APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_SetAPB2Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB2Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, Prescaler);
}
/**
* @brief Get AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE));
}
/**
* @brief Get APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_GetAPB1Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1));
}
/**
* @brief Get APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_GetAPB2Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB2Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2));
}
/**
* @brief Set Clock After Wake-Up From Stop mode
* @rmtoll CFGR STOPWUCK LL_RCC_SetClkAfterWakeFromStop
* @param Clock This parameter can be one of the following values:
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetClkAfterWakeFromStop(uint32_t Clock)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_STOPWUCK, Clock);
}
/**
* @brief Get Clock After Wake-Up From Stop mode
* @rmtoll CFGR STOPWUCK LL_RCC_GetClkAfterWakeFromStop
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI
*/
__STATIC_INLINE uint32_t LL_RCC_GetClkAfterWakeFromStop(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_STOPWUCK));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MCO MCO
* @{
*/
/**
* @brief Configure MCOx
* @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n
* CFGR MCOPRE LL_RCC_ConfigMCO
* @param MCOxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK
* @arg @ref LL_RCC_MCO1SOURCE_SYSCLK
* @arg @ref LL_RCC_MCO1SOURCE_HSI
* @arg @ref LL_RCC_MCO1SOURCE_MSI
* @arg @ref LL_RCC_MCO1SOURCE_HSE
* @arg @ref LL_RCC_MCO1SOURCE_PLLCLK
* @arg @ref LL_RCC_MCO1SOURCE_LSI
* @arg @ref LL_RCC_MCO1SOURCE_LSE
* @arg @ref LL_RCC_MCO1SOURCE_HSI48 (*)
*
* (*) value not defined in all devices.
* @param MCOxPrescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1_DIV_1
* @arg @ref LL_RCC_MCO1_DIV_2
* @arg @ref LL_RCC_MCO1_DIV_4
* @arg @ref LL_RCC_MCO1_DIV_8
* @arg @ref LL_RCC_MCO1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source
* @{
*/
/**
* @brief Configure USARTx clock source
* @rmtoll CCIPR USARTxSEL LL_RCC_SetUSARTClockSource
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2 (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_HSI (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_LSE (*)
* @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART2_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART2_CLKSOURCE_LSE
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSARTClockSource(uint32_t USARTxSource)
{
MODIFY_REG(RCC->CCIPR, (USARTxSource >> 16U), (USARTxSource & 0x0000FFFFU));
}
/**
* @brief Configure LPUART1x clock source
* @rmtoll CCIPR LPUART1SEL LL_RCC_SetLPUARTClockSource
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetLPUARTClockSource(uint32_t LPUARTxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPUART1SEL, LPUARTxSource);
}
/**
* @brief Configure I2Cx clock source
* @rmtoll CCIPR I2CxSEL LL_RCC_SetI2CClockSource
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1 (*)
* @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK (*)
* @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI (*)
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetI2CClockSource(uint32_t I2CxSource)
{
MODIFY_REG(RCC->CCIPR, ((I2CxSource >> 4U) & 0x000FF000U), ((I2CxSource << 4U) & 0x000FF000U));
}
/**
* @brief Configure LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_SetLPTIMClockSource
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetLPTIMClockSource(uint32_t LPTIMxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPTIM1SEL, LPTIMxSource);
}
#if defined(RCC_CCIPR_HSI48SEL)
#if defined(RNG)
/**
* @brief Configure RNG clock source
* @rmtoll CCIPR HSI48SEL LL_RCC_SetRNGClockSource
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE_PLL
* @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRNGClockSource(uint32_t RNGxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_HSI48SEL, RNGxSource);
}
#endif /* RNG */
#if defined(USB)
/**
* @brief Configure USB clock source
* @rmtoll CCIPR HSI48SEL LL_RCC_SetUSBClockSource
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE_PLL
* @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSBClockSource(uint32_t USBxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_HSI48SEL, USBxSource);
}
#endif /* USB */
#endif /* RCC_CCIPR_HSI48SEL */
/**
* @brief Get USARTx clock source
* @rmtoll CCIPR USARTxSEL LL_RCC_GetUSARTClockSource
* @param USARTx This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE (*)
* @arg @ref LL_RCC_USART2_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2 (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_HSI (*)
* @arg @ref LL_RCC_USART1_CLKSOURCE_LSE (*)
* @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART2_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART2_CLKSOURCE_LSE
*
* (*) value not defined in all devices.
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSARTClockSource(uint32_t USARTx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, USARTx) | (USARTx << 16U));
}
/**
* @brief Get LPUARTx clock source
* @rmtoll CCIPR LPUART1SEL LL_RCC_GetLPUARTClockSource
* @param LPUARTx This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetLPUARTClockSource(uint32_t LPUARTx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, LPUARTx));
}
/**
* @brief Get I2Cx clock source
* @rmtoll CCIPR I2CxSEL LL_RCC_GetI2CClockSource
* @param I2Cx This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE
* @arg @ref LL_RCC_I2C3_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1 (*)
* @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK (*)
* @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI (*)
*
* (*) value not defined in all devices.
*/
__STATIC_INLINE uint32_t LL_RCC_GetI2CClockSource(uint32_t I2Cx)
{
return (uint32_t)((READ_BIT(RCC->CCIPR, I2Cx) >> 4U) | (I2Cx << 4U));
}
/**
* @brief Get LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_GetLPTIMClockSource
* @param LPTIMx This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetLPTIMClockSource(uint32_t LPTIMx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, LPTIMx));
}
#if defined(RCC_CCIPR_HSI48SEL)
#if defined(RNG)
/**
* @brief Get RNGx clock source
* @rmtoll CCIPR CLK48SEL LL_RCC_GetRNGClockSource
* @param RNGx This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE_PLL
* @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48
*/
__STATIC_INLINE uint32_t LL_RCC_GetRNGClockSource(uint32_t RNGx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, RNGx));
}
#endif /* RNG */
#if defined(USB)
/**
* @brief Get USBx clock source
* @rmtoll CCIPR CLK48SEL LL_RCC_GetUSBClockSource
* @param USBx This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL
* @arg @ref LL_RCC_USB_CLKSOURCE_HSI48
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSBClockSource(uint32_t USBx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, USBx));
}
#endif /* USB */
#endif /* RCC_CCIPR_HSI48SEL */
/**
* @}
*/
/** @defgroup RCC_LL_EF_RTC RTC
* @{
*/
/**
* @brief Set RTC Clock Source
* @note Once the RTC clock source has been selected, it cannot be changed any more unless
* the Backup domain is reset, or unless a failure is detected on LSE (LSECSSD is
* set). The RTCRST bit can be used to reset them.
* @rmtoll CSR RTCSEL LL_RCC_SetRTCClockSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source)
{
MODIFY_REG(RCC->CSR, RCC_CSR_RTCSEL, Source);
}
/**
* @brief Get RTC Clock Source
* @rmtoll CSR RTCSEL LL_RCC_GetRTCClockSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_RTCSEL));
}
/**
* @brief Enable RTC
* @rmtoll CSR RTCEN LL_RCC_EnableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableRTC(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RTCEN);
}
/**
* @brief Disable RTC
* @rmtoll CSR RTCEN LL_RCC_DisableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableRTC(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_RTCEN);
}
/**
* @brief Check if RTC has been enabled or not
* @rmtoll CSR RTCEN LL_RCC_IsEnabledRTC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_RTCEN) == (RCC_CSR_RTCEN));
}
/**
* @brief Force the Backup domain reset
* @rmtoll CSR RTCRST LL_RCC_ForceBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RTCRST);
}
/**
* @brief Release the Backup domain reset
* @rmtoll CSR RTCRST LL_RCC_ReleaseBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_RTCRST);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_PLL PLL
* @{
*/
/**
* @brief Enable PLL
* @rmtoll CR PLLON LL_RCC_PLL_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Disable PLL
* @note Cannot be disabled if the PLL clock is used as the system clock
* @rmtoll CR PLLON LL_RCC_PLL_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Check if PLL Ready
* @rmtoll CR PLLRDY LL_RCC_PLL_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY));
}
/**
* @brief Configure PLL used for SYSCLK Domain
* @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLMUL LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLDIV LL_RCC_PLL_ConfigDomain_SYS
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @param PLLMul This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_3
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_12
* @arg @ref LL_RCC_PLL_MUL_16
* @arg @ref LL_RCC_PLL_MUL_24
* @arg @ref LL_RCC_PLL_MUL_32
* @arg @ref LL_RCC_PLL_MUL_48
* @param PLLDiv This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_DIV_2
* @arg @ref LL_RCC_PLL_DIV_3
* @arg @ref LL_RCC_PLL_DIV_4
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul, uint32_t PLLDiv)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL | RCC_CFGR_PLLDIV, Source | PLLMul | PLLDiv);
}
/**
* @brief Get the oscillator used as PLL clock source.
* @rmtoll CFGR PLLSRC LL_RCC_PLL_GetMainSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC));
}
/**
* @brief Get PLL multiplication Factor
* @rmtoll CFGR PLLMUL LL_RCC_PLL_GetMultiplicator
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_3
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_12
* @arg @ref LL_RCC_PLL_MUL_16
* @arg @ref LL_RCC_PLL_MUL_24
* @arg @ref LL_RCC_PLL_MUL_32
* @arg @ref LL_RCC_PLL_MUL_48
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMultiplicator(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLMUL));
}
/**
* @brief Get Division factor for the main PLL and other PLL
* @rmtoll CFGR PLLDIV LL_RCC_PLL_GetDivider
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLL_DIV_2
* @arg @ref LL_RCC_PLL_DIV_3
* @arg @ref LL_RCC_PLL_DIV_4
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetDivider(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLDIV));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Clear LSI ready interrupt flag
* @rmtoll CICR LSIRDYC LL_RCC_ClearFlag_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC);
}
/**
* @brief Clear LSE ready interrupt flag
* @rmtoll CICR LSERDYC LL_RCC_ClearFlag_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSERDYC);
}
/**
* @brief Clear MSI ready interrupt flag
* @rmtoll CICR MSIRDYC LL_RCC_ClearFlag_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_MSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_MSIRDYC);
}
/**
* @brief Clear HSI ready interrupt flag
* @rmtoll CICR HSIRDYC LL_RCC_ClearFlag_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSIRDYC);
}
/**
* @brief Clear HSE ready interrupt flag
* @rmtoll CICR HSERDYC LL_RCC_ClearFlag_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSERDYC);
}
/**
* @brief Clear PLL ready interrupt flag
* @rmtoll CICR PLLRDYC LL_RCC_ClearFlag_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_PLLRDYC);
}
#if defined(RCC_HSI48_SUPPORT)
/**
* @brief Clear HSI48 ready interrupt flag
* @rmtoll CICR HSI48RDYC LL_RCC_ClearFlag_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSI48RDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSI48RDYC);
}
#endif /* RCC_HSI48_SUPPORT */
#if defined(RCC_HSECSS_SUPPORT)
/**
* @brief Clear Clock security system interrupt flag
* @rmtoll CICR CSSC LL_RCC_ClearFlag_HSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void)
{
SET_BIT(RCC->CICR, RCC_CICR_CSSC);
}
#endif /* RCC_HSECSS_SUPPORT */
/**
* @brief Clear LSE Clock security system interrupt flag
* @rmtoll CICR LSECSSC LL_RCC_ClearFlag_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSECSS(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSECSSC);
}
/**
* @brief Check if LSI ready interrupt occurred or not
* @rmtoll CIFR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_LSIRDYF) == (RCC_CIFR_LSIRDYF));
}
/**
* @brief Check if LSE ready interrupt occurred or not
* @rmtoll CIFR LSERDYF LL_RCC_IsActiveFlag_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_LSERDYF) == (RCC_CIFR_LSERDYF));
}
/**
* @brief Check if MSI ready interrupt occurred or not
* @rmtoll CIFR MSIRDYF LL_RCC_IsActiveFlag_MSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_MSIRDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_MSIRDYF) == (RCC_CIFR_MSIRDYF));
}
/**
* @brief Check if HSI ready interrupt occurred or not
* @rmtoll CIFR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_HSIRDYF) == (RCC_CIFR_HSIRDYF));
}
/**
* @brief Check if HSE ready interrupt occurred or not
* @rmtoll CIFR HSERDYF LL_RCC_IsActiveFlag_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_HSERDYF) == (RCC_CIFR_HSERDYF));
}
/**
* @brief Check if PLL ready interrupt occurred or not
* @rmtoll CIFR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_PLLRDYF) == (RCC_CIFR_PLLRDYF));
}
#if defined(RCC_HSI48_SUPPORT)
/**
* @brief Check if HSI48 ready interrupt occurred or not
* @rmtoll CIFR HSI48RDYF LL_RCC_IsActiveFlag_HSI48RDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSI48RDY(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_HSI48RDYF) == (RCC_CIFR_HSI48RDYF));
}
#endif /* RCC_HSI48_SUPPORT */
#if defined(RCC_HSECSS_SUPPORT)
/**
* @brief Check if Clock security system interrupt occurred or not
* @rmtoll CIFR CSSF LL_RCC_IsActiveFlag_HSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_CSSF) == (RCC_CIFR_CSSF));
}
#endif /* RCC_HSECSS_SUPPORT */
/**
* @brief Check if LSE Clock security system interrupt occurred or not
* @rmtoll CIFR LSECSSF LL_RCC_IsActiveFlag_LSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSECSS(void)
{
return (READ_BIT(RCC->CIFR, RCC_CIFR_LSECSSF) == (RCC_CIFR_LSECSSF));
}
/**
* @brief Check if HSI Divider is enabled (it divides by 4)
* @rmtoll CR HSIDIVF LL_RCC_IsActiveFlag_HSIDIV
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIDIV(void)
{
return (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) == (RCC_CR_HSIDIVF));
}
#if defined(RCC_CSR_FWRSTF)
/**
* @brief Check if RCC flag FW reset is set or not.
* @rmtoll CSR FWRSTF LL_RCC_IsActiveFlag_FWRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_FWRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_FWRSTF) == (RCC_CSR_FWRSTF));
}
#endif /* RCC_CSR_FWRSTF */
/**
* @brief Check if RCC flag Independent Watchdog reset is set or not.
* @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF));
}
/**
* @brief Check if RCC flag Low Power reset is set or not.
* @rmtoll CSR LPWRRSTF LL_RCC_IsActiveFlag_LPWRRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LPWRRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LPWRRSTF) == (RCC_CSR_LPWRRSTF));
}
/**
* @brief Check if RCC flag is set or not.
* @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF));
}
/**
* @brief Check if RCC flag Pin reset is set or not.
* @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF));
}
/**
* @brief Check if RCC flag POR/PDR reset is set or not.
* @rmtoll CSR PORRSTF LL_RCC_IsActiveFlag_PORRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PORRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_PORRSTF) == (RCC_CSR_PORRSTF));
}
/**
* @brief Check if RCC flag Software reset is set or not.
* @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF));
}
/**
* @brief Check if RCC flag Window Watchdog reset is set or not.
* @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF));
}
/**
* @brief Set RMVF bit to clear the reset flags.
* @rmtoll CSR RMVF LL_RCC_ClearResetFlags
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearResetFlags(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_IT_Management IT Management
* @{
*/
/**
* @brief Enable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_EnableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
/**
* @brief Enable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_EnableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
/**
* @brief Enable MSI ready interrupt
* @rmtoll CIER MSIRDYIE LL_RCC_EnableIT_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_MSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_MSIRDYIE);
}
/**
* @brief Enable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_EnableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Enable HSE ready interrupt
* @rmtoll CIER HSERDYIE LL_RCC_EnableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSERDYIE);
}
/**
* @brief Enable PLL ready interrupt
* @rmtoll CIER PLLRDYIE LL_RCC_EnableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_PLLRDYIE);
}
#if defined(RCC_HSI48_SUPPORT)
/**
* @brief Enable HSI48 ready interrupt
* @rmtoll CIER HSI48RDYIE LL_RCC_EnableIT_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSI48RDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE);
}
#endif /* RCC_HSI48_SUPPORT */
/**
* @brief Enable LSE clock security system interrupt
* @rmtoll CIER LSECSSIE LL_RCC_EnableIT_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSECSS(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSECSSIE);
}
/**
* @brief Disable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_DisableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
/**
* @brief Disable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_DisableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
/**
* @brief Disable MSI ready interrupt
* @rmtoll CIER MSIRDYIE LL_RCC_DisableIT_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_MSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_MSIRDYIE);
}
/**
* @brief Disable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_DisableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Disable HSE ready interrupt
* @rmtoll CIER HSERDYIE LL_RCC_DisableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSERDYIE);
}
/**
* @brief Disable PLL ready interrupt
* @rmtoll CIER PLLRDYIE LL_RCC_DisableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_PLLRDYIE);
}
#if defined(RCC_HSI48_SUPPORT)
/**
* @brief Disable HSI48 ready interrupt
* @rmtoll CIER HSI48RDYIE LL_RCC_DisableIT_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSI48RDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE);
}
#endif /* RCC_HSI48_SUPPORT */
/**
* @brief Disable LSE clock security system interrupt
* @rmtoll CIER LSECSSIE LL_RCC_DisableIT_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSECSS(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSECSSIE);
}
/**
* @brief Checks if LSI ready interrupt source is enabled or disabled.
* @rmtoll CIER LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_LSIRDYIE) == (RCC_CIER_LSIRDYIE));
}
/**
* @brief Checks if LSE ready interrupt source is enabled or disabled.
* @rmtoll CIER LSERDYIE LL_RCC_IsEnabledIT_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_LSERDYIE) == (RCC_CIER_LSERDYIE));
}
/**
* @brief Checks if MSI ready interrupt source is enabled or disabled.
* @rmtoll CIER MSIRDYIE LL_RCC_IsEnabledIT_MSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_MSIRDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_MSIRDYIE) == (RCC_CIER_MSIRDYIE));
}
/**
* @brief Checks if HSI ready interrupt source is enabled or disabled.
* @rmtoll CIER HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_HSIRDYIE) == (RCC_CIER_HSIRDYIE));
}
/**
* @brief Checks if HSE ready interrupt source is enabled or disabled.
* @rmtoll CIER HSERDYIE LL_RCC_IsEnabledIT_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_HSERDYIE) == (RCC_CIER_HSERDYIE));
}
/**
* @brief Checks if PLL ready interrupt source is enabled or disabled.
* @rmtoll CIER PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_PLLRDYIE) == (RCC_CIER_PLLRDYIE));
}
#if defined(RCC_HSI48_SUPPORT)
/**
* @brief Checks if HSI48 ready interrupt source is enabled or disabled.
* @rmtoll CIER HSI48RDYIE LL_RCC_IsEnabledIT_HSI48RDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSI48RDY(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE) == (RCC_CIER_HSI48RDYIE));
}
#endif /* RCC_HSI48_SUPPORT */
/**
* @brief Checks if LSECSS interrupt source is enabled or disabled.
* @rmtoll CIER LSECSSIE LL_RCC_IsEnabledIT_LSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSECSS(void)
{
return (READ_BIT(RCC->CIER, RCC_CIER_LSECSSIE) == (RCC_CIER_LSECSSIE));
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_RCC_DeInit(void);
/**
* @}
*/
/** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions
* @{
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks);
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource);
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource);
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource);
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource);
#if defined(USB_OTG_FS) || defined(USB)
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource);
#endif /* USB_OTG_FS || USB */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* RCC */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32L0xx_LL_RCC_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/