B3M38SPD seminar project - beehive monitor with LoRa reporting
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

3353 lines
106 KiB

/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jaeckle ( STACKFORCE )
*/
#include <stdbool.h>
#include <string.h>
#include <stdint.h>
#include "radio.h"
#include "timeServer.h"
#include "LoRaMac.h"
#include "region/Region.h"
#include "LoRaMacCrypto.h"
#include "debug.h"
#include "LoRaMacTest.h"
/*!
* Maximum PHY layer payload size
*/
#define LORAMAC_PHY_MAXPAYLOAD 255
/*!
* Maximum MAC commands buffer size
*/
#define LORA_MAC_COMMAND_MAX_LENGTH 128
/*!
* Maximum length of the fOpts field
*/
#define LORA_MAC_COMMAND_MAX_FOPTS_LENGTH 15
/*!
* LoRaMac region.
*/
static LoRaMacRegion_t LoRaMacRegion;
/*!
* LoRaMac duty cycle for the back-off procedure during the first hour.
*/
#define BACKOFF_DC_1_HOUR 100
/*!
* LoRaMac duty cycle for the back-off procedure during the next 10 hours.
*/
#define BACKOFF_DC_10_HOURS 1000
/*!
* LoRaMac duty cycle for the back-off procedure during the next 24 hours.
*/
#define BACKOFF_DC_24_HOURS 10000
/*!
* Device IEEE EUI
*/
static uint8_t *LoRaMacDevEui;
/*!
* Application IEEE EUI
*/
static uint8_t *LoRaMacAppEui;
/*!
* AES encryption/decryption cipher application key
*/
static uint8_t *LoRaMacAppKey;
/*!
* AES encryption/decryption cipher network session key
*/
static uint8_t LoRaMacNwkSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* AES encryption/decryption cipher application session key
*/
static uint8_t LoRaMacAppSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* Device nonce is a random value extracted by issuing a sequence of RSSI
* measurements
*/
static uint16_t LoRaMacDevNonce;
/*!
* Network ID ( 3 bytes )
*/
static uint32_t LoRaMacNetID;
/*!
* Mote Address
*/
static uint32_t LoRaMacDevAddr;
/*!
* Multicast channels linked list
*/
static MulticastParams_t *MulticastChannels = NULL;
/*!
* Actual device class
*/
static DeviceClass_t LoRaMacDeviceClass;
/*!
* Indicates if the node is connected to a private or public network
*/
static bool PublicNetwork;
/*!
* Indicates if the node supports repeaters
*/
static bool RepeaterSupport;
/*!
* Buffer containing the data to be sent or received.
*/
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
/*!
* Length of packet in LoRaMacBuffer
*/
static uint16_t LoRaMacBufferPktLen = 0;
/*!
* Length of the payload in LoRaMacBuffer
*/
static uint8_t LoRaMacTxPayloadLen = 0;
/*!
* Buffer containing the upper layer data.
*/
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
/*!
* LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
* Only the 16 LSB bits are sent
*/
static uint32_t UpLinkCounter = 0;
/*!
* LoRaMAC frame counter. Each time a packet is received the counter is incremented.
* Only the 16 LSB bits are received
*/
static uint32_t DownLinkCounter = 0;
/*!
* IsPacketCounterFixed enables the MIC field tests by fixing the
* UpLinkCounter value
*/
static bool IsUpLinkCounterFixed = false;
/*!
* Used for test purposes. Disables the opening of the reception windows.
*/
static bool IsRxWindowsEnabled = true;
/*!
* Indicates if the MAC layer has already joined a network.
*/
static bool IsLoRaMacNetworkJoined = false;
/*!
* LoRaMac ADR control status
*/
static bool AdrCtrlOn = false;
/*!
* Counts the number of missed ADR acknowledgements
*/
static uint32_t AdrAckCounter = 0;
/*!
* If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
* if the nodes needs to manage the server acknowledgement.
*/
static bool NodeAckRequested = false;
/*!
* If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
* if the ACK bit must be set for the next transmission
*/
static bool SrvAckRequested = false;
/*!
* Indicates if the MAC layer wants to send MAC commands
*/
static bool MacCommandsInNextTx = false;
/*!
* Contains the current MacCommandsBuffer index
*/
static uint8_t MacCommandsBufferIndex = 0;
/*!
* Contains the current MacCommandsBuffer index for MAC commands to repeat
*/
static uint8_t MacCommandsBufferToRepeatIndex = 0;
/*!
* Buffer containing the MAC layer commands
*/
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];
/*!
* Buffer containing the MAC layer commands which must be repeated
*/
static uint8_t MacCommandsBufferToRepeat[LORA_MAC_COMMAND_MAX_LENGTH];
/*!
* LoRaMac parameters
*/
LoRaMacParams_t LoRaMacParams;
/*!
* LoRaMac default parameters
*/
LoRaMacParams_t LoRaMacParamsDefaults;
/*!
* Uplink messages repetitions counter
*/
static uint8_t ChannelsNbRepCounter = 0;
/*!
* Maximum duty cycle
* \remark Possibility to shutdown the device.
*/
static uint8_t MaxDCycle = 0;
/*!
* Aggregated duty cycle management
*/
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;
/*!
* Enables/Disables duty cycle management (Test only)
*/
static bool DutyCycleOn;
/*!
* Current channel index
*/
static uint8_t Channel;
/*!
* Current channel index
*/
static uint8_t LastTxChannel;
/*!
* Set to true, if the last uplink was a join request
*/
static bool LastTxIsJoinRequest;
/*!
* Stores the time at LoRaMac initialization.
*
* \remark Used for the BACKOFF_DC computation.
*/
static TimerTime_t LoRaMacInitializationTime = 0;
/*!
* LoRaMac internal states
*/
enum eLoRaMacState
{
LORAMAC_IDLE = 0x00000000,
LORAMAC_TX_RUNNING = 0x00000001,
LORAMAC_RX = 0x00000002,
LORAMAC_ACK_REQ = 0x00000004,
LORAMAC_ACK_RETRY = 0x00000008,
LORAMAC_TX_DELAYED = 0x00000010,
LORAMAC_TX_CONFIG = 0x00000020,
LORAMAC_RX_ABORT = 0x00000040,
};
/*!
* LoRaMac internal state
*/
uint32_t LoRaMacState = LORAMAC_IDLE;
/*!
* LoRaMac timer used to check the LoRaMacState (runs every second)
*/
static TimerEvent_t MacStateCheckTimer;
/*!
* LoRaMac upper layer event functions
*/
static LoRaMacPrimitives_t *LoRaMacPrimitives;
/*!
* LoRaMac upper layer callback functions
*/
static LoRaMacCallback_t *LoRaMacCallbacks;
/*!
* Radio events function pointer
*/
static RadioEvents_t RadioEvents;
/*!
* LoRaMac duty cycle delayed Tx timer
*/
static TimerEvent_t TxDelayedTimer;
/*!
* LoRaMac reception windows timers
*/
static TimerEvent_t RxWindowTimer1;
static TimerEvent_t RxWindowTimer2;
/*!
* LoRaMac reception windows delay
* \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
* join frame : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
*/
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;
/*!
* LoRaMac Rx windows configuration
*/
static RxConfigParams_t RxWindow1Config;
static RxConfigParams_t RxWindow2Config;
/*!
* Acknowledge timeout timer. Used for packet retransmissions.
*/
static TimerEvent_t AckTimeoutTimer;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetries = 1;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetriesCounter = 1;
/*!
* Indicates if the AckTimeout timer has expired or not
*/
static bool AckTimeoutRetry = false;
/*!
* Last transmission time on air
*/
TimerTime_t TxTimeOnAir = 0;
/*!
* Number of trials for the Join Request
*/
static uint8_t JoinRequestTrials;
/*!
* Maximum number of trials for the Join Request
*/
static uint8_t MaxJoinRequestTrials;
/*!
* Structure to hold an MCPS indication data.
*/
static McpsIndication_t McpsIndication;
/*!
* Structure to hold MCPS confirm data.
*/
static McpsConfirm_t McpsConfirm;
/*!
* Structure to hold MLME confirm data.
*/
static MlmeConfirm_t MlmeConfirm;
/*!
* Holds the current rx window slot
*/
static uint8_t RxSlot = 0;
/*!
* LoRaMac tx/rx operation state
*/
LoRaMacFlags_t LoRaMacFlags;
/*!
* \brief Function to be executed on Radio Tx Done event
*/
static void OnRadioTxDone( void );
/*!
* \brief This function prepares the MAC to abort the execution of function
* OnRadioRxDone in case of a reception error.
*/
static void PrepareRxDoneAbort( void );
/*!
* \brief Function to be executed on Radio Rx Done event
*/
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
/*!
* \brief Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void );
/*!
* \brief Function executed on Radio Rx error event
*/
static void OnRadioRxError( void );
/*!
* \brief Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void );
/*!
* \brief Function executed on Resend Frame timer event.
*/
static void OnMacStateCheckTimerEvent( void );
/*!
* \brief Function executed on duty cycle delayed Tx timer event
*/
static void OnTxDelayedTimerEvent( void );
/*!
* \brief Function executed on first Rx window timer event
*/
static void OnRxWindow1TimerEvent( void );
/*!
* \brief Function executed on second Rx window timer event
*/
static void OnRxWindow2TimerEvent( void );
/*!
* \brief Function executed on AckTimeout timer event
*/
static void OnAckTimeoutTimerEvent( void );
/*!
* \brief Initializes and opens the reception window
*
* \param [IN] rxContinuous Set to true, if the RX is in continuous mode
* \param [IN] maxRxWindow Maximum RX window timeout
*/
static void RxWindowSetup( bool rxContinuous, uint32_t maxRxWindow );
/*!
* \brief Adds a new MAC command to be sent.
*
* \Remark MAC layer internal function
*
* \param [in] cmd MAC command to be added
* [MOTE_MAC_LINK_CHECK_REQ,
* MOTE_MAC_LINK_ADR_ANS,
* MOTE_MAC_DUTY_CYCLE_ANS,
* MOTE_MAC_RX2_PARAM_SET_ANS,
* MOTE_MAC_DEV_STATUS_ANS
* MOTE_MAC_NEW_CHANNEL_ANS]
* \param [in] p1 1st parameter ( optional depends on the command )
* \param [in] p2 2nd parameter ( optional depends on the command )
*
* \retval status Function status [0: OK, 1: Unknown command, 2: Buffer full]
*/
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 );
/*!
* \brief Parses the MAC commands which must be repeated.
*
* \Remark MAC layer internal function
*
* \param [IN] cmdBufIn Buffer which stores the MAC commands to send
* \param [IN] length Length of the input buffer to parse
* \param [OUT] cmdBufOut Buffer which stores the MAC commands which must be
* repeated.
*
* \retval Size of the MAC commands to repeat.
*/
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut );
/*!
* \brief Validates if the payload fits into the frame, taking the datarate
* into account.
*
* \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
*
* \param lenN Length of the application payload. The length depends on the
* datarate and is region specific
*
* \param datarate Current datarate
*
* \param fOptsLen Length of the fOpts field
*
* \retval [false: payload does not fit into the frame, true: payload fits into
* the frame]
*/
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen );
/*!
* \brief Decodes MAC commands in the fOpts field and in the payload
*/
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr );
/*!
* \brief LoRaMAC layer generic send frame
*
* \param [IN] macHdr MAC header field
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*!
* \brief LoRaMAC layer frame buffer initialization
*
* \param [IN] macHdr MAC header field
* \param [IN] fCtrl MAC frame control field
* \param [IN] fOpts MAC commands buffer
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*
* \brief Schedules the frame according to the duty cycle
*
* \retval Status of the operation
*/
static LoRaMacStatus_t ScheduleTx( void );
/*
* \brief Calculates the back-off time for the band of a channel.
*
* \param [IN] channel The last Tx channel index
*/
static void CalculateBackOff( uint8_t channel );
/*!
* \brief LoRaMAC layer prepared frame buffer transmission with channel specification
*
* \remark PrepareFrame must be called at least once before calling this
* function.
*
* \param [IN] channel Channel to transmit on
* \retval status Status of the operation.
*/
LoRaMacStatus_t SendFrameOnChannel( uint8_t channel );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \param [IN] frequency RF frequency to be set.
* \param [IN] power RF output power to be set.
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power );
/*!
* \brief Resets MAC specific parameters to default
*/
static void ResetMacParameters( void );
static void OnRadioTxDone( void )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
SetBandTxDoneParams_t txDone;
TimerTime_t curTime = TimerGetCurrentTime( );
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
// Setup timers
if( IsRxWindowsEnabled == true )
{
TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
TimerStart( &RxWindowTimer1 );
if( LoRaMacDeviceClass != CLASS_C )
{
TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
TimerStart( &RxWindowTimer2 );
}
if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
{
getPhy.Attribute = PHY_ACK_TIMEOUT;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + phyParam.Value );
TimerStart( &AckTimeoutTimer );
}
}
else
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacFlags.Value == 0 )
{
LoRaMacFlags.Bits.McpsReq = 1;
}
LoRaMacFlags.Bits.MacDone = 1;
}
// Verify if the last uplink was a join request
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
LastTxIsJoinRequest = true;
}
else
{
LastTxIsJoinRequest = false;
}
// Store last Tx channel
LastTxChannel = Channel;
// Update last tx done time for the current channel
txDone.Channel = Channel;
txDone.Joined = IsLoRaMacNetworkJoined;
txDone.LastTxDoneTime = curTime;
RegionSetBandTxDone( LoRaMacRegion, &txDone );
// Update Aggregated last tx done time
AggregatedLastTxDoneTime = curTime;
if( NodeAckRequested == false )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
static void PrepareRxDoneAbort( void )
{
LoRaMacState |= LORAMAC_RX_ABORT;
if( NodeAckRequested )
{
OnAckTimeoutTimerEvent( );
}
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
ApplyCFListParams_t applyCFList;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
bool skipIndication = false;
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
uint8_t multicast = 0;
bool isMicOk = false;
McpsConfirm.AckReceived = false;
McpsIndication.Rssi = rssi;
McpsIndication.Snr = snr;
McpsIndication.RxSlot = RxSlot;
McpsIndication.Port = 0;
McpsIndication.Multicast = 0;
McpsIndication.FramePending = 0;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.RxData = false;
McpsIndication.AckReceived = false;
McpsIndication.DownLinkCounter = 0;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
Radio.Sleep( );
TimerStop( &RxWindowTimer2 );
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
return;
}
LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );
LoRaMacRxPayload[0] = macHdr.Value;
LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
LoRaMacParams.Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
LoRaMacParams.Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
// RxDelay
LoRaMacParams.ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
if( LoRaMacParams.ReceiveDelay1 == 0 )
{
LoRaMacParams.ReceiveDelay1 = 1;
}
LoRaMacParams.ReceiveDelay1 *= 1000;
LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1000;
// Apply CF list
applyCFList.Payload = &LoRaMacRxPayload[13];
// Size of the regular payload is 12. Plus 1 byte MHDR and 4 bytes MIC
applyCFList.Size = size - 17;
RegionApplyCFList( LoRaMacRegion, &applyCFList );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
IsLoRaMacNetworkJoined = true;
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
}
else
{
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
// Check if the received payload size is valid
getPhy.UplinkDwellTime = LoRaMacParams.DownlinkDwellTime;
getPhy.Datarate = McpsIndication.RxDatarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Get the maximum payload length
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
if( MAX( 0, ( int16_t )( ( int16_t )size - ( int16_t )LORA_MAC_FRMPAYLOAD_OVERHEAD ) ) > phyParam.Value )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
return;
}
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( multicast == 0 )
{
// We are not the destination of this frame.
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
PrepareRxDoneAbort( );
return;
}
}
else
{
multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for sequence roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
// Check for a the maximum allowed counter difference
getPhy.Attribute = PHY_MAX_FCNT_GAP;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
if( sequenceCounterDiff >= phyParam.Value )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
if( isMicOk == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Multicast = multicast;
McpsIndication.FramePending = fCtrl.Bits.FPending;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.DownLinkCounter = downLinkCounter;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
AdrAckCounter = 0;
MacCommandsBufferToRepeatIndex = 0;
// Update 32 bits downlink counter
if( multicast == 1 )
{
McpsIndication.McpsIndication = MCPS_MULTICAST;
if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
( curMulticastParams->DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
McpsIndication.McpsIndication = MCPS_CONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
// Duplicated confirmed downlink. Skip indication.
// In this case, the MAC layer shall accept the MAC commands
// which are included in the downlink retransmission.
// It should not provide the same frame to the application
// layer again.
skipIndication = true;
}
}
else
{
SrvAckRequested = false;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
}
DownLinkCounter = downLinkCounter;
}
// This must be done before parsing the payload and the MAC commands.
// We need to reset the MacCommandsBufferIndex here, since we need
// to take retransmissions and repetitions into account. Error cases
// will be handled in function OnMacStateCheckTimerEvent.
if( McpsConfirm.McpsRequest == MCPS_CONFIRMED )
{
if( fCtrl.Bits.Ack == 1 )
{// Reset MacCommandsBufferIndex when we have received an ACK.
MacCommandsBufferIndex = 0;
}
}
else
{// Reset the variable if we have received any valid frame.
MacCommandsBufferIndex = 0;
}
// Process payload and MAC commands
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
McpsIndication.Port = port;
if( port == 0 )
{
// Only allow frames which do not have fOpts
if( fCtrl.Bits.FOptsLen == 0 )
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
// Decode frame payload MAC commands
ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );
}
else
{
skipIndication = true;
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands. Omit the fPort.
ProcessMacCommands( payload, 8, appPayloadStartIndex - 1, snr );
}
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
if( skipIndication == false )
{
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = frameLen;
McpsIndication.RxData = true;
}
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
ProcessMacCommands( payload, 8, appPayloadStartIndex, snr );
}
}
if( skipIndication == false )
{
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
McpsConfirm.AckReceived = true;
McpsIndication.AckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
else
{
McpsConfirm.AckReceived = false;
if( AckTimeoutRetriesCounter > AckTimeoutRetries )
{
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
}
}
// Provide always an indication, skip the callback to the user application,
// in case of a confirmed downlink retransmission.
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.McpsIndSkip = skipIndication;
}
else
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
PrepareRxDoneAbort( );
return;
}
}
break;
case FRAME_TYPE_PROPRIETARY:
{
memcpy1( LoRaMacRxPayload, &payload[pktHeaderLen], size );
McpsIndication.McpsIndication = MCPS_PROPRIETARY;
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = size - pktHeaderLen;
LoRaMacFlags.Bits.McpsInd = 1;
break;
}
default:
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
break;
}
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
static void OnRadioTxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
static void OnRadioRxError( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 0 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
if( TimerGetElapsedTime( AggregatedLastTxDoneTime ) >= RxWindow2Delay )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
else
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnRadioRxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 0 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT;
if( TimerGetElapsedTime( AggregatedLastTxDoneTime ) >= RxWindow2Delay )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
else
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacDeviceClass != CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
}
static void OnMacStateCheckTimerEvent( void )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
bool txTimeout = false;
TimerStop( &MacStateCheckTimer );
if( LoRaMacFlags.Bits.MacDone == 1 )
{
if( ( LoRaMacState & LORAMAC_RX_ABORT ) == LORAMAC_RX_ABORT )
{
LoRaMacState &= ~LORAMAC_RX_ABORT;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
{
// Stop transmit cycle due to tx timeout.
LoRaMacState &= ~LORAMAC_TX_RUNNING;
MacCommandsBufferIndex = 0;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.AckReceived = false;
McpsConfirm.TxTimeOnAir = 0;
txTimeout = true;
}
}
if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{// Procedure for the join request
MlmeConfirm.NbRetries = JoinRequestTrials;
if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
{// Node joined successfully
UpLinkCounter = 0;
ChannelsNbRepCounter = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
if( JoinRequestTrials >= MaxJoinRequestTrials )
{
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
OnTxDelayedTimerEvent( );
}
}
}
else
{// Procedure for all other frames
if( ( ChannelsNbRepCounter >= LoRaMacParams.ChannelsNbRep ) || ( LoRaMacFlags.Bits.McpsInd == 1 ) )
{
if( LoRaMacFlags.Bits.McpsInd == 0 )
{ // Maximum repetitions without downlink. Reset MacCommandsBufferIndex. Increase ADR Ack counter.
// Only process the case when the MAC did not receive a downlink.
MacCommandsBufferIndex = 0;
AdrAckCounter++;
}
ChannelsNbRepCounter = 0;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
OnTxDelayedTimerEvent( );
}
}
}
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{// Procedure if we received a frame
if( ( McpsConfirm.AckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
{
AckTimeoutRetry = false;
NodeAckRequested = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
}
if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & LORAMAC_TX_DELAYED ) == 0 ) )
{// Retransmissions procedure for confirmed uplinks
AckTimeoutRetry = false;
if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
{
AckTimeoutRetriesCounter++;
if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
{
getPhy.Attribute = PHY_NEXT_LOWER_TX_DR;
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = LoRaMacParams.ChannelsDatarate;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParams.ChannelsDatarate = phyParam.Value;
}
// Try to send the frame again
if( ScheduleTx( ) == LORAMAC_STATUS_OK )
{
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// The DR is not applicable for the payload size
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_DR_PAYLOAD_SIZE_ERROR;
MacCommandsBufferIndex = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
else
{
RegionInitDefaults( LoRaMacRegion, INIT_TYPE_RESTORE );
LoRaMacState &= ~LORAMAC_TX_RUNNING;
MacCommandsBufferIndex = 0;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
}
// Handle reception for Class B and Class C
if( ( LoRaMacState & LORAMAC_RX ) == LORAMAC_RX )
{
LoRaMacState &= ~LORAMAC_RX;
}
if( LoRaMacState == LORAMAC_IDLE )
{
if( LoRaMacFlags.Bits.McpsReq == 1 )
{
LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
LoRaMacFlags.Bits.McpsReq = 0;
}
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
LoRaMacFlags.Bits.MlmeReq = 0;
}
// Procedure done. Reset variables.
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// Operation not finished restart timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
if( LoRaMacDeviceClass == CLASS_C )
{// Activate RX2 window for Class C
OnRxWindow2TimerEvent( );
}
if( LoRaMacFlags.Bits.McpsIndSkip == 0 )
{
LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
}
LoRaMacFlags.Bits.McpsIndSkip = 0;
LoRaMacFlags.Bits.McpsInd = 0;
}
}
static void OnTxDelayedTimerEvent( void )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
AlternateDrParams_t altDr;
TimerStop( &TxDelayedTimer );
LoRaMacState &= ~LORAMAC_TX_DELAYED;
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
ResetMacParameters( );
altDr.NbTrials = JoinRequestTrials + 1;
LoRaMacParams.ChannelsDatarate = RegionAlternateDr( LoRaMacRegion, &altDr );
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
fCtrl.Value = 0;
fCtrl.Bits.Adr = AdrCtrlOn;
/* In case of join request retransmissions, the stack must prepare
* the frame again, because the network server keeps track of the random
* LoRaMacDevNonce values to prevent reply attacks. */
PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 );
}
ScheduleTx( );
}
static void OnRxWindow1TimerEvent( void )
{
TimerStop( &RxWindowTimer1 );
RxSlot = 0;
RxWindow1Config.Channel = Channel;
RxWindow1Config.DrOffset = LoRaMacParams.Rx1DrOffset;
RxWindow1Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
RxWindow1Config.RepeaterSupport = RepeaterSupport;
RxWindow1Config.RxContinuous = false;
RxWindow1Config.Window = RxSlot;
if( LoRaMacDeviceClass == CLASS_C )
{
Radio.Standby( );
}
RegionRxConfig( LoRaMacRegion, &RxWindow1Config, ( int8_t* )&McpsIndication.RxDatarate );
RxWindowSetup( RxWindow1Config.RxContinuous, LoRaMacParams.MaxRxWindow );
}
static void OnRxWindow2TimerEvent( void )
{
TimerStop( &RxWindowTimer2 );
RxWindow2Config.Channel = Channel;
RxWindow2Config.Frequency = LoRaMacParams.Rx2Channel.Frequency;
RxWindow2Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
RxWindow2Config.RepeaterSupport = RepeaterSupport;
RxWindow2Config.Window = 1;
if( LoRaMacDeviceClass != CLASS_C )
{
RxWindow2Config.RxContinuous = false;
}
else
{
RxWindow2Config.RxContinuous = true;
}
if( RegionRxConfig( LoRaMacRegion, &RxWindow2Config, ( int8_t* )&McpsIndication.RxDatarate ) == true )
{
RxWindowSetup( RxWindow2Config.RxContinuous, LoRaMacParams.MaxRxWindow );
RxSlot = RxWindow2Config.Window;
}
}
static void OnAckTimeoutTimerEvent( void )
{
TimerStop( &AckTimeoutTimer );
if( NodeAckRequested == true )
{
AckTimeoutRetry = true;
LoRaMacState &= ~LORAMAC_ACK_REQ;
}
if( LoRaMacDeviceClass == CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void RxWindowSetup( bool rxContinuous, uint32_t maxRxWindow )
{
if( rxContinuous == false )
{
Radio.Rx( maxRxWindow );
}
else
{
Radio.Rx( 0 ); // Continuous mode
}
}
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
uint16_t maxN = 0;
uint16_t payloadSize = 0;
// Setup PHY request
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = datarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Get the maximum payload length
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
maxN = phyParam.Value;
// Calculate the resulting payload size
payloadSize = ( lenN + fOptsLen );
// Validation of the application payload size
if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) )
{
return true;
}
return false;
}
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
LoRaMacStatus_t status = LORAMAC_STATUS_BUSY;
// The maximum buffer length must take MAC commands to re-send into account.
uint8_t bufLen = LORA_MAC_COMMAND_MAX_LENGTH - MacCommandsBufferToRepeatIndex;
switch( cmd )
{
case MOTE_MAC_LINK_CHECK_REQ:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this command
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_LINK_ADR_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DUTY_CYCLE_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate ACK, Channel ACK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DEV_STATUS_ANS:
if( MacCommandsBufferIndex < ( bufLen - 2 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// 1st byte Battery
// 2nd byte Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_NEW_CHANNEL_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate range OK, Channel frequency OK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_TIMING_SETUP_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_TX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DL_CHANNEL_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Uplink frequency exists, Channel frequency OK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
if( status == LORAMAC_STATUS_OK )
{
MacCommandsInNextTx = true;
}
return status;
}
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut )
{
uint8_t i = 0;
uint8_t cmdCount = 0;
if( ( cmdBufIn == NULL ) || ( cmdBufOut == NULL ) )
{
return 0;
}
for( i = 0; i < length; i++ )
{
switch( cmdBufIn[i] )
{
// STICKY
case MOTE_MAC_DL_CHANNEL_ANS:
case MOTE_MAC_RX_PARAM_SETUP_ANS:
{ // 1 byte payload
cmdBufOut[cmdCount++] = cmdBufIn[i++];
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
case MOTE_MAC_RX_TIMING_SETUP_ANS:
{ // 0 byte payload
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
// NON-STICKY
case MOTE_MAC_DEV_STATUS_ANS:
{ // 2 bytes payload
i += 2;
break;
}
case MOTE_MAC_LINK_ADR_ANS:
case MOTE_MAC_NEW_CHANNEL_ANS:
{ // 1 byte payload
i++;
break;
}
case MOTE_MAC_TX_PARAM_SETUP_ANS:
case MOTE_MAC_DUTY_CYCLE_ANS:
case MOTE_MAC_LINK_CHECK_REQ:
{ // 0 byte payload
break;
}
default:
break;
}
}
return cmdCount;
}
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr )
{
uint8_t status = 0;
while( macIndex < commandsSize )
{
// Decode Frame MAC commands
switch( payload[macIndex++] )
{
case SRV_MAC_LINK_CHECK_ANS:
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.DemodMargin = payload[macIndex++];
MlmeConfirm.NbGateways = payload[macIndex++];
break;
case SRV_MAC_LINK_ADR_REQ:
{
LinkAdrReqParams_t linkAdrReq;
int8_t linkAdrDatarate = DR_0;
int8_t linkAdrTxPower = TX_POWER_0;
uint8_t linkAdrNbRep = 0;
uint8_t linkAdrNbBytesParsed = 0;
// Fill parameter structure
linkAdrReq.Payload = &payload[macIndex - 1];
linkAdrReq.PayloadSize = commandsSize - ( macIndex - 1 );
linkAdrReq.AdrEnabled = AdrCtrlOn;
linkAdrReq.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
linkAdrReq.CurrentDatarate = LoRaMacParams.ChannelsDatarate;
linkAdrReq.CurrentTxPower = LoRaMacParams.ChannelsTxPower;
linkAdrReq.CurrentNbRep = LoRaMacParams.ChannelsNbRep;
// Process the ADR requests
status = RegionLinkAdrReq( LoRaMacRegion, &linkAdrReq, &linkAdrDatarate,
&linkAdrTxPower, &linkAdrNbRep, &linkAdrNbBytesParsed );
if( ( status & 0x07 ) == 0x07 )
{
LoRaMacParams.ChannelsDatarate = linkAdrDatarate;
LoRaMacParams.ChannelsTxPower = linkAdrTxPower;
LoRaMacParams.ChannelsNbRep = linkAdrNbRep;
}
// Add the answers to the buffer
for( uint8_t i = 0; i < ( linkAdrNbBytesParsed / 5 ); i++ )
{
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
}
// Update MAC index
macIndex += linkAdrNbBytesParsed - 1;
}
break;
case SRV_MAC_DUTY_CYCLE_REQ:
MaxDCycle = payload[macIndex++];
AggregatedDCycle = 1 << MaxDCycle;
AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
break;
case SRV_MAC_RX_PARAM_SETUP_REQ:
{
RxParamSetupReqParams_t rxParamSetupReq;
status = 0x07;
rxParamSetupReq.DrOffset = ( payload[macIndex] >> 4 ) & 0x07;
rxParamSetupReq.Datarate = payload[macIndex] & 0x0F;
macIndex++;
rxParamSetupReq.Frequency = ( uint32_t )payload[macIndex++];
rxParamSetupReq.Frequency |= ( uint32_t )payload[macIndex++] << 8;
rxParamSetupReq.Frequency |= ( uint32_t )payload[macIndex++] << 16;
rxParamSetupReq.Frequency *= 100;
// Perform request on region
status = RegionRxParamSetupReq( LoRaMacRegion, &rxParamSetupReq );
if( ( status & 0x07 ) == 0x07 )
{
LoRaMacParams.Rx2Channel.Datarate = rxParamSetupReq.Datarate;
LoRaMacParams.Rx2Channel.Frequency = rxParamSetupReq.Frequency;
LoRaMacParams.Rx1DrOffset = rxParamSetupReq.DrOffset;
}
AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
}
break;
case SRV_MAC_DEV_STATUS_REQ:
{
uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
{
batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
}
AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr );
break;
}
case SRV_MAC_NEW_CHANNEL_REQ:
{
NewChannelReqParams_t newChannelReq;
ChannelParams_t chParam;
status = 0x03;
newChannelReq.ChannelId = payload[macIndex++];
newChannelReq.NewChannel = &chParam;
chParam.Frequency = ( uint32_t )payload[macIndex++];
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
chParam.Frequency *= 100;
chParam.Rx1Frequency = 0;
chParam.DrRange.Value = payload[macIndex++];
status = RegionNewChannelReq( LoRaMacRegion, &newChannelReq );
AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
}
break;
case SRV_MAC_RX_TIMING_SETUP_REQ:
{
uint8_t delay = payload[macIndex++] & 0x0F;
if( delay == 0 )
{
delay++;
}
LoRaMacParams.ReceiveDelay1 = delay * 1000;
LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1000;
AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
}
break;
case SRV_MAC_TX_PARAM_SETUP_REQ:
{
TxParamSetupReqParams_t txParamSetupReq;
uint8_t eirpDwellTime = payload[macIndex++];
txParamSetupReq.UplinkDwellTime = 0;
txParamSetupReq.DownlinkDwellTime = 0;
if( ( eirpDwellTime & 0x20 ) == 0x20 )
{
txParamSetupReq.DownlinkDwellTime = 1;
}
if( ( eirpDwellTime & 0x10 ) == 0x10 )
{
txParamSetupReq.UplinkDwellTime = 1;
}
txParamSetupReq.MaxEirp = eirpDwellTime & 0x0F;
// Check the status for correctness
if( RegionTxParamSetupReq( LoRaMacRegion, &txParamSetupReq ) != -1 )
{
// Accept command
LoRaMacParams.UplinkDwellTime = txParamSetupReq.UplinkDwellTime;
LoRaMacParams.DownlinkDwellTime = txParamSetupReq.DownlinkDwellTime;
LoRaMacParams.MaxEirp = LoRaMacMaxEirpTable[txParamSetupReq.MaxEirp];
// Add command response
AddMacCommand( MOTE_MAC_TX_PARAM_SETUP_ANS, 0, 0 );
}
}
break;
case SRV_MAC_DL_CHANNEL_REQ:
{
DlChannelReqParams_t dlChannelReq;
status = 0x03;
dlChannelReq.ChannelId = payload[macIndex++];
dlChannelReq.Rx1Frequency = ( uint32_t )payload[macIndex++];
dlChannelReq.Rx1Frequency |= ( uint32_t )payload[macIndex++] << 8;
dlChannelReq.Rx1Frequency |= ( uint32_t )payload[macIndex++] << 16;
dlChannelReq.Rx1Frequency *= 100;
status = RegionDlChannelReq( LoRaMacRegion, &dlChannelReq );
AddMacCommand( MOTE_MAC_DL_CHANNEL_ANS, status, 0 );
}
break;
default:
// Unknown command. ABORT MAC commands processing
return;
}
}
}
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = AdrCtrlOn;
// Prepare the frame
status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );
// Validate status
if( status != LORAMAC_STATUS_OK )
{
return status;
}
// Reset confirm parameters
McpsConfirm.NbRetries = 0;
McpsConfirm.AckReceived = false;
McpsConfirm.UpLinkCounter = UpLinkCounter;
status = ScheduleTx( );
return status;
}
static LoRaMacStatus_t ScheduleTx( void )
{
TimerTime_t dutyCycleTimeOff = 0;
NextChanParams_t nextChan;
// Check if the device is off
if( MaxDCycle == 255 )
{
return LORAMAC_STATUS_DEVICE_OFF;
}
if( MaxDCycle == 0 )
{
AggregatedTimeOff = 0;
}
// Update Backoff
CalculateBackOff( LastTxChannel );
nextChan.AggrTimeOff = AggregatedTimeOff;
nextChan.Datarate = LoRaMacParams.ChannelsDatarate;
nextChan.DutyCycleEnabled = DutyCycleOn;
nextChan.Joined = IsLoRaMacNetworkJoined;
nextChan.LastAggrTx = AggregatedLastTxDoneTime;
// Select channel
while( RegionNextChannel( LoRaMacRegion, &nextChan, &Channel, &dutyCycleTimeOff, &AggregatedTimeOff ) == false )
{
// Set the default datarate
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
// Update datarate in the function parameters
nextChan.Datarate = LoRaMacParams.ChannelsDatarate;
}
// Compute Rx1 windows parameters
RegionComputeRxWindowParameters( LoRaMacRegion,
RegionApplyDrOffset( LoRaMacRegion, LoRaMacParams.DownlinkDwellTime, LoRaMacParams.ChannelsDatarate, LoRaMacParams.Rx1DrOffset ),
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow1Config );
// Compute Rx2 windows parameters
RegionComputeRxWindowParameters( LoRaMacRegion,
LoRaMacParams.Rx2Channel.Datarate,
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow2Config );
if( IsLoRaMacNetworkJoined == false )
{
RxWindow1Delay = LoRaMacParams.JoinAcceptDelay1 + RxWindow1Config.WindowOffset;
RxWindow2Delay = LoRaMacParams.JoinAcceptDelay2 + RxWindow2Config.WindowOffset;
}
else
{
if( ValidatePayloadLength( LoRaMacTxPayloadLen, LoRaMacParams.ChannelsDatarate, MacCommandsBufferIndex ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
RxWindow1Delay = LoRaMacParams.ReceiveDelay1 + RxWindow1Config.WindowOffset;
RxWindow2Delay = LoRaMacParams.ReceiveDelay2 + RxWindow2Config.WindowOffset;
}
// Schedule transmission of frame
if( dutyCycleTimeOff == 0 )
{
// Try to send now
return SendFrameOnChannel( Channel );
}
else
{
// Send later - prepare timer
LoRaMacState |= LORAMAC_TX_DELAYED;
TimerSetValue( &TxDelayedTimer, dutyCycleTimeOff );
TimerStart( &TxDelayedTimer );
return LORAMAC_STATUS_OK;
}
}
static void CalculateBackOff( uint8_t channel )
{
CalcBackOffParams_t calcBackOff;
calcBackOff.Joined = IsLoRaMacNetworkJoined;
calcBackOff.DutyCycleEnabled = DutyCycleOn;
calcBackOff.Channel = channel;
calcBackOff.ElapsedTime = TimerGetElapsedTime( LoRaMacInitializationTime );
calcBackOff.TxTimeOnAir = TxTimeOnAir;
calcBackOff.LastTxIsJoinRequest = LastTxIsJoinRequest;
// Update regional back-off
RegionCalcBackOff( LoRaMacRegion, &calcBackOff );
// Update aggregated time-off
AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );
}
static void ResetMacParameters( void )
{
IsLoRaMacNetworkJoined = false;
// Counters
UpLinkCounter = 0;
DownLinkCounter = 0;
AdrAckCounter = 0;
ChannelsNbRepCounter = 0;
AckTimeoutRetries = 1;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetry = false;
MaxDCycle = 0;
AggregatedDCycle = 1;
MacCommandsBufferIndex = 0;
MacCommandsBufferToRepeatIndex = 0;
IsRxWindowsEnabled = true;
LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset;
LoRaMacParams.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
LoRaMacParams.UplinkDwellTime = LoRaMacParamsDefaults.UplinkDwellTime;
LoRaMacParams.DownlinkDwellTime = LoRaMacParamsDefaults.DownlinkDwellTime;
LoRaMacParams.MaxEirp = LoRaMacParamsDefaults.MaxEirp;
LoRaMacParams.AntennaGain = LoRaMacParamsDefaults.AntennaGain;
NodeAckRequested = false;
SrvAckRequested = false;
MacCommandsInNextTx = false;
// Reset Multicast downlink counters
MulticastParams_t *cur = MulticastChannels;
while( cur != NULL )
{
cur->DownLinkCounter = 0;
cur = cur->Next;
}
// Initialize channel index.
Channel = 0;
LastTxChannel = Channel;
}
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
AdrNextParams_t adrNext;
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
const void* payload = fBuffer;
uint8_t framePort = fPort;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
LoRaMacTxPayloadLen = fBufferSize;
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
LoRaMacBufferPktLen = pktHeaderLen;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
LoRaMacBufferPktLen += 8;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = Radio.Random( );
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional fallthrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
if( IsLoRaMacNetworkJoined == false )
{
return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
}
// Adr next request
adrNext.UpdateChanMask = true;
adrNext.AdrEnabled = fCtrl->Bits.Adr;
adrNext.AdrAckCounter = AdrAckCounter;
adrNext.Datarate = LoRaMacParams.ChannelsDatarate;
adrNext.TxPower = LoRaMacParams.ChannelsTxPower;
adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
fCtrl->Bits.AdrAckReq = RegionAdrNext( LoRaMacRegion, &adrNext,
&LoRaMacParams.ChannelsDatarate, &LoRaMacParams.ChannelsTxPower, &AdrAckCounter );
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
// Copy the MAC commands which must be re-send into the MAC command buffer
memcpy1( &MacCommandsBuffer[MacCommandsBufferIndex], MacCommandsBufferToRepeat, MacCommandsBufferToRepeatIndex );
MacCommandsBufferIndex += MacCommandsBufferToRepeatIndex;
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
if( MacCommandsInNextTx == true )
{
if( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_FOPTS_LENGTH )
{
fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
for( i = 0; i < MacCommandsBufferIndex; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
}
}
else
{
LoRaMacTxPayloadLen = MacCommandsBufferIndex;
payload = MacCommandsBuffer;
framePort = 0;
}
}
}
else
{
if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsInNextTx == true ) )
{
LoRaMacTxPayloadLen = MacCommandsBufferIndex;
payload = MacCommandsBuffer;
framePort = 0;
}
}
MacCommandsInNextTx = false;
// Store MAC commands which must be re-send in case the device does not receive a downlink anymore
MacCommandsBufferToRepeatIndex = ParseMacCommandsToRepeat( MacCommandsBuffer, MacCommandsBufferIndex, MacCommandsBufferToRepeat );
if( MacCommandsBufferToRepeatIndex > 0 )
{
MacCommandsInNextTx = true;
}
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
LoRaMacBuffer[pktHeaderLen++] = framePort;
if( framePort == 0 )
{
// Reset buffer index as the mac commands are being sent on port 0
MacCommandsBufferIndex = 0;
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
else
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
}
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
break;
case FRAME_TYPE_PROPRIETARY:
if( ( fBuffer != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
memcpy1( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, LoRaMacTxPayloadLen );
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SendFrameOnChannel( uint8_t channel )
{
TxConfigParams_t txConfig;
int8_t txPower = 0;
txConfig.Channel = channel;
txConfig.Datarate = LoRaMacParams.ChannelsDatarate;
txConfig.TxPower = LoRaMacParams.ChannelsTxPower;
txConfig.MaxEirp = LoRaMacParams.MaxEirp;
txConfig.AntennaGain = LoRaMacParams.AntennaGain;
txConfig.PktLen = LoRaMacBufferPktLen;
DBG_PRINTF( "\n\r*** seqTx= %d *****\n\r", UpLinkCounter );
RegionTxConfig( LoRaMacRegion, &txConfig, &txPower, &TxTimeOnAir );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
McpsConfirm.TxPower = txPower;
// Store the time on air
McpsConfirm.TxTimeOnAir = TxTimeOnAir;
MlmeConfirm.TxTimeOnAir = TxTimeOnAir;
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
if( IsLoRaMacNetworkJoined == false )
{
JoinRequestTrials++;
}
// Send now
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout )
{
ContinuousWaveParams_t continuousWave;
continuousWave.Channel = Channel;
continuousWave.Datarate = LoRaMacParams.ChannelsDatarate;
continuousWave.TxPower = LoRaMacParams.ChannelsTxPower;
continuousWave.MaxEirp = LoRaMacParams.MaxEirp;
continuousWave.AntennaGain = LoRaMacParams.AntennaGain;
continuousWave.Timeout = timeout;
RegionSetContinuousWave( LoRaMacRegion, &continuousWave );
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power )
{
Radio.SetTxContinuousWave( frequency, power, timeout );
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaMacRegion_t region )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
if( primitives == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( primitives->MacMcpsConfirm == NULL ) ||
( primitives->MacMcpsIndication == NULL ) ||
( primitives->MacMlmeConfirm == NULL ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Verify if the region is supported
if( RegionIsActive( region ) == false )
{
return LORAMAC_STATUS_REGION_NOT_SUPPORTED;
}
LoRaMacPrimitives = primitives;
LoRaMacCallbacks = callbacks;
LoRaMacRegion = region;
LoRaMacFlags.Value = 0;
LoRaMacDeviceClass = CLASS_A;
LoRaMacState = LORAMAC_IDLE;
JoinRequestTrials = 0;
MaxJoinRequestTrials = 1;
RepeaterSupport = false;
// Reset duty cycle times
AggregatedLastTxDoneTime = 0;
AggregatedTimeOff = 0;
// Reset to defaults
getPhy.Attribute = PHY_DUTY_CYCLE;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
DutyCycleOn = ( bool ) phyParam.Value;
getPhy.Attribute = PHY_DEF_TX_POWER;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.ChannelsTxPower = phyParam.Value;
getPhy.Attribute = PHY_DEF_TX_DR;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.ChannelsDatarate = phyParam.Value;
getPhy.Attribute = PHY_MAX_RX_WINDOW;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.MaxRxWindow = phyParam.Value;
getPhy.Attribute = PHY_RECEIVE_DELAY1;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.ReceiveDelay1 = phyParam.Value;
getPhy.Attribute = PHY_RECEIVE_DELAY2;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.ReceiveDelay2 = phyParam.Value;
getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY1;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.JoinAcceptDelay1 = phyParam.Value;
getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY2;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.JoinAcceptDelay2 = phyParam.Value;
getPhy.Attribute = PHY_DEF_DR1_OFFSET;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.Rx1DrOffset = phyParam.Value;
getPhy.Attribute = PHY_DEF_RX2_FREQUENCY;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.Rx2Channel.Frequency = phyParam.Value;
getPhy.Attribute = PHY_DEF_RX2_DR;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.Rx2Channel.Datarate = phyParam.Value;
getPhy.Attribute = PHY_DEF_UPLINK_DWELL_TIME;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.UplinkDwellTime = phyParam.Value;
getPhy.Attribute = PHY_DEF_DOWNLINK_DWELL_TIME;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.DownlinkDwellTime = phyParam.Value;
getPhy.Attribute = PHY_DEF_MAX_EIRP;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.MaxEirp = phyParam.fValue;
getPhy.Attribute = PHY_DEF_ANTENNA_GAIN;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
LoRaMacParamsDefaults.AntennaGain = phyParam.fValue;
RegionInitDefaults( LoRaMacRegion, INIT_TYPE_INIT );
// Init parameters which are not set in function ResetMacParameters
LoRaMacParamsDefaults.ChannelsNbRep = 1;
LoRaMacParamsDefaults.SystemMaxRxError = 10;
LoRaMacParamsDefaults.MinRxSymbols = 6;
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError;
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols;
LoRaMacParams.MaxRxWindow = LoRaMacParamsDefaults.MaxRxWindow;
LoRaMacParams.ReceiveDelay1 = LoRaMacParamsDefaults.ReceiveDelay1;
LoRaMacParams.ReceiveDelay2 = LoRaMacParamsDefaults.ReceiveDelay2;
LoRaMacParams.JoinAcceptDelay1 = LoRaMacParamsDefaults.JoinAcceptDelay1;
LoRaMacParams.JoinAcceptDelay2 = LoRaMacParamsDefaults.JoinAcceptDelay2;
LoRaMacParams.ChannelsNbRep = LoRaMacParamsDefaults.ChannelsNbRep;
ResetMacParameters( );
// Initialize timers
TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );
// Store the current initialization time
LoRaMacInitializationTime = TimerGetCurrentTime( );
// Initialize Radio driver
RadioEvents.TxDone = OnRadioTxDone;
RadioEvents.RxDone = OnRadioRxDone;
RadioEvents.RxError = OnRadioRxError;
RadioEvents.TxTimeout = OnRadioTxTimeout;
RadioEvents.RxTimeout = OnRadioRxTimeout;
Radio.Init( &RadioEvents );
// Random seed initialization
srand1( Radio.Random( ) );
PublicNetwork = true;
Radio.SetPublicNetwork( PublicNetwork );
Radio.Sleep( );
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
AdrNextParams_t adrNext;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
int8_t datarate = LoRaMacParamsDefaults.ChannelsDatarate;
int8_t txPower = LoRaMacParamsDefaults.ChannelsTxPower;
uint8_t fOptLen = MacCommandsBufferIndex + MacCommandsBufferToRepeatIndex;
if( txInfo == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Setup ADR request
adrNext.UpdateChanMask = false;
adrNext.AdrEnabled = AdrCtrlOn;
adrNext.AdrAckCounter = AdrAckCounter;
adrNext.Datarate = LoRaMacParams.ChannelsDatarate;
adrNext.TxPower = LoRaMacParams.ChannelsTxPower;
adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
// We call the function for information purposes only. We don't want to
// apply the datarate, the tx power and the ADR ack counter.
RegionAdrNext( LoRaMacRegion, &adrNext, &datarate, &txPower, &AdrAckCounter );
// Setup PHY request
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = datarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Change request in case repeater is supported
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
txInfo->CurrentPayloadSize = phyParam.Value;
// Verify if the fOpts fit into the maximum payload
if( txInfo->CurrentPayloadSize >= fOptLen )
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen;
}
else
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize;
// The fOpts don't fit into the maximum payload. Omit the MAC commands to
// ensure that another uplink is possible.
fOptLen = 0;
MacCommandsBufferIndex = 0;
MacCommandsBufferToRepeatIndex = 0;
}
// Verify if the fOpts and the payload fit into the maximum payload
if( ValidatePayloadLength( size, datarate, fOptLen ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
if( mibGet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibGet->Type )
{
case MIB_DEVICE_CLASS:
{
mibGet->Param.Class = LoRaMacDeviceClass;
break;
}
case MIB_NETWORK_JOINED:
{
mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
break;
}
case MIB_ADR:
{
mibGet->Param.AdrEnable = AdrCtrlOn;
break;
}
case MIB_NET_ID:
{
mibGet->Param.NetID = LoRaMacNetID;
break;
}
case MIB_DEV_ADDR:
{
mibGet->Param.DevAddr = LoRaMacDevAddr;
break;
}
case MIB_NWK_SKEY:
{
mibGet->Param.NwkSKey = LoRaMacNwkSKey;
break;
}
case MIB_APP_SKEY:
{
mibGet->Param.AppSKey = LoRaMacAppSKey;
break;
}
case MIB_PUBLIC_NETWORK:
{
mibGet->Param.EnablePublicNetwork = PublicNetwork;
break;
}
case MIB_REPEATER_SUPPORT:
{
mibGet->Param.EnableRepeaterSupport = RepeaterSupport;
break;
}
case MIB_CHANNELS:
{
getPhy.Attribute = PHY_CHANNELS;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
mibGet->Param.ChannelList = phyParam.Channels;
break;
}
case MIB_RX2_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParams.Rx2Channel;
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
getPhy.Attribute = PHY_CHANNELS_DEFAULT_MASK;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
mibGet->Param.ChannelsDefaultMask = phyParam.ChannelsMask;
break;
}
case MIB_CHANNELS_MASK:
{
getPhy.Attribute = PHY_CHANNELS_MASK;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
mibGet->Param.ChannelsMask = phyParam.ChannelsMask;
break;
}
case MIB_CHANNELS_NB_REP:
{
mibGet->Param.ChannelNbRep = LoRaMacParams.ChannelsNbRep;
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
mibGet->Param.MaxRxWindow = LoRaMacParams.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
mibGet->Param.ReceiveDelay1 = LoRaMacParams.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
mibGet->Param.ReceiveDelay2 = LoRaMacParams.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
mibGet->Param.JoinAcceptDelay1 = LoRaMacParams.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
mibGet->Param.JoinAcceptDelay2 = LoRaMacParams.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
mibGet->Param.ChannelsDefaultDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DATARATE:
{
mibGet->Param.ChannelsDatarate = LoRaMacParams.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
mibGet->Param.ChannelsDefaultTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
break;
}
case MIB_CHANNELS_TX_POWER:
{
mibGet->Param.ChannelsTxPower = LoRaMacParams.ChannelsTxPower;
break;
}
case MIB_UPLINK_COUNTER:
{
mibGet->Param.UpLinkCounter = UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
mibGet->Param.DownLinkCounter = DownLinkCounter;
break;
}
case MIB_MULTICAST_CHANNEL:
{
mibGet->Param.MulticastList = MulticastChannels;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
mibGet->Param.SystemMaxRxError = LoRaMacParams.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
mibGet->Param.MinRxSymbols = LoRaMacParams.MinRxSymbols;
break;
}
case MIB_ANTENNA_GAIN:
{
mibGet->Param.AntennaGain = LoRaMacParams.AntennaGain;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
ChanMaskSetParams_t chanMaskSet;
VerifyParams_t verify;
if( mibSet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
switch( mibSet->Type )
{
case MIB_DEVICE_CLASS:
{
LoRaMacDeviceClass = mibSet->Param.Class;
switch( LoRaMacDeviceClass )
{
case CLASS_A:
{
// Set the radio into sleep to setup a defined state
Radio.Sleep( );
break;
}
case CLASS_B:
{
break;
}
case CLASS_C:
{
// Set the NodeAckRequested indicator to default
NodeAckRequested = false;
OnRxWindow2TimerEvent( );
break;
}
}
break;
}
case MIB_NETWORK_JOINED:
{
IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
break;
}
case MIB_ADR:
{
AdrCtrlOn = mibSet->Param.AdrEnable;
break;
}
case MIB_NET_ID:
{
LoRaMacNetID = mibSet->Param.NetID;
break;
}
case MIB_DEV_ADDR:
{
LoRaMacDevAddr = mibSet->Param.DevAddr;
break;
}
case MIB_NWK_SKEY:
{
if( mibSet->Param.NwkSKey != NULL )
{
memcpy1( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
sizeof( LoRaMacNwkSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_APP_SKEY:
{
if( mibSet->Param.AppSKey != NULL )
{
memcpy1( LoRaMacAppSKey, mibSet->Param.AppSKey,
sizeof( LoRaMacAppSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_PUBLIC_NETWORK:
{
PublicNetwork = mibSet->Param.EnablePublicNetwork;
Radio.SetPublicNetwork( PublicNetwork );
break;
}
case MIB_REPEATER_SUPPORT:
{
RepeaterSupport = mibSet->Param.EnableRepeaterSupport;
break;
}
case MIB_RX2_CHANNEL:
{
verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate;
verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
if( RegionVerify( LoRaMacRegion, &verify, PHY_RX_DR ) == true )
{
LoRaMacParams.Rx2Channel = mibSet->Param.Rx2Channel;
if( ( LoRaMacDeviceClass == CLASS_C ) && ( IsLoRaMacNetworkJoined == true ) )
{
// Compute Rx2 windows parameters
RegionComputeRxWindowParameters( LoRaMacRegion,
LoRaMacParams.Rx2Channel.Datarate,
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow2Config );
RxWindow2Config.Channel = Channel;
RxWindow2Config.Frequency = LoRaMacParams.Rx2Channel.Frequency;
RxWindow2Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
RxWindow2Config.RepeaterSupport = RepeaterSupport;
RxWindow2Config.Window = 1;
RxWindow2Config.RxContinuous = true;
if( RegionRxConfig( LoRaMacRegion, &RxWindow2Config, ( int8_t* )&McpsIndication.RxDatarate ) == true )
{
RxWindowSetup( RxWindow2Config.RxContinuous, LoRaMacParams.MaxRxWindow );
RxSlot = RxWindow2Config.Window;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
}
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate;
verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
if( RegionVerify( LoRaMacRegion, &verify, PHY_RX_DR ) == true )
{
LoRaMacParamsDefaults.Rx2Channel = mibSet->Param.Rx2DefaultChannel;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask;
chanMaskSet.ChannelsMaskType = CHANNELS_DEFAULT_MASK;
if( RegionChanMaskSet( LoRaMacRegion, &chanMaskSet ) == false )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_MASK:
{
chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask;
chanMaskSet.ChannelsMaskType = CHANNELS_MASK;
if( RegionChanMaskSet( LoRaMacRegion, &chanMaskSet ) == false )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_NB_REP:
{
if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
( mibSet->Param.ChannelNbRep <= 15 ) )
{
LoRaMacParams.ChannelsNbRep = mibSet->Param.ChannelNbRep;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
LoRaMacParams.MaxRxWindow = mibSet->Param.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
LoRaMacParams.ReceiveDelay1 = mibSet->Param.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
LoRaMacParams.ReceiveDelay2 = mibSet->Param.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
LoRaMacParams.JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
LoRaMacParams.JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
verify.DatarateParams.Datarate = mibSet->Param.ChannelsDefaultDatarate;
if( RegionVerify( LoRaMacRegion, &verify, PHY_DEF_TX_DR ) == true )
{
LoRaMacParamsDefaults.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DATARATE:
{
verify.DatarateParams.Datarate = mibSet->Param.ChannelsDatarate;
if( RegionVerify( LoRaMacRegion, &verify, PHY_TX_DR ) == true )
{
LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
verify.TxPower = mibSet->Param.ChannelsDefaultTxPower;
if( RegionVerify( LoRaMacRegion, &verify, PHY_DEF_TX_POWER ) == true )
{
LoRaMacParamsDefaults.ChannelsTxPower = verify.TxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_TX_POWER:
{
verify.TxPower = mibSet->Param.ChannelsTxPower;
if( RegionVerify( LoRaMacRegion, &verify, PHY_TX_POWER ) == true )
{
LoRaMacParams.ChannelsTxPower = verify.TxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_UPLINK_COUNTER:
{
UpLinkCounter = mibSet->Param.UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
DownLinkCounter = mibSet->Param.DownLinkCounter;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError = mibSet->Param.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols = mibSet->Param.MinRxSymbols;
break;
}
case MIB_ANTENNA_GAIN:
{
LoRaMacParams.AntennaGain = mibSet->Param.AntennaGain;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacChannelAdd( uint8_t id, ChannelParams_t params )
{
ChannelAddParams_t channelAdd;
// Validate if the MAC is in a correct state
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
channelAdd.NewChannel = &params;
channelAdd.ChannelId = id;
return RegionChannelAdd( LoRaMacRegion, &channelAdd );
}
LoRaMacStatus_t LoRaMacChannelRemove( uint8_t id )
{
ChannelRemoveParams_t channelRemove;
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
channelRemove.ChannelId = id;
if( RegionChannelsRemove( LoRaMacRegion, &channelRemove ) == false )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
// New node is the fist element
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the last node in the list
while( cur->Next != NULL )
{
cur = cur->Next;
}
// This function always finds the last node
cur->Next = channelParam;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
if( MulticastChannels != NULL )
{
if( MulticastChannels == channelParam )
{
// First element
MulticastChannels = channelParam->Next;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the node in the list
while( cur->Next && cur->Next != channelParam )
{
cur = cur->Next;
}
// If we found the node, remove it
if( cur->Next )
{
cur->Next = channelParam->Next;
}
}
channelParam->Next = NULL;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
AlternateDrParams_t altDr;
VerifyParams_t verify;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
if( mlmeRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
memset1( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mlmeRequest->Type )
{
case MLME_JOIN:
{
if( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED )
{
return LORAMAC_STATUS_BUSY;
}
if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
( mlmeRequest->Req.Join.AppEui == NULL ) ||
( mlmeRequest->Req.Join.AppKey == NULL ) ||
( mlmeRequest->Req.Join.NbTrials == 0 ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Verify the parameter NbTrials for the join procedure
verify.NbJoinTrials = mlmeRequest->Req.Join.NbTrials;
if( RegionVerify( LoRaMacRegion, &verify, PHY_NB_JOIN_TRIALS ) == false )
{
// Value not supported, get default
getPhy.Attribute = PHY_DEF_NB_JOIN_TRIALS;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
mlmeRequest->Req.Join.NbTrials = ( uint8_t ) phyParam.Value;
}
LoRaMacFlags.Bits.MlmeReq = 1;
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;
MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials;
// Reset variable JoinRequestTrials
JoinRequestTrials = 0;
// Setup header information
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
ResetMacParameters( );
altDr.NbTrials = JoinRequestTrials + 1;
LoRaMacParams.ChannelsDatarate = RegionAlternateDr( LoRaMacRegion, &altDr );
status = Send( &macHdr, 0, NULL, 0 );
break;
}
case MLME_LINK_CHECK:
{
LoRaMacFlags.Bits.MlmeReq = 1;
// LoRaMac will send this command piggy-pack
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
break;
}
case MLME_TXCW:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout );
break;
}
case MLME_TXCW_1:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave1( mlmeRequest->Req.TxCw.Timeout, mlmeRequest->Req.TxCw.Frequency, mlmeRequest->Req.TxCw.Power );
break;
}
default:
break;
}
if( status != LORAMAC_STATUS_OK )
{
NodeAckRequested = false;
LoRaMacFlags.Bits.MlmeReq = 0;
}
return status;
}
LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
VerifyParams_t verify;
uint8_t fPort = 0;
void *fBuffer;
uint16_t fBufferSize;
int8_t datarate;
bool readyToSend = false;
if( mcpsRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) ||
( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED ) )
{
return LORAMAC_STATUS_BUSY;
}
macHdr.Value = 0;
memset1 ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
// AckTimeoutRetriesCounter must be reset every time a new request (unconfirmed or confirmed) is performed.
AckTimeoutRetriesCounter = 1;
switch( mcpsRequest->Type )
{
case MCPS_UNCONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
fPort = mcpsRequest->Req.Unconfirmed.fPort;
fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
datarate = mcpsRequest->Req.Unconfirmed.Datarate;
break;
}
case MCPS_CONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
fPort = mcpsRequest->Req.Confirmed.fPort;
fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
datarate = mcpsRequest->Req.Confirmed.Datarate;
break;
}
case MCPS_PROPRIETARY:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
datarate = mcpsRequest->Req.Proprietary.Datarate;
break;
}
default:
break;
}
// Get the minimum possible datarate
getPhy.Attribute = PHY_MIN_TX_DR;
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
phyParam = RegionGetPhyParam( LoRaMacRegion, &getPhy );
// Apply the minimum possible datarate.
// Some regions have limitations for the minimum datarate.
datarate = MAX( datarate, phyParam.Value );
if( readyToSend == true )
{
if( AdrCtrlOn == false )
{
verify.DatarateParams.Datarate = datarate;
verify.DatarateParams.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
if( RegionVerify( LoRaMacRegion, &verify, PHY_TX_DR ) == true )
{
LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
status = Send( &macHdr, fPort, fBuffer, fBufferSize );
if( status == LORAMAC_STATUS_OK )
{
McpsConfirm.McpsRequest = mcpsRequest->Type;
LoRaMacFlags.Bits.McpsReq = 1;
}
else
{
NodeAckRequested = false;
}
}
return status;
}
void LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMacTestSetMic( uint16_t txPacketCounter )
{
UpLinkCounter = txPacketCounter;
IsUpLinkCounterFixed = true;
}
void LoRaMacTestSetDutyCycleOn( bool enable )
{
VerifyParams_t verify;
verify.DutyCycle = enable;
if( RegionVerify( LoRaMacRegion, &verify, PHY_DUTY_CYCLE ) == true )
{
DutyCycleOn = enable;
}
}
void LoRaMacTestSetChannel( uint8_t channel )
{
Channel = channel;
}