/** ****************************************************************************** * @file stm32l0xx_ll_rcc.h * @author MCD Application Team * @brief Header file of RCC LL module. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32L0xx_LL_RCC_H #define __STM32L0xx_LL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32l0xx.h" /** @addtogroup STM32L0xx_LL_Driver * @{ */ #if defined(RCC) /** @defgroup RCC_LL RCC * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @defgroup RCC_LL_Private_Variables RCC Private Variables * @{ */ /** * @} */ /* Private constants ---------------------------------------------------------*/ /** @defgroup RCC_LL_Private_Constants RCC Private Constants * @{ */ /* Defines used for the bit position in the register and perform offsets*/ #define RCC_POSITION_HPRE (uint32_t)4U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PPRE1 (uint32_t)8U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PPRE2 (uint32_t)11U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PLLDIV (uint32_t)22U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PLLMUL (uint32_t)18U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_HSICAL (uint32_t)0U /*!< field position in register RCC_ICSCR */ #define RCC_POSITION_HSITRIM (uint32_t)8U /*!< field position in register RCC_ICSCR */ #define RCC_POSITION_MSIRANGE (uint32_t)13U /*!< field position in register RCC_ICSCR */ #define RCC_POSITION_MSICAL (uint32_t)16U /*!< field position in register RCC_ICSCR */ #define RCC_POSITION_MSITRIM (uint32_t)24U /*!< field position in register RCC_ICSCR */ #if defined(RCC_HSI48_SUPPORT) #define RCC_POSITION_HSI48CAL (uint32_t)8U /*!< field position in register RCC_CRRCR */ #endif /* RCC_HSI48_SUPPORT */ /** * @} */ /* Private macros ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Private_Macros RCC Private Macros * @{ */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Exported_Types RCC Exported Types * @{ */ /** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure * @{ */ /** * @brief RCC Clocks Frequency Structure */ typedef struct { uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */ uint32_t HCLK_Frequency; /*!< HCLK clock frequency */ uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */ uint32_t PCLK2_Frequency; /*!< PCLK2 clock frequency */ } LL_RCC_ClocksTypeDef; /** * @} */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation * @brief Defines used to adapt values of different oscillators * @note These values could be modified in the user environment according to * HW set-up. * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000U) /*!< Value of the HSE oscillator in Hz */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the HSI oscillator in Hz */ #endif /* HSI_VALUE */ #if !defined (LSE_VALUE) #define LSE_VALUE ((uint32_t)32768U) /*!< Value of the LSE oscillator in Hz */ #endif /* LSE_VALUE */ #if !defined (LSI_VALUE) #define LSI_VALUE ((uint32_t)37000U) /*!< Value of the LSI oscillator in Hz */ #endif /* LSI_VALUE */ #if defined(RCC_HSI48_SUPPORT) #if !defined (HSI48_VALUE) #define HSI48_VALUE ((uint32_t)48000000U) /*!< Value of the HSI48 oscillator in Hz */ #endif /* HSI48_VALUE */ #endif /* RCC_HSI48_SUPPORT */ /** * @} */ /** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines * @brief Flags defines which can be used with LL_RCC_WriteReg function * @{ */ #define LL_RCC_CICR_LSIRDYC RCC_CICR_LSIRDYC /*!< LSI Ready Interrupt Clear */ #define LL_RCC_CICR_LSERDYC RCC_CICR_LSERDYC /*!< LSE Ready Interrupt Clear */ #define LL_RCC_CICR_HSIRDYC RCC_CICR_HSIRDYC /*!< HSI Ready Interrupt Clear */ #define LL_RCC_CICR_HSERDYC RCC_CICR_HSERDYC /*!< HSE Ready Interrupt Clear */ #define LL_RCC_CICR_PLLRDYC RCC_CICR_PLLRDYC /*!< PLL Ready Interrupt Clear */ #define LL_RCC_CICR_MSIRDYC RCC_CICR_MSIRDYC /*!< MSI Ready Interrupt Clear */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CICR_HSI48RDYC RCC_CICR_HSI48RDYC /*!< HSI48 Ready Interrupt Clear */ #endif /* RCC_HSI48_SUPPORT */ #define LL_RCC_CICR_LSECSSC RCC_CICR_LSECSSC /*!< LSE Clock Security System Interrupt Clear */ #define LL_RCC_CICR_CSSC RCC_CICR_CSSC /*!< Clock Security System Interrupt Clear */ /** * @} */ /** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_RCC_ReadReg function * @{ */ #define LL_RCC_CIFR_LSIRDYF RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */ #define LL_RCC_CIFR_LSERDYF RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */ #define LL_RCC_CIFR_HSIRDYF RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */ #define LL_RCC_CIFR_HSERDYF RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */ #define LL_RCC_CIFR_PLLRDYF RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */ #define LL_RCC_CIFR_MSIRDYF RCC_CIFR_MSIRDYF /*!< MSI Ready Interrupt flag */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CIFR_HSI48RDYF RCC_CIFR_HSI48RDYF /*!< HSI48 Ready Interrupt flag */ #endif /* RCC_HSI48_SUPPORT */ #define LL_RCC_CIFR_LSECSSF RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */ #define LL_RCC_CIFR_CSSF RCC_CIFR_CSSF /*!< Clock Security System Interrupt flag */ #define LL_RCC_CSR_FWRSTF RCC_CSR_FWRSTF /*!< Firewall reset flag */ #define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */ #define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */ #define LL_RCC_CSR_PORRSTF RCC_CSR_PORRSTF /*!< POR/PDR reset flag */ #define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */ #define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */ #define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */ #define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low-Power reset flag */ /** * @} */ /** @defgroup RCC_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions * @{ */ #define LL_RCC_CIER_LSIRDYIE RCC_CIER_LSIRDYIE /*!< LSI Ready Interrupt Enable */ #define LL_RCC_CIER_LSERDYIE RCC_CIER_LSERDYIE /*!< LSE Ready Interrupt Enable */ #define LL_RCC_CIER_HSIRDYIE RCC_CIER_HSIRDYIE /*!< HSI Ready Interrupt Enable */ #define LL_RCC_CIER_HSERDYIE RCC_CIER_HSERDYIE /*!< HSE Ready Interrupt Enable */ #define LL_RCC_CIER_PLLRDYIE RCC_CIER_PLLRDYIE /*!< PLL Ready Interrupt Enable */ #define LL_RCC_CIER_MSIRDYIE RCC_CIER_MSIRDYIE /*!< MSI Ready Interrupt Enable */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CIER_HSI48RDYIE RCC_CIER_HSI48RDYIE /*!< HSI48 Ready Interrupt Enable */ #endif /* RCC_HSI48_SUPPORT */ #define LL_RCC_CIER_LSECSSIE RCC_CIER_LSECSSIE /*!< LSE CSS Interrupt Enable */ /** * @} */ /** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability * @{ */ #define LL_RCC_LSEDRIVE_LOW ((uint32_t)0x00000000U) /*!< Xtal mode lower driving capability */ #define LL_RCC_LSEDRIVE_MEDIUMLOW RCC_CSR_LSEDRV_0 /*!< Xtal mode medium low driving capability */ #define LL_RCC_LSEDRIVE_MEDIUMHIGH RCC_CSR_LSEDRV_1 /*!< Xtal mode medium high driving capability */ #define LL_RCC_LSEDRIVE_HIGH RCC_CSR_LSEDRV /*!< Xtal mode higher driving capability */ /** * @} */ /** @defgroup RCC_LL_EC_RTC_HSE_DIV RTC HSE Prescaler * @{ */ #define LL_RCC_RTC_HSE_DIV_2 (uint32_t)0x00000000U/*!< HSE is divided by 2 for RTC clock */ #define LL_RCC_RTC_HSE_DIV_4 RCC_CR_RTCPRE_0 /*!< HSE is divided by 4 for RTC clock */ #define LL_RCC_RTC_HSE_DIV_8 RCC_CR_RTCPRE_1 /*!< HSE is divided by 8 for RTC clock */ #define LL_RCC_RTC_HSE_DIV_16 RCC_CR_RTCPRE /*!< HSE is divided by 16 for RTC clock */ /** * @} */ /** @defgroup RCC_LL_EC_MSIRANGE MSI clock ranges * @{ */ #define LL_RCC_MSIRANGE_0 RCC_ICSCR_MSIRANGE_0 /*!< MSI = 65.536 KHz */ #define LL_RCC_MSIRANGE_1 RCC_ICSCR_MSIRANGE_1 /*!< MSI = 131.072 KHz*/ #define LL_RCC_MSIRANGE_2 RCC_ICSCR_MSIRANGE_2 /*!< MSI = 262.144 KHz */ #define LL_RCC_MSIRANGE_3 RCC_ICSCR_MSIRANGE_3 /*!< MSI = 524.288 KHz */ #define LL_RCC_MSIRANGE_4 RCC_ICSCR_MSIRANGE_4 /*!< MSI = 1.048 MHz */ #define LL_RCC_MSIRANGE_5 RCC_ICSCR_MSIRANGE_5 /*!< MSI = 2.097 MHz */ #define LL_RCC_MSIRANGE_6 RCC_ICSCR_MSIRANGE_6 /*!< MSI = 4.194 MHz */ /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch * @{ */ #define LL_RCC_SYS_CLKSOURCE_MSI RCC_CFGR_SW_MSI /*!< MSI selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_PLL RCC_CFGR_SW_PLL /*!< PLL selection as system clock */ /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status * @{ */ #define LL_RCC_SYS_CLKSOURCE_STATUS_MSI RCC_CFGR_SWS_MSI /*!< MSI used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_PLL RCC_CFGR_SWS_PLL /*!< PLL used as system clock */ /** * @} */ /** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler * @{ */ #define LL_RCC_SYSCLK_DIV_1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */ #define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */ #define LL_RCC_SYSCLK_DIV_4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */ #define LL_RCC_SYSCLK_DIV_8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */ #define LL_RCC_SYSCLK_DIV_16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */ #define LL_RCC_SYSCLK_DIV_64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */ #define LL_RCC_SYSCLK_DIV_128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */ #define LL_RCC_SYSCLK_DIV_256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */ #define LL_RCC_SYSCLK_DIV_512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */ /** * @} */ /** @defgroup RCC_LL_EC_APB1_DIV APB low-speed prescaler (APB1) * @{ */ #define LL_RCC_APB1_DIV_1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */ #define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */ #define LL_RCC_APB1_DIV_4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */ #define LL_RCC_APB1_DIV_8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */ #define LL_RCC_APB1_DIV_16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */ /** * @} */ /** @defgroup RCC_LL_EC_APB2_DIV APB high-speed prescaler (APB2) * @{ */ #define LL_RCC_APB2_DIV_1 RCC_CFGR_PPRE2_DIV1 /*!< HCLK not divided */ #define LL_RCC_APB2_DIV_2 RCC_CFGR_PPRE2_DIV2 /*!< HCLK divided by 2 */ #define LL_RCC_APB2_DIV_4 RCC_CFGR_PPRE2_DIV4 /*!< HCLK divided by 4 */ #define LL_RCC_APB2_DIV_8 RCC_CFGR_PPRE2_DIV8 /*!< HCLK divided by 8 */ #define LL_RCC_APB2_DIV_16 RCC_CFGR_PPRE2_DIV16 /*!< HCLK divided by 16 */ /** * @} */ /** @defgroup RCC_LL_EC_STOP_WAKEUPCLOCK Wakeup from Stop and CSS backup clock selection * @{ */ #define LL_RCC_STOP_WAKEUPCLOCK_MSI ((uint32_t)0x00000000U) /*!< MSI selection after wake-up from STOP */ #define LL_RCC_STOP_WAKEUPCLOCK_HSI RCC_CFGR_STOPWUCK /*!< HSI selection after wake-up from STOP */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection * @{ */ #define LL_RCC_MCO1SOURCE_NOCLOCK RCC_CFGR_MCOSEL_NOCLOCK /*!< MCO output disabled, no clock on MCO */ #define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_SYSCLK /*!< SYSCLK selection as MCO source */ #define LL_RCC_MCO1SOURCE_HSI RCC_CFGR_MCOSEL_HSI /*!< HSI selection as MCO source */ #define LL_RCC_MCO1SOURCE_MSI RCC_CFGR_MCOSEL_MSI /*!< MSI selection as MCO source */ #define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_HSE /*!< HSE selection as MCO source */ #define LL_RCC_MCO1SOURCE_LSI RCC_CFGR_MCOSEL_LSI /*!< LSI selection as MCO source */ #define LL_RCC_MCO1SOURCE_LSE RCC_CFGR_MCOSEL_LSE /*!< LSE selection as MCO source */ #if defined(RCC_CFGR_MCOSEL_HSI48) #define LL_RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_HSI48 /*!< HSI48 selection as MCO source */ #endif /* RCC_CFGR_MCOSEL_HSI48 */ #define LL_RCC_MCO1SOURCE_PLLCLK RCC_CFGR_MCOSEL_PLL /*!< PLLCLK selection as MCO source */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler * @{ */ #define LL_RCC_MCO1_DIV_1 RCC_CFGR_MCOPRE_DIV1 /*!< MCO Clock divided by 1 */ #define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_DIV2 /*!< MCO Clock divided by 2 */ #define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_DIV4 /*!< MCO Clock divided by 4 */ #define LL_RCC_MCO1_DIV_8 RCC_CFGR_MCOPRE_DIV8 /*!< MCO Clock divided by 8 */ #define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_DIV16 /*!< MCO Clock divided by 16 */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency * @{ */ #define LL_RCC_PERIPH_FREQUENCY_NO (uint32_t)0x00000000U /*!< No clock enabled for the peripheral */ #define LL_RCC_PERIPH_FREQUENCY_NA (uint32_t)0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** @defgroup RCC_LL_EC_USART1_CLKSOURCE Peripheral USART clock source selection * @{ */ #if defined(RCC_CCIPR_USART1SEL) #define LL_RCC_USART1_CLKSOURCE_PCLK2 (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | 0x00000000U) /*!< PCLK2 selected as USART1 clock */ #define LL_RCC_USART1_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_0) /*!< SYSCLK selected as USART1 clock */ #define LL_RCC_USART1_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_1) /*!< HSI selected as USART1 clock */ #define LL_RCC_USART1_CLKSOURCE_LSE (uint32_t)((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL) /*!< LSE selected as USART1 clock*/ #endif /* RCC_CCIPR_USART1SEL */ #define LL_RCC_USART2_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | 0x00000000U) /*!< PCLK1 selected as USART2 clock */ #define LL_RCC_USART2_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_0) /*!< SYSCLK selected as USART2 clock */ #define LL_RCC_USART2_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_1) /*!< HSI selected as USART2 clock */ #define LL_RCC_USART2_CLKSOURCE_LSE (uint32_t)((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL) /*!< LSE selected as USART2 clock*/ /** * @} */ /** @defgroup RCC_LL_EC_LPUART1_CLKSOURCE Peripheral LPUART clock source selection * @{ */ #define LL_RCC_LPUART1_CLKSOURCE_PCLK1 (uint32_t)0x00000000U /*!< PCLK1 selected as LPUART1 clock */ #define LL_RCC_LPUART1_CLKSOURCE_SYSCLK RCC_CCIPR_LPUART1SEL_0 /*!< SYSCLK selected as LPUART1 clock */ #define LL_RCC_LPUART1_CLKSOURCE_HSI RCC_CCIPR_LPUART1SEL_1 /*!< HSI selected as LPUART1 clock */ #define LL_RCC_LPUART1_CLKSOURCE_LSE RCC_CCIPR_LPUART1SEL /*!< LSE selected as LPUART1 clock*/ /** * @} */ /** @defgroup RCC_LL_EC_I2C1_CLKSOURCE Peripheral I2C clock source selection * @{ */ #define LL_RCC_I2C1_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (0x00000000U >> 4U)) /*!< PCLK1 selected as I2C1 clock */ #define LL_RCC_I2C1_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (RCC_CCIPR_I2C1SEL_0 >> 4U)) /*!< SYSCLK selected as I2C1 clock */ #define LL_RCC_I2C1_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C1SEL << 4U) | (RCC_CCIPR_I2C1SEL_1 >> 4U)) /*!< HSI selected as I2C1 clock */ #if defined(RCC_CCIPR_I2C3SEL) #define LL_RCC_I2C3_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (0x00000000U >> 4U)) /*!< PCLK1 selected as I2C3 clock */ #define LL_RCC_I2C3_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (RCC_CCIPR_I2C3SEL_0 >> 4U)) /*!< SYSCLK selected as I2C3 clock */ #define LL_RCC_I2C3_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C3SEL << 4U) | (RCC_CCIPR_I2C3SEL_1 >> 4U)) /*!< HSI selected as I2C3 clock */ #endif /*RCC_CCIPR_I2C3SEL*/ /** * @} */ /** @defgroup RCC_LL_EC_LPTIM1_CLKSOURCE Peripheral LPTIM clock source selection * @{ */ #define LL_RCC_LPTIM1_CLKSOURCE_PCLK1 (uint32_t)(0x00000000U) /*!< PCLK1 selected as LPTIM1 clock */ #define LL_RCC_LPTIM1_CLKSOURCE_LSI (uint32_t)RCC_CCIPR_LPTIM1SEL_0 /*!< LSI selected as LPTIM1 clock */ #define LL_RCC_LPTIM1_CLKSOURCE_HSI (uint32_t)RCC_CCIPR_LPTIM1SEL_1 /*!< HSI selected as LPTIM1 clock */ #define LL_RCC_LPTIM1_CLKSOURCE_LSE (uint32_t)RCC_CCIPR_LPTIM1SEL /*!< LSE selected as LPTIM1 clock*/ /** * @} */ #if defined(RCC_CCIPR_HSI48SEL) #if defined(RNG) /** @defgroup RCC_LL_EC_RNG_CLKSOURCE Peripheral RNG clock source selection * @{ */ #define LL_RCC_RNG_CLKSOURCE_PLL (uint32_t)(0x00000000U) /*!< PLL selected as RNG clock */ #define LL_RCC_RNG_CLKSOURCE_HSI48 (uint32_t)(RCC_CCIPR_HSI48SEL) /*!< HSI48 selected as RNG clock*/ /** * @} */ #endif /* RNG */ #if defined(USB) /** @defgroup RCC_LL_EC_USB_CLKSOURCE Peripheral USB clock source selection * @{ */ #define LL_RCC_USB_CLKSOURCE_PLL (uint32_t)(0x00000000U) /*!< PLL selected as USB clock */ #define LL_RCC_USB_CLKSOURCE_HSI48 (uint32_t)(RCC_CCIPR_HSI48SEL) /*!< HSI48 selected as USB clock*/ /** * @} */ #endif /* USB */ #endif /* RCC_CCIPR_HSI48SEL */ /** @defgroup RCC_LL_EC_USART1 Peripheral USART get clock source * @{ */ #if defined(RCC_CCIPR_USART1SEL) #define LL_RCC_USART1_CLKSOURCE RCC_CCIPR_USART1SEL /*!< USART1 clock source selection bits */ #endif /* RCC_CCIPR_USART1SEL */ #define LL_RCC_USART2_CLKSOURCE RCC_CCIPR_USART2SEL /*!< USART2 clock source selection bits */ /** * @} */ /** @defgroup RCC_LL_EC_LPUART1 Peripheral LPUART get clock source * @{ */ #define LL_RCC_LPUART1_CLKSOURCE RCC_CCIPR_LPUART1SEL /*!< LPUART1 clock source selection bits */ /** * @} */ /** @defgroup RCC_LL_EC_I2C1 Peripheral I2C get clock source * @{ */ #define LL_RCC_I2C1_CLKSOURCE RCC_CCIPR_I2C1SEL /*!< I2C1 clock source selection bits */ #if defined(RCC_CCIPR_I2C3SEL) #define LL_RCC_I2C3_CLKSOURCE RCC_CCIPR_I2C3SEL /*!< I2C3 clock source selection bits */ #endif /*RCC_CCIPR_I2C3SEL*/ /** * @} */ /** @defgroup RCC_LL_EC_LPTIM1 Peripheral LPTIM get clock source * @{ */ #define LL_RCC_LPTIM1_CLKSOURCE RCC_CCIPR_LPTIM1SEL /*!< LPTIM1 clock source selection bits */ /** * @} */ #if defined(RCC_CCIPR_HSI48SEL) #if defined(RNG) /** @defgroup RCC_LL_EC_RNG Peripheral RNG get clock source * @{ */ #define LL_RCC_RNG_CLKSOURCE RCC_CCIPR_HSI48SEL /*!< HSI48 RC clock source selection bit for RNG*/ /** * @} */ #endif /* RNG */ #if defined(USB) /** @defgroup RCC_LL_EC_USB Peripheral USB get clock source * @{ */ #define LL_RCC_USB_CLKSOURCE RCC_CCIPR_HSI48SEL /*!< HSI48 RC clock source selection bit for USB*/ /** * @} */ #endif /* USB */ #endif /* RCC_CCIPR_HSI48SEL */ /** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection * @{ */ #define LL_RCC_RTC_CLKSOURCE_NONE (uint32_t)0x00000000U /*!< No clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_LSE RCC_CSR_RTCSEL_LSE /*!< LSE oscillator clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_LSI RCC_CSR_RTCSEL_LSI /*!< LSI oscillator clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_HSE RCC_CSR_RTCSEL_HSE /*!< HSE oscillator clock divided by a programmable prescaler (selection through @ref LL_RCC_SetRTC_HSEPrescaler function ) */ /** * @} */ /** @defgroup RCC_LL_EC_PLL_MUL PLL Multiplicator factor * @{ */ #define LL_RCC_PLL_MUL_3 RCC_CFGR_PLLMUL3 /*!< PLL input clock * 3 */ #define LL_RCC_PLL_MUL_4 RCC_CFGR_PLLMUL4 /*!< PLL input clock * 4 */ #define LL_RCC_PLL_MUL_6 RCC_CFGR_PLLMUL6 /*!< PLL input clock * 6 */ #define LL_RCC_PLL_MUL_8 RCC_CFGR_PLLMUL8 /*!< PLL input clock * 8 */ #define LL_RCC_PLL_MUL_12 RCC_CFGR_PLLMUL12 /*!< PLL input clock * 12 */ #define LL_RCC_PLL_MUL_16 RCC_CFGR_PLLMUL16 /*!< PLL input clock * 16 */ #define LL_RCC_PLL_MUL_24 RCC_CFGR_PLLMUL24 /*!< PLL input clock * 24 */ #define LL_RCC_PLL_MUL_32 RCC_CFGR_PLLMUL32 /*!< PLL input clock * 32 */ #define LL_RCC_PLL_MUL_48 RCC_CFGR_PLLMUL48 /*!< PLL input clock * 48 */ /** * @} */ /** @defgroup RCC_LL_EC_PLL_DIV PLL division factor * @{ */ #define LL_RCC_PLL_DIV_2 RCC_CFGR_PLLDIV2 /*!< PLL clock output = PLLVCO / 2 */ #define LL_RCC_PLL_DIV_3 RCC_CFGR_PLLDIV3 /*!< PLL clock output = PLLVCO / 3 */ #define LL_RCC_PLL_DIV_4 RCC_CFGR_PLLDIV4 /*!< PLL clock output = PLLVCO / 4 */ /** * @} */ /** @defgroup RCC_LL_EC_PLLSOURCE PLL SOURCE * @{ */ #define LL_RCC_PLLSOURCE_HSI RCC_CFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in RCC register * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG(RCC->__REG__, (__VALUE__)) /** * @brief Read a value in RCC register * @param __REG__ Register to be read * @retval Register value */ #define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__) /** * @} */ /** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies * @{ */ /** * @brief Helper macro to calculate the PLLCLK frequency * @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE, * @ref LL_RCC_PLL_GetMultiplicator (), * @ref LL_RCC_PLL_GetDivider ()); * @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI) * @param __PLLMUL__ This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_16 * @arg @ref LL_RCC_PLL_MUL_24 * @arg @ref LL_RCC_PLL_MUL_32 * @arg @ref LL_RCC_PLL_MUL_48 * @param __PLLDIV__ This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_DIV_2 * @arg @ref LL_RCC_PLL_DIV_3 * @arg @ref LL_RCC_PLL_DIV_4 * @retval PLL clock frequency (in Hz) */ #define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__, __PLLDIV__) ((__INPUTFREQ__) * (PLLMulTable[(__PLLMUL__) >> RCC_POSITION_PLLMUL]) / (((__PLLDIV__) >> RCC_POSITION_PLLDIV)+1U)) /** * @brief Helper macro to calculate the HCLK frequency * @note: __AHBPRESCALER__ be retrieved by @ref LL_RCC_GetAHBPrescaler * ex: __LL_RCC_CALC_HCLK_FREQ(LL_RCC_GetAHBPrescaler()) * @param __SYSCLKFREQ__ SYSCLK frequency (based on MSI/HSE/HSI/PLLCLK) * @param __AHBPRESCALER__: This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval HCLK clock frequency (in Hz) */ #define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__, __AHBPRESCALER__) ((__SYSCLKFREQ__) >> AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_POSITION_HPRE]) /** * @brief Helper macro to calculate the PCLK1 frequency (ABP1) * @note: __APB1PRESCALER__ be retrieved by @ref LL_RCC_GetAPB1Prescaler * ex: __LL_RCC_CALC_PCLK1_FREQ(LL_RCC_GetAPB1Prescaler()) * @param __HCLKFREQ__ HCLK frequency * @param __APB1PRESCALER__: This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval PCLK1 clock frequency (in Hz) */ #define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB1PRESCALER__) >> RCC_POSITION_PPRE1]) /** * @brief Helper macro to calculate the PCLK2 frequency (ABP2) * @note: __APB2PRESCALER__ be retrieved by @ref LL_RCC_GetAPB2Prescaler * ex: __LL_RCC_CALC_PCLK2_FREQ(LL_RCC_GetAPB2Prescaler()) * @param __HCLKFREQ__ HCLK frequency * @param __APB2PRESCALER__: This parameter can be one of the following values: * @arg @ref LL_RCC_APB2_DIV_1 * @arg @ref LL_RCC_APB2_DIV_2 * @arg @ref LL_RCC_APB2_DIV_4 * @arg @ref LL_RCC_APB2_DIV_8 * @arg @ref LL_RCC_APB2_DIV_16 * @retval PCLK2 clock frequency (in Hz) */ #define __LL_RCC_CALC_PCLK2_FREQ(__HCLKFREQ__, __APB2PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB2PRESCALER__) >> RCC_POSITION_PPRE2]) /** * @brief Helper macro to calculate the MSI frequency (in Hz) * @note: __MSIRANGE__can be retrieved by @ref LL_RCC_MSI_GetRange * ex: __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()) * @param __MSIRANGE__: This parameter can be one of the following values: * @arg @ref LL_RCC_MSIRANGE_0 * @arg @ref LL_RCC_MSIRANGE_1 * @arg @ref LL_RCC_MSIRANGE_2 * @arg @ref LL_RCC_MSIRANGE_3 * @arg @ref LL_RCC_MSIRANGE_4 * @arg @ref LL_RCC_MSIRANGE_5 * @arg @ref LL_RCC_MSIRANGE_6 * @retval MSI clock frequency (in Hz) */ #define __LL_RCC_CALC_MSI_FREQ(__MSIRANGE__) ((32768U * ( 1U << (((__MSIRANGE__) >> RCC_POSITION_MSIRANGE) + 1U)))) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Functions RCC Exported Functions * @{ */ /** @defgroup RCC_LL_EF_HSE HSE * @{ */ #if defined(RCC_HSECSS_SUPPORT) /** * @brief Enable the Clock Security System. * @rmtoll CR CSSHSEON LL_RCC_HSE_EnableCSS * @retval None */ __STATIC_INLINE void LL_RCC_HSE_EnableCSS(void) { SET_BIT(RCC->CR, RCC_CR_CSSON); } #endif /* RCC_HSECSS_SUPPORT */ /** * @brief Enable HSE external oscillator (HSE Bypass) * @rmtoll CR HSEBYP LL_RCC_HSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_EnableBypass(void) { SET_BIT(RCC->CR, RCC_CR_HSEBYP); } /** * @brief Disable HSE external oscillator (HSE Bypass) * @rmtoll CR HSEBYP LL_RCC_HSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_DisableBypass(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); } /** * @brief Enable HSE crystal oscillator (HSE ON) * @rmtoll CR HSEON LL_RCC_HSE_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSE_Enable(void) { SET_BIT(RCC->CR, RCC_CR_HSEON); } /** * @brief Disable HSE crystal oscillator (HSE ON) * @rmtoll CR HSEON LL_RCC_HSE_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSE_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSEON); } /** * @brief Check if HSE oscillator Ready * @rmtoll CR HSERDY LL_RCC_HSE_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY)); } /** * @brief Configure the RTC prescaler (divider) * @rmtoll CR RTCPRE LL_RCC_SetRTC_HSEPrescaler * @param Div This parameter can be one of the following values: * @arg @ref LL_RCC_RTC_HSE_DIV_2 * @arg @ref LL_RCC_RTC_HSE_DIV_4 * @arg @ref LL_RCC_RTC_HSE_DIV_8 * @arg @ref LL_RCC_RTC_HSE_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_SetRTC_HSEPrescaler(uint32_t Div) { MODIFY_REG(RCC->CR, RCC_CR_RTCPRE, Div); } /** * @brief Get the RTC divider (prescaler) * @rmtoll CR RTCPRE LL_RCC_GetRTC_HSEPrescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_RTC_HSE_DIV_2 * @arg @ref LL_RCC_RTC_HSE_DIV_4 * @arg @ref LL_RCC_RTC_HSE_DIV_8 * @arg @ref LL_RCC_RTC_HSE_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_GetRTC_HSEPrescaler(void) { return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_RTCPRE)); } /** * @} */ /** @defgroup RCC_LL_EF_HSI HSI * @{ */ /** * @brief Enable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Enable(void) { SET_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Disable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Check if HSI clock is ready * @rmtoll CR HSIRDY LL_RCC_HSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)); } /** * @brief Enable HSI even in stop mode * @note HSI oscillator is forced ON even in Stop mode * @rmtoll CR HSIKERON LL_RCC_HSI_EnableInStopMode * @retval None */ __STATIC_INLINE void LL_RCC_HSI_EnableInStopMode(void) { SET_BIT(RCC->CR, RCC_CR_HSIKERON); } /** * @brief Disable HSI in stop mode * @rmtoll CR HSIKERON LL_RCC_HSI_DisableInStopMode * @retval None */ __STATIC_INLINE void LL_RCC_HSI_DisableInStopMode(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON); } /** * @brief Enable HSI Divider (it divides by 4) * @rmtoll CR HSIDIVEN LL_RCC_HSI_EnableDivider * @retval None */ __STATIC_INLINE void LL_RCC_HSI_EnableDivider(void) { SET_BIT(RCC->CR, RCC_CR_HSIDIVEN); } /** * @brief Disable HSI Divider (it divides by 4) * @rmtoll CR HSIDIVEN LL_RCC_HSI_DisableDivider * @retval None */ __STATIC_INLINE void LL_RCC_HSI_DisableDivider(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSIDIVEN); } #if defined(RCC_CR_HSIOUTEN) /** * @brief Enable HSI Output * @rmtoll CR HSIOUTEN LL_RCC_HSI_EnableOutput * @retval None */ __STATIC_INLINE void LL_RCC_HSI_EnableOutput(void) { SET_BIT(RCC->CR, RCC_CR_HSIOUTEN); } /** * @brief Disable HSI Output * @rmtoll CR HSIOUTEN LL_RCC_HSI_DisableOutput * @retval None */ __STATIC_INLINE void LL_RCC_HSI_DisableOutput(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSIOUTEN); } #endif /* RCC_CR_HSIOUTEN */ /** * @brief Get HSI Calibration value * @note When HSITRIM is written, HSICAL is updated with the sum of * HSITRIM and the factory trim value * @rmtoll ICSCR HSICAL LL_RCC_HSI_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSICAL) >> RCC_POSITION_HSICAL); } /** * @brief Set HSI Calibration trimming * @note user-programmable trimming value that is added to the HSICAL * @note Default value is 16, which, when added to the HSICAL value, * should trim the HSI to 16 MHz +/- 1 % * @rmtoll ICSCR HSITRIM LL_RCC_HSI_SetCalibTrimming * @param Value between Min_Data = 0x00 and Max_Data = 0x1F * @retval None */ __STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, Value << RCC_POSITION_HSITRIM); } /** * @brief Get HSI Calibration trimming * @rmtoll ICSCR HSITRIM LL_RCC_HSI_GetCalibTrimming * @retval Between Min_Data = 0x00 and Max_Data = 0x1F */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_POSITION_HSITRIM); } /** * @} */ #if defined(RCC_HSI48_SUPPORT) /** @defgroup RCC_LL_EF_HSI48 HSI48 * @{ */ /** * @brief Enable HSI48 * @rmtoll CRRCR HSI48ON LL_RCC_HSI48_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_Enable(void) { SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON); } /** * @brief Disable HSI48 * @rmtoll CRRCR HSI48ON LL_RCC_HSI48_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_Disable(void) { CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON); } /** * @brief Check if HSI48 oscillator Ready * @rmtoll CRRCR HSI48RDY LL_RCC_HSI48_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI48_IsReady(void) { return (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == (RCC_CRRCR_HSI48RDY)); } /** * @brief Get HSI48 Calibration value * @rmtoll CRRCR HSI48CAL LL_RCC_HSI48_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_HSI48_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48CAL) >> RCC_POSITION_HSI48CAL); } #if defined(RCC_CRRCR_HSI48DIV6OUTEN) /** * @brief Enable HSI48 Divider (it divides by 6) * @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_EnableDivider * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_EnableDivider(void) { SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN); } /** * @brief Disable HSI48 Divider (it divides by 6) * @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_DisableDivider * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_DisableDivider(void) { CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN); } /** * @brief Check if HSI48 Divider is enabled (it divides by 6) * @rmtoll CRRCR HSI48DIV6OUTEN LL_RCC_HSI48_IsDivided * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI48_IsDivided(void) { return (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48DIV6OUTEN) == (RCC_CRRCR_HSI48DIV6OUTEN)); } #endif /*RCC_CRRCR_HSI48DIV6OUTEN*/ /** * @} */ #endif /* RCC_HSI48_SUPPORT */ /** @defgroup RCC_LL_EF_LSE LSE * @{ */ /** * @brief Enable Low Speed External (LSE) crystal. * @rmtoll CSR LSEON LL_RCC_LSE_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Enable(void) { SET_BIT(RCC->CSR, RCC_CSR_LSEON); } /** * @brief Disable Low Speed External (LSE) crystal. * @rmtoll CSR LSEON LL_RCC_LSE_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Disable(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSEON); } /** * @brief Enable external clock source (LSE bypass). * @rmtoll CSR LSEBYP LL_RCC_LSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_EnableBypass(void) { SET_BIT(RCC->CSR, RCC_CSR_LSEBYP); } /** * @brief Disable external clock source (LSE bypass). * @rmtoll CSR LSEBYP LL_RCC_LSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_DisableBypass(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSEBYP); } /** * @brief Set LSE oscillator drive capability * @note The oscillator is in Xtal mode when it is not in bypass mode. * @rmtoll CSR LSEDRV LL_RCC_LSE_SetDriveCapability * @param LSEDrive This parameter can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH * @arg @ref LL_RCC_LSEDRIVE_HIGH * @retval None */ __STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive) { MODIFY_REG(RCC->CSR, RCC_CSR_LSEDRV, LSEDrive); } /** * @brief Get LSE oscillator drive capability * @rmtoll CSR LSEDRV LL_RCC_LSE_GetDriveCapability * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH * @arg @ref LL_RCC_LSEDRIVE_HIGH */ __STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void) { return (uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_LSEDRV)); } /** * @brief Enable Clock security system on LSE. * @rmtoll CSR LSECSSON LL_RCC_LSE_EnableCSS * @retval None */ __STATIC_INLINE void LL_RCC_LSE_EnableCSS(void) { SET_BIT(RCC->CSR, RCC_CSR_LSECSSON); } /** * @brief Disable Clock security system on LSE. * @note Clock security system can be disabled only after a LSE * failure detection. In that case it MUST be disabled by software. * @rmtoll CSR LSECSSON LL_RCC_LSE_DisableCSS * @retval None */ __STATIC_INLINE void LL_RCC_LSE_DisableCSS(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSECSSON); } /** * @brief Check if LSE oscillator Ready * @rmtoll CSR LSERDY LL_RCC_LSE_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LSERDY) == (RCC_CSR_LSERDY)); } /** * @brief Check if CSS on LSE failure Detection * @rmtoll CSR LSECSSD LL_RCC_LSE_IsCSSDetected * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSE_IsCSSDetected(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LSECSSD) == (RCC_CSR_LSECSSD)); } /** * @} */ /** @defgroup RCC_LL_EF_LSI LSI * @{ */ /** * @brief Enable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Enable(void) { SET_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Disable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Disable(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Check if LSI is Ready * @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)); } /** * @} */ /** @defgroup RCC_LL_EF_MSI MSI * @{ */ /** * @brief Enable MSI oscillator * @rmtoll CR MSION LL_RCC_MSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_MSI_Enable(void) { SET_BIT(RCC->CR, RCC_CR_MSION); } /** * @brief Disable MSI oscillator * @rmtoll CR MSION LL_RCC_MSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_MSI_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_MSION); } /** * @brief Check if MSI oscillator Ready * @rmtoll CR MSIRDY LL_RCC_MSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_MSI_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == (RCC_CR_MSIRDY)); } /** * @brief Configure the Internal Multi Speed oscillator (MSI) clock range in run mode. * @rmtoll ICSCR MSIRANGE LL_RCC_MSI_SetRange * @param Range This parameter can be one of the following values: * @arg @ref LL_RCC_MSIRANGE_0 * @arg @ref LL_RCC_MSIRANGE_1 * @arg @ref LL_RCC_MSIRANGE_2 * @arg @ref LL_RCC_MSIRANGE_3 * @arg @ref LL_RCC_MSIRANGE_4 * @arg @ref LL_RCC_MSIRANGE_5 * @arg @ref LL_RCC_MSIRANGE_6 * @retval None */ __STATIC_INLINE void LL_RCC_MSI_SetRange(uint32_t Range) { MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSIRANGE, Range); } /** * @brief Get the Internal Multi Speed oscillator (MSI) clock range in run mode. * @rmtoll ICSCR MSIRANGE LL_RCC_MSI_GetRange * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_MSIRANGE_0 * @arg @ref LL_RCC_MSIRANGE_1 * @arg @ref LL_RCC_MSIRANGE_2 * @arg @ref LL_RCC_MSIRANGE_3 * @arg @ref LL_RCC_MSIRANGE_4 * @arg @ref LL_RCC_MSIRANGE_5 * @arg @ref LL_RCC_MSIRANGE_6 */ __STATIC_INLINE uint32_t LL_RCC_MSI_GetRange(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSIRANGE)); } /** * @brief Get MSI Calibration value * @note When MSITRIM is written, MSICAL is updated with the sum of * MSITRIM and the factory trim value * @rmtoll ICSCR MSICAL LL_RCC_MSI_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSICAL) >> RCC_POSITION_MSICAL); } /** * @brief Set MSI Calibration trimming * @note user-programmable trimming value that is added to the MSICAL * @rmtoll ICSCR MSITRIM LL_RCC_MSI_SetCalibTrimming * @param Value between Min_Data = 0x00 and Max_Data = 0xFF * @retval None */ __STATIC_INLINE void LL_RCC_MSI_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSITRIM, Value << RCC_POSITION_MSITRIM); } /** * @brief Get MSI Calibration trimming * @rmtoll ICSCR MSITRIM LL_RCC_MSI_GetCalibTrimming * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_POSITION_MSITRIM); } /** * @} */ /** @defgroup RCC_LL_EF_System System * @{ */ /** * @brief Configure the system clock source * @rmtoll CFGR SW LL_RCC_SetSysClkSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_MSI * @arg @ref LL_RCC_SYS_CLKSOURCE_HSI * @arg @ref LL_RCC_SYS_CLKSOURCE_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_PLL * @retval None */ __STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source) { MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source); } /** * @brief Get the system clock source * @rmtoll CFGR SWS LL_RCC_GetSysClkSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_MSI * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL */ __STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS)); } /** * @brief Set AHB prescaler * @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval None */ __STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler); } /** * @brief Set APB1 prescaler * @rmtoll CFGR PPRE1 LL_RCC_SetAPB1Prescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, Prescaler); } /** * @brief Set APB2 prescaler * @rmtoll CFGR PPRE2 LL_RCC_SetAPB2Prescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_APB2_DIV_1 * @arg @ref LL_RCC_APB2_DIV_2 * @arg @ref LL_RCC_APB2_DIV_4 * @arg @ref LL_RCC_APB2_DIV_8 * @arg @ref LL_RCC_APB2_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_SetAPB2Prescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, Prescaler); } /** * @brief Get AHB prescaler * @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 */ __STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE)); } /** * @brief Get APB1 prescaler * @rmtoll CFGR PPRE1 LL_RCC_GetAPB1Prescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1)); } /** * @brief Get APB2 prescaler * @rmtoll CFGR PPRE2 LL_RCC_GetAPB2Prescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_APB2_DIV_1 * @arg @ref LL_RCC_APB2_DIV_2 * @arg @ref LL_RCC_APB2_DIV_4 * @arg @ref LL_RCC_APB2_DIV_8 * @arg @ref LL_RCC_APB2_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_GetAPB2Prescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2)); } /** * @brief Set Clock After Wake-Up From Stop mode * @rmtoll CFGR STOPWUCK LL_RCC_SetClkAfterWakeFromStop * @param Clock This parameter can be one of the following values: * @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI * @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI * @retval None */ __STATIC_INLINE void LL_RCC_SetClkAfterWakeFromStop(uint32_t Clock) { MODIFY_REG(RCC->CFGR, RCC_CFGR_STOPWUCK, Clock); } /** * @brief Get Clock After Wake-Up From Stop mode * @rmtoll CFGR STOPWUCK LL_RCC_GetClkAfterWakeFromStop * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI * @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI */ __STATIC_INLINE uint32_t LL_RCC_GetClkAfterWakeFromStop(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_STOPWUCK)); } /** * @} */ /** @defgroup RCC_LL_EF_MCO MCO * @{ */ /** * @brief Configure MCOx * @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n * CFGR MCOPRE LL_RCC_ConfigMCO * @param MCOxSource This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK * @arg @ref LL_RCC_MCO1SOURCE_SYSCLK * @arg @ref LL_RCC_MCO1SOURCE_HSI * @arg @ref LL_RCC_MCO1SOURCE_MSI * @arg @ref LL_RCC_MCO1SOURCE_HSE * @arg @ref LL_RCC_MCO1SOURCE_PLLCLK * @arg @ref LL_RCC_MCO1SOURCE_LSI * @arg @ref LL_RCC_MCO1SOURCE_LSE * @arg @ref LL_RCC_MCO1SOURCE_HSI48 (*) * * (*) value not defined in all devices. * @param MCOxPrescaler This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1_DIV_1 * @arg @ref LL_RCC_MCO1_DIV_2 * @arg @ref LL_RCC_MCO1_DIV_4 * @arg @ref LL_RCC_MCO1_DIV_8 * @arg @ref LL_RCC_MCO1_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler); } /** * @} */ /** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source * @{ */ /** * @brief Configure USARTx clock source * @rmtoll CCIPR USARTxSEL LL_RCC_SetUSARTClockSource * @param USARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2 (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_HSI (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_USART2_CLKSOURCE_HSI * @arg @ref LL_RCC_USART2_CLKSOURCE_LSE * * (*) value not defined in all devices. * @retval None */ __STATIC_INLINE void LL_RCC_SetUSARTClockSource(uint32_t USARTxSource) { MODIFY_REG(RCC->CCIPR, (USARTxSource >> 16U), (USARTxSource & 0x0000FFFFU)); } /** * @brief Configure LPUART1x clock source * @rmtoll CCIPR LPUART1SEL LL_RCC_SetLPUARTClockSource * @param LPUARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI * @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE * @retval None */ __STATIC_INLINE void LL_RCC_SetLPUARTClockSource(uint32_t LPUARTxSource) { MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPUART1SEL, LPUARTxSource); } /** * @brief Configure I2Cx clock source * @rmtoll CCIPR I2CxSEL LL_RCC_SetI2CClockSource * @param I2CxSource This parameter can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI * @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI (*) * * (*) value not defined in all devices. * @retval None */ __STATIC_INLINE void LL_RCC_SetI2CClockSource(uint32_t I2CxSource) { MODIFY_REG(RCC->CCIPR, ((I2CxSource >> 4U) & 0x000FF000U), ((I2CxSource << 4U) & 0x000FF000U)); } /** * @brief Configure LPTIMx clock source * @rmtoll CCIPR LPTIMxSEL LL_RCC_SetLPTIMClockSource * @param LPTIMxSource This parameter can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE * @retval None */ __STATIC_INLINE void LL_RCC_SetLPTIMClockSource(uint32_t LPTIMxSource) { MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPTIM1SEL, LPTIMxSource); } #if defined(RCC_CCIPR_HSI48SEL) #if defined(RNG) /** * @brief Configure RNG clock source * @rmtoll CCIPR HSI48SEL LL_RCC_SetRNGClockSource * @param RNGxSource This parameter can be one of the following values: * @arg @ref LL_RCC_RNG_CLKSOURCE_PLL * @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48 * @retval None */ __STATIC_INLINE void LL_RCC_SetRNGClockSource(uint32_t RNGxSource) { MODIFY_REG(RCC->CCIPR, RCC_CCIPR_HSI48SEL, RNGxSource); } #endif /* RNG */ #if defined(USB) /** * @brief Configure USB clock source * @rmtoll CCIPR HSI48SEL LL_RCC_SetUSBClockSource * @param USBxSource This parameter can be one of the following values: * @arg @ref LL_RCC_RNG_CLKSOURCE_PLL * @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48 * @retval None */ __STATIC_INLINE void LL_RCC_SetUSBClockSource(uint32_t USBxSource) { MODIFY_REG(RCC->CCIPR, RCC_CCIPR_HSI48SEL, USBxSource); } #endif /* USB */ #endif /* RCC_CCIPR_HSI48SEL */ /** * @brief Get USARTx clock source * @rmtoll CCIPR USARTxSEL LL_RCC_GetUSARTClockSource * @param USARTx This parameter can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE (*) * @arg @ref LL_RCC_USART2_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2 (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_HSI (*) * @arg @ref LL_RCC_USART1_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_USART2_CLKSOURCE_HSI * @arg @ref LL_RCC_USART2_CLKSOURCE_LSE * * (*) value not defined in all devices. */ __STATIC_INLINE uint32_t LL_RCC_GetUSARTClockSource(uint32_t USARTx) { return (uint32_t)(READ_BIT(RCC->CCIPR, USARTx) | (USARTx << 16U)); } /** * @brief Get LPUARTx clock source * @rmtoll CCIPR LPUART1SEL LL_RCC_GetLPUARTClockSource * @param LPUARTx This parameter can be one of the following values: * @arg @ref LL_RCC_LPUART1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI * @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE */ __STATIC_INLINE uint32_t LL_RCC_GetLPUARTClockSource(uint32_t LPUARTx) { return (uint32_t)(READ_BIT(RCC->CCIPR, LPUARTx)); } /** * @brief Get I2Cx clock source * @rmtoll CCIPR I2CxSEL LL_RCC_GetI2CClockSource * @param I2Cx This parameter can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE * @arg @ref LL_RCC_I2C3_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI * @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI (*) * * (*) value not defined in all devices. */ __STATIC_INLINE uint32_t LL_RCC_GetI2CClockSource(uint32_t I2Cx) { return (uint32_t)((READ_BIT(RCC->CCIPR, I2Cx) >> 4U) | (I2Cx << 4U)); } /** * @brief Get LPTIMx clock source * @rmtoll CCIPR LPTIMxSEL LL_RCC_GetLPTIMClockSource * @param LPTIMx This parameter can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI * @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE */ __STATIC_INLINE uint32_t LL_RCC_GetLPTIMClockSource(uint32_t LPTIMx) { return (uint32_t)(READ_BIT(RCC->CCIPR, LPTIMx)); } #if defined(RCC_CCIPR_HSI48SEL) #if defined(RNG) /** * @brief Get RNGx clock source * @rmtoll CCIPR CLK48SEL LL_RCC_GetRNGClockSource * @param RNGx This parameter can be one of the following values: * @arg @ref LL_RCC_RNG_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_RNG_CLKSOURCE_PLL * @arg @ref LL_RCC_RNG_CLKSOURCE_HSI48 */ __STATIC_INLINE uint32_t LL_RCC_GetRNGClockSource(uint32_t RNGx) { return (uint32_t)(READ_BIT(RCC->CCIPR, RNGx)); } #endif /* RNG */ #if defined(USB) /** * @brief Get USBx clock source * @rmtoll CCIPR CLK48SEL LL_RCC_GetUSBClockSource * @param USBx This parameter can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE_PLL * @arg @ref LL_RCC_USB_CLKSOURCE_HSI48 */ __STATIC_INLINE uint32_t LL_RCC_GetUSBClockSource(uint32_t USBx) { return (uint32_t)(READ_BIT(RCC->CCIPR, USBx)); } #endif /* USB */ #endif /* RCC_CCIPR_HSI48SEL */ /** * @} */ /** @defgroup RCC_LL_EF_RTC RTC * @{ */ /** * @brief Set RTC Clock Source * @note Once the RTC clock source has been selected, it cannot be changed any more unless * the Backup domain is reset, or unless a failure is detected on LSE (LSECSSD is * set). The RTCRST bit can be used to reset them. * @rmtoll CSR RTCSEL LL_RCC_SetRTCClockSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_RTC_CLKSOURCE_NONE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSI * @arg @ref LL_RCC_RTC_CLKSOURCE_HSE * @retval None */ __STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source) { MODIFY_REG(RCC->CSR, RCC_CSR_RTCSEL, Source); } /** * @brief Get RTC Clock Source * @rmtoll CSR RTCSEL LL_RCC_GetRTCClockSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_RTC_CLKSOURCE_NONE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSI * @arg @ref LL_RCC_RTC_CLKSOURCE_HSE */ __STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void) { return (uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_RTCSEL)); } /** * @brief Enable RTC * @rmtoll CSR RTCEN LL_RCC_EnableRTC * @retval None */ __STATIC_INLINE void LL_RCC_EnableRTC(void) { SET_BIT(RCC->CSR, RCC_CSR_RTCEN); } /** * @brief Disable RTC * @rmtoll CSR RTCEN LL_RCC_DisableRTC * @retval None */ __STATIC_INLINE void LL_RCC_DisableRTC(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_RTCEN); } /** * @brief Check if RTC has been enabled or not * @rmtoll CSR RTCEN LL_RCC_IsEnabledRTC * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void) { return (READ_BIT(RCC->CSR, RCC_CSR_RTCEN) == (RCC_CSR_RTCEN)); } /** * @brief Force the Backup domain reset * @rmtoll CSR RTCRST LL_RCC_ForceBackupDomainReset * @retval None */ __STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void) { SET_BIT(RCC->CSR, RCC_CSR_RTCRST); } /** * @brief Release the Backup domain reset * @rmtoll CSR RTCRST LL_RCC_ReleaseBackupDomainReset * @retval None */ __STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_RTCRST); } /** * @} */ /** @defgroup RCC_LL_EF_PLL PLL * @{ */ /** * @brief Enable PLL * @rmtoll CR PLLON LL_RCC_PLL_Enable * @retval None */ __STATIC_INLINE void LL_RCC_PLL_Enable(void) { SET_BIT(RCC->CR, RCC_CR_PLLON); } /** * @brief Disable PLL * @note Cannot be disabled if the PLL clock is used as the system clock * @rmtoll CR PLLON LL_RCC_PLL_Disable * @retval None */ __STATIC_INLINE void LL_RCC_PLL_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_PLLON); } /** * @brief Check if PLL Ready * @rmtoll CR PLLRDY LL_RCC_PLL_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY)); } /** * @brief Configure PLL used for SYSCLK Domain * @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n * CFGR PLLMUL LL_RCC_PLL_ConfigDomain_SYS\n * CFGR PLLDIV LL_RCC_PLL_ConfigDomain_SYS * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_PLLSOURCE_HSI * @arg @ref LL_RCC_PLLSOURCE_HSE * @param PLLMul This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_16 * @arg @ref LL_RCC_PLL_MUL_24 * @arg @ref LL_RCC_PLL_MUL_32 * @arg @ref LL_RCC_PLL_MUL_48 * @param PLLDiv This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_DIV_2 * @arg @ref LL_RCC_PLL_DIV_3 * @arg @ref LL_RCC_PLL_DIV_4 * @retval None */ __STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul, uint32_t PLLDiv) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL | RCC_CFGR_PLLDIV, Source | PLLMul | PLLDiv); } /** * @brief Get the oscillator used as PLL clock source. * @rmtoll CFGR PLLSRC LL_RCC_PLL_GetMainSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PLLSOURCE_HSI * @arg @ref LL_RCC_PLLSOURCE_HSE */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC)); } /** * @brief Get PLL multiplication Factor * @rmtoll CFGR PLLMUL LL_RCC_PLL_GetMultiplicator * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_16 * @arg @ref LL_RCC_PLL_MUL_24 * @arg @ref LL_RCC_PLL_MUL_32 * @arg @ref LL_RCC_PLL_MUL_48 */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetMultiplicator(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLMUL)); } /** * @brief Get Division factor for the main PLL and other PLL * @rmtoll CFGR PLLDIV LL_RCC_PLL_GetDivider * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PLL_DIV_2 * @arg @ref LL_RCC_PLL_DIV_3 * @arg @ref LL_RCC_PLL_DIV_4 */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetDivider(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLDIV)); } /** * @} */ /** @defgroup RCC_LL_EF_FLAG_Management FLAG Management * @{ */ /** * @brief Clear LSI ready interrupt flag * @rmtoll CICR LSIRDYC LL_RCC_ClearFlag_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC); } /** * @brief Clear LSE ready interrupt flag * @rmtoll CICR LSERDYC LL_RCC_ClearFlag_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void) { SET_BIT(RCC->CICR, RCC_CICR_LSERDYC); } /** * @brief Clear MSI ready interrupt flag * @rmtoll CICR MSIRDYC LL_RCC_ClearFlag_MSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_MSIRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_MSIRDYC); } /** * @brief Clear HSI ready interrupt flag * @rmtoll CICR HSIRDYC LL_RCC_ClearFlag_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_HSIRDYC); } /** * @brief Clear HSE ready interrupt flag * @rmtoll CICR HSERDYC LL_RCC_ClearFlag_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void) { SET_BIT(RCC->CICR, RCC_CICR_HSERDYC); } /** * @brief Clear PLL ready interrupt flag * @rmtoll CICR PLLRDYC LL_RCC_ClearFlag_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void) { SET_BIT(RCC->CICR, RCC_CICR_PLLRDYC); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Clear HSI48 ready interrupt flag * @rmtoll CICR HSI48RDYC LL_RCC_ClearFlag_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSI48RDY(void) { SET_BIT(RCC->CICR, RCC_CICR_HSI48RDYC); } #endif /* RCC_HSI48_SUPPORT */ #if defined(RCC_HSECSS_SUPPORT) /** * @brief Clear Clock security system interrupt flag * @rmtoll CICR CSSC LL_RCC_ClearFlag_HSECSS * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void) { SET_BIT(RCC->CICR, RCC_CICR_CSSC); } #endif /* RCC_HSECSS_SUPPORT */ /** * @brief Clear LSE Clock security system interrupt flag * @rmtoll CICR LSECSSC LL_RCC_ClearFlag_LSECSS * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSECSS(void) { SET_BIT(RCC->CICR, RCC_CICR_LSECSSC); } /** * @brief Check if LSI ready interrupt occurred or not * @rmtoll CIFR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_LSIRDYF) == (RCC_CIFR_LSIRDYF)); } /** * @brief Check if LSE ready interrupt occurred or not * @rmtoll CIFR LSERDYF LL_RCC_IsActiveFlag_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_LSERDYF) == (RCC_CIFR_LSERDYF)); } /** * @brief Check if MSI ready interrupt occurred or not * @rmtoll CIFR MSIRDYF LL_RCC_IsActiveFlag_MSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_MSIRDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_MSIRDYF) == (RCC_CIFR_MSIRDYF)); } /** * @brief Check if HSI ready interrupt occurred or not * @rmtoll CIFR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_HSIRDYF) == (RCC_CIFR_HSIRDYF)); } /** * @brief Check if HSE ready interrupt occurred or not * @rmtoll CIFR HSERDYF LL_RCC_IsActiveFlag_HSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_HSERDYF) == (RCC_CIFR_HSERDYF)); } /** * @brief Check if PLL ready interrupt occurred or not * @rmtoll CIFR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_PLLRDYF) == (RCC_CIFR_PLLRDYF)); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Check if HSI48 ready interrupt occurred or not * @rmtoll CIFR HSI48RDYF LL_RCC_IsActiveFlag_HSI48RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSI48RDY(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_HSI48RDYF) == (RCC_CIFR_HSI48RDYF)); } #endif /* RCC_HSI48_SUPPORT */ #if defined(RCC_HSECSS_SUPPORT) /** * @brief Check if Clock security system interrupt occurred or not * @rmtoll CIFR CSSF LL_RCC_IsActiveFlag_HSECSS * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_CSSF) == (RCC_CIFR_CSSF)); } #endif /* RCC_HSECSS_SUPPORT */ /** * @brief Check if LSE Clock security system interrupt occurred or not * @rmtoll CIFR LSECSSF LL_RCC_IsActiveFlag_LSECSS * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSECSS(void) { return (READ_BIT(RCC->CIFR, RCC_CIFR_LSECSSF) == (RCC_CIFR_LSECSSF)); } /** * @brief Check if HSI Divider is enabled (it divides by 4) * @rmtoll CR HSIDIVF LL_RCC_IsActiveFlag_HSIDIV * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIDIV(void) { return (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) == (RCC_CR_HSIDIVF)); } #if defined(RCC_CSR_FWRSTF) /** * @brief Check if RCC flag FW reset is set or not. * @rmtoll CSR FWRSTF LL_RCC_IsActiveFlag_FWRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_FWRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_FWRSTF) == (RCC_CSR_FWRSTF)); } #endif /* RCC_CSR_FWRSTF */ /** * @brief Check if RCC flag Independent Watchdog reset is set or not. * @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)); } /** * @brief Check if RCC flag Low Power reset is set or not. * @rmtoll CSR LPWRRSTF LL_RCC_IsActiveFlag_LPWRRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LPWRRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LPWRRSTF) == (RCC_CSR_LPWRRSTF)); } /** * @brief Check if RCC flag is set or not. * @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)); } /** * @brief Check if RCC flag Pin reset is set or not. * @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)); } /** * @brief Check if RCC flag POR/PDR reset is set or not. * @rmtoll CSR PORRSTF LL_RCC_IsActiveFlag_PORRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PORRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_PORRSTF) == (RCC_CSR_PORRSTF)); } /** * @brief Check if RCC flag Software reset is set or not. * @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)); } /** * @brief Check if RCC flag Window Watchdog reset is set or not. * @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF)); } /** * @brief Set RMVF bit to clear the reset flags. * @rmtoll CSR RMVF LL_RCC_ClearResetFlags * @retval None */ __STATIC_INLINE void LL_RCC_ClearResetFlags(void) { SET_BIT(RCC->CSR, RCC_CSR_RMVF); } /** * @} */ /** @defgroup RCC_LL_EF_IT_Management IT Management * @{ */ /** * @brief Enable LSI ready interrupt * @rmtoll CIER LSIRDYIE LL_RCC_EnableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_LSIRDYIE); } /** * @brief Enable LSE ready interrupt * @rmtoll CIER LSERDYIE LL_RCC_EnableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void) { SET_BIT(RCC->CIER, RCC_CIER_LSERDYIE); } /** * @brief Enable MSI ready interrupt * @rmtoll CIER MSIRDYIE LL_RCC_EnableIT_MSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_MSIRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_MSIRDYIE); } /** * @brief Enable HSI ready interrupt * @rmtoll CIER HSIRDYIE LL_RCC_EnableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_HSIRDYIE); } /** * @brief Enable HSE ready interrupt * @rmtoll CIER HSERDYIE LL_RCC_EnableIT_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void) { SET_BIT(RCC->CIER, RCC_CIER_HSERDYIE); } /** * @brief Enable PLL ready interrupt * @rmtoll CIER PLLRDYIE LL_RCC_EnableIT_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void) { SET_BIT(RCC->CIER, RCC_CIER_PLLRDYIE); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Enable HSI48 ready interrupt * @rmtoll CIER HSI48RDYIE LL_RCC_EnableIT_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSI48RDY(void) { SET_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Enable LSE clock security system interrupt * @rmtoll CIER LSECSSIE LL_RCC_EnableIT_LSECSS * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSECSS(void) { SET_BIT(RCC->CIER, RCC_CIER_LSECSSIE); } /** * @brief Disable LSI ready interrupt * @rmtoll CIER LSIRDYIE LL_RCC_DisableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_LSIRDYIE); } /** * @brief Disable LSE ready interrupt * @rmtoll CIER LSERDYIE LL_RCC_DisableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_LSERDYIE); } /** * @brief Disable MSI ready interrupt * @rmtoll CIER MSIRDYIE LL_RCC_DisableIT_MSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_MSIRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_MSIRDYIE); } /** * @brief Disable HSI ready interrupt * @rmtoll CIER HSIRDYIE LL_RCC_DisableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_HSIRDYIE); } /** * @brief Disable HSE ready interrupt * @rmtoll CIER HSERDYIE LL_RCC_DisableIT_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_HSERDYIE); } /** * @brief Disable PLL ready interrupt * @rmtoll CIER PLLRDYIE LL_RCC_DisableIT_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_PLLRDYIE); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Disable HSI48 ready interrupt * @rmtoll CIER HSI48RDYIE LL_RCC_DisableIT_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSI48RDY(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Disable LSE clock security system interrupt * @rmtoll CIER LSECSSIE LL_RCC_DisableIT_LSECSS * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSECSS(void) { CLEAR_BIT(RCC->CIER, RCC_CIER_LSECSSIE); } /** * @brief Checks if LSI ready interrupt source is enabled or disabled. * @rmtoll CIER LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_LSIRDYIE) == (RCC_CIER_LSIRDYIE)); } /** * @brief Checks if LSE ready interrupt source is enabled or disabled. * @rmtoll CIER LSERDYIE LL_RCC_IsEnabledIT_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_LSERDYIE) == (RCC_CIER_LSERDYIE)); } /** * @brief Checks if MSI ready interrupt source is enabled or disabled. * @rmtoll CIER MSIRDYIE LL_RCC_IsEnabledIT_MSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_MSIRDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_MSIRDYIE) == (RCC_CIER_MSIRDYIE)); } /** * @brief Checks if HSI ready interrupt source is enabled or disabled. * @rmtoll CIER HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_HSIRDYIE) == (RCC_CIER_HSIRDYIE)); } /** * @brief Checks if HSE ready interrupt source is enabled or disabled. * @rmtoll CIER HSERDYIE LL_RCC_IsEnabledIT_HSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_HSERDYIE) == (RCC_CIER_HSERDYIE)); } /** * @brief Checks if PLL ready interrupt source is enabled or disabled. * @rmtoll CIER PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_PLLRDYIE) == (RCC_CIER_PLLRDYIE)); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Checks if HSI48 ready interrupt source is enabled or disabled. * @rmtoll CIER HSI48RDYIE LL_RCC_IsEnabledIT_HSI48RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSI48RDY(void) { return (READ_BIT(RCC->CIER, RCC_CIER_HSI48RDYIE) == (RCC_CIER_HSI48RDYIE)); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Checks if LSECSS interrupt source is enabled or disabled. * @rmtoll CIER LSECSSIE LL_RCC_IsEnabledIT_LSECSS * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSECSS(void) { return (READ_BIT(RCC->CIER, RCC_CIER_LSECSSIE) == (RCC_CIER_LSECSSIE)); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EF_Init De-initialization function * @{ */ ErrorStatus LL_RCC_DeInit(void); /** * @} */ /** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions * @{ */ void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks); uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource); uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource); uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource); uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource); #if defined(USB_OTG_FS) || defined(USB) uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource); #endif /* USB_OTG_FS || USB */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* RCC */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32L0xx_LL_RCC_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/