/** ****************************************************************************** * @file stm32l0xx_hal_cryp.c * @author MCD Application Team * @brief CRYP HAL module driver. * * This file provides firmware functions to manage the following * functionalities of the Cryptography (CRYP) peripheral: * + Initialization and de-initialization functions * + Processing functions by algorithm using polling mode * + Processing functions by algorithm using interrupt mode * + Processing functions by algorithm using DMA mode * + Peripheral State functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] The CRYP HAL driver can be used as follows: (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): (##) Enable the CRYP interface clock using __HAL_RCC_AES_CLK_ENABLE() (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) (+) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() (+) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) (+) Enable the DMA1 interface clock using (++) __HAL_RCC_DMA1_CLK_ENABLE() (+) Configure and enable two DMA Channels one for managing data transfer from memory to peripheral (input channel) and another channel for managing data transfer from peripheral to memory (output channel) (+) Associate the initialized DMA handle to the CRYP DMA handle using __HAL_LINKDMA() (+) Configure the priority and enable the NVIC for the transfer complete interrupt on the two DMA Streams. The output stream should have higher priority than the input stream. (++) HAL_NVIC_SetPriority() (++) HAL_NVIC_EnableIRQ() (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit (##) The encryption/decryption key. (##) The initialization vector (counter). It is not used ECB mode. (#)Three processing (encryption/decryption) functions are available: (##) Polling mode: encryption and decryption APIs are blocking functions i.e. they process the data and wait till the processing is finished e.g. HAL_CRYP_AESCBC_Encrypt() (##) Interrupt mode: encryption and decryption APIs are not blocking functions i.e. they process the data under interrupt e.g. HAL_CRYP_AESCBC_Encrypt_IT() (##) DMA mode: encryption and decryption APIs are not blocking functions i.e. the data transfer is ensured by DMA e.g. HAL_CRYP_AESCBC_Encrypt_DMA() (#)When the processing function is called for the first time after HAL_CRYP_Init() the CRYP peripheral is initialized and processes the buffer in input. At second call, the processing function performs an append of the already processed buffer. When a new data block is to be processed, call HAL_CRYP_Init() then the processing function. (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ #if defined (STM32L021xx) || defined (STM32L041xx) || defined (STM32L061xx) || defined (STM32L062xx) || defined (STM32L063xx) || defined (STM32L081xx) || defined (STM32L082xx) || defined (STM32L083xx) /* Includes ------------------------------------------------------------------*/ #include "stm32l0xx_hal.h" #ifdef HAL_CRYP_MODULE_ENABLED /** @addtogroup STM32L0xx_HAL_Driver * @{ */ /** @addtogroup CRYP * @brief CRYP HAL module driver. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup CRYP_Private CRYP Private * @{ */ #define CRYP_ALGO_CHAIN_MASK (AES_CR_MODE | AES_CR_CHMOD) /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup CRYP_Private * @{ */ static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp); static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector); static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key); static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAError(DMA_HandleTypeDef *hdma); static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); /** * @} */ /* Private functions ---------------------------------------------------------*/ /** @addtogroup CRYP_Exported_Functions * @{ */ /** @addtogroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (+) DeInitialize CRYP MSP @endverbatim * @{ */ /** * @brief Initializes the CRYP according to the specified * parameters in the CRYP_InitTypeDef and creates the associated handle. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Allocate lock resource and initialize it */ hcryp->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Check if AES already enabled */ if (HAL_IS_BIT_CLR(hcryp->Instance->CR, AES_CR_EN)) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the data type*/ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType); /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Return function status */ return HAL_OK; } else { /* The Datatype selection must be changed if the AES is disabled. Writing these bits while the AES is */ /* enabled is forbidden to avoid unpredictable AES behavior.*/ /* Return function status */ return HAL_ERROR; } } /** * @brief DeInitializes the CRYP peripheral. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(hcryp); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP MSP. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspInit can be implemented in the user file */ } /** * @brief DeInitializes CRYP MSP. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspDeInit can be implemented in the user file */ } /** * @} */ /** @addtogroup CRYP_Exported_Functions_Group2 * @brief processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES algorithm in different chaining modes (+) Decrypt cyphertext using AES algorithm in different chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 and Size multiple of 16*/ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if(hcryp->State != HAL_CRYP_STATE_RESET) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if(hcryp->State != HAL_CRYP_STATE_RESET) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if(hcryp->State != HAL_CRYP_STATE_RESET) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if(hcryp->State != HAL_CRYP_STATE_RESET) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if(hcryp->State != HAL_CRYP_STATE_RESET) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if initialization phase has already been performed */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->Phase == HAL_CRYP_PHASE_READY)) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CTR decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CTR decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get the last input data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Reset the CHMOD & MODE bits */ CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer (aligned on u32) * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer (aligned on u32) * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Check that data aligned on u32 */ if((((uint32_t)pPlainData & (uint32_t)0x00000003U) != 0U) || (((uint32_t)pCypherData & (uint32_t)0x00000003U) != 0U) || ((Size & (uint16_t)0x000FU) != 0U)) { /* Process Locked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_ERROR; } /* Check if HAL_CRYP_Init has been called */ if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { /* Release Lock */ __HAL_UNLOCK(hcryp); return HAL_ERROR; } } /** * @} */ /** @addtogroup CRYP_Exported_Functions_Group3 * @brief DMA callback functions. * @verbatim ============================================================================== ##### DMA callback functions ##### ============================================================================== [..] This section provides DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA error @endverbatim * @{ */ /** * @brief CRYP error callback. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_ErrorCallback can be implemented in the user file */ } /** * @brief Input transfer completed callback. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_InCpltCallback can be implemented in the user file */ } /** * @brief Output transfer completed callback. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_OutCpltCallback can be implemented in the user file */ } /** * @} */ /** @addtogroup CRYP_Exported_Functions_Group4 * @brief CRYP IRQ handler. * @verbatim ============================================================================== ##### CRYP IRQ handler management ##### ============================================================================== [..] This section provides CRYP IRQ handler function. @endverbatim * @{ */ /** * @brief This function handles CRYP interrupt request. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { /* Check if error occurred*/ if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERR) != RESET) { if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_RDERR) != RESET) { __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_RDERR); } if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_WRERR) != RESET) { __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_WRERR); } if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_CCF) != RESET) { __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CLEARFLAG_CCF); } hcryp->State= HAL_CRYP_STATE_ERROR; /* Disable Computation Complete Interrupt */ __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC); __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR); HAL_CRYP_ErrorCallback(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); return; } /* Check if computation complete interrupt was enabled*/ if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CC) != RESET) { /* Clear CCF Flag */ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); CRYP_EncryptDecrypt_IT(hcryp); } } /** * @} */ /** @addtogroup CRYP_Exported_Functions_Group5 * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Returns the CRYP state. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { return hcryp->State; } /** * @} */ /** * @} */ /** @addtogroup CRYP_Private * @{ */ /** * @brief IT function called under interruption context to continue encryption or decryption * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp) { uint32_t inputaddr = 0U, outputaddr = 0U; /* Get the last Output data adress */ outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output Register */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; /* Check if all input text is encrypted or decrypted */ if(hcryp->CrypOutCount == 0U) { /* Disable Computation Complete Interrupt */ __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC); __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call computation complete callback */ HAL_CRYPEx_ComputationCpltCallback(hcryp); } else /* Process the rest of input text */ { /* Get the last Intput data adress */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; } return HAL_OK; } /** * @brief DMA CRYP Input Data process complete callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for input request */ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); /* Call input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } /** * @brief DMA CRYP Output Data process complete callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for output request by resetting the DMAOUTEN bit in the DMACR register */ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN); /* Clear CCF Flag */ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Change the CRYP state to ready */ hcryp->State = HAL_CRYP_STATE_READY; /* Call output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } /** * @brief DMA CRYP communication error callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAError(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; hcryp->State= HAL_CRYP_STATE_ERROR; HAL_CRYP_ErrorCallback(hcryp); } /** * @brief Writes the Key in Key registers. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Key: Pointer to Key buffer * @note Key must be written as little endian. * If Key pointer points at address n, * n[15:0] contains key[96:127], * (n+4)[15:0] contains key[64:95], * (n+8)[15:0] contains key[32:63] and * (n+12)[15:0] contains key[0:31] * @retval None */ static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key) { uint32_t keyaddr = (uint32_t)Key; hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr)); } /** * @brief Writes the InitVector/InitCounter in IV registers. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param InitVector: Pointer to InitVector/InitCounter buffer * @note Init Vector must be written as little endian. * If Init Vector pointer points at address n, * n[15:0] contains Vector[96:127], * (n+4)[15:0] contains Vector[64:95], * (n+8)[15:0] contains Vector[32:63] and * (n+12)[15:0] contains Vector[0:31] * @retval None */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector) { uint32_t ivaddr = (uint32_t)InitVector; hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr)); } /** * @brief Process Data: Writes Input data in polling mode and reads the output data * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input: Pointer to the Input buffer * @param Ilength: Length of the Input buffer, must be a multiple of 16. * @param Output: Pointer to the returned buffer * @param Timeout: Specify Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0U; uint32_t index = 0U; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(index=0U; (index < Ilength); index += 16U) { /* Write the Input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; /* Get timeout */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Clear CCF Flag */ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); /* Read the Output block from the Data Output Register */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; } /* Return function status */ return HAL_OK; } /** * @brief Set the DMA configuration and start the DMA transfer * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param inputaddr: address of the Input buffer * @param Size: Size of the Input buffer, must be a multiple of 16. * @param outputaddr: address of the Output buffer * @retval None */ static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) { /* Set the CRYP DMA transfer complete callback */ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; /* Set the DMA error callback */ hcryp->hdmain->XferErrorCallback = CRYP_DMAError; /* Set the CRYP DMA transfer complete callback */ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; /* Set the DMA error callback */ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; /* Enable the DMA In DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4); /* Enable the DMA Out DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4); /* Enable In and Out DMA requests */ SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN)); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); } /** * @} */ /** * @} */ /** * @} */ #endif /* HAL_CRYP_MODULE_ENABLED */ #endif /* STM32L021xx || STM32L041xx || STM32L061xx || STM32L062xx || STM32L063xx || STM32L081xx || STM32L082xx || STM32L083xx */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/