Regulátor pro remosku s STM8
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
remostat/TinySPL_S103/stm8s_tim2.h

1554 lines
54 KiB

8 years ago
/**
******************************************************************************
* @file stm8s_tim2.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all functions prototype and macros for the TIM2 peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_TIM2_H
#define __STM8S_TIM2_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** TIM2 Forced Action */
typedef enum {
TIM2_FORCEDACTION_ACTIVE = ((uint8_t) 0x50),
TIM2_FORCEDACTION_INACTIVE = ((uint8_t) 0x40)
} TIM2_ForcedAction_TypeDef;
#define IS_TIM2_FORCED_ACTION_OK(ACTION) (((ACTION) == TIM2_FORCEDACTION_ACTIVE) || \
((ACTION) == TIM2_FORCEDACTION_INACTIVE))
/** TIM2 Prescaler */
typedef enum {
TIM2_PRESCALER_1 = ((uint8_t) 0x00),
TIM2_PRESCALER_2 = ((uint8_t) 0x01),
TIM2_PRESCALER_4 = ((uint8_t) 0x02),
TIM2_PRESCALER_8 = ((uint8_t) 0x03),
TIM2_PRESCALER_16 = ((uint8_t) 0x04),
TIM2_PRESCALER_32 = ((uint8_t) 0x05),
TIM2_PRESCALER_64 = ((uint8_t) 0x06),
TIM2_PRESCALER_128 = ((uint8_t) 0x07),
TIM2_PRESCALER_256 = ((uint8_t) 0x08),
TIM2_PRESCALER_512 = ((uint8_t) 0x09),
TIM2_PRESCALER_1024 = ((uint8_t) 0x0A),
TIM2_PRESCALER_2048 = ((uint8_t) 0x0B),
TIM2_PRESCALER_4096 = ((uint8_t) 0x0C),
TIM2_PRESCALER_8192 = ((uint8_t) 0x0D),
TIM2_PRESCALER_16384 = ((uint8_t) 0x0E),
TIM2_PRESCALER_32768 = ((uint8_t) 0x0F)
} TIM2_Prescaler_TypeDef;
#define IS_TIM2_PRESCALER_OK(PRESCALER) (((PRESCALER) == TIM2_PRESCALER_1 ) || \
((PRESCALER) == TIM2_PRESCALER_2 ) || \
((PRESCALER) == TIM2_PRESCALER_4 ) || \
((PRESCALER) == TIM2_PRESCALER_8 ) || \
((PRESCALER) == TIM2_PRESCALER_16 ) || \
((PRESCALER) == TIM2_PRESCALER_32 ) || \
((PRESCALER) == TIM2_PRESCALER_64 ) || \
((PRESCALER) == TIM2_PRESCALER_128 ) || \
((PRESCALER) == TIM2_PRESCALER_256 ) || \
((PRESCALER) == TIM2_PRESCALER_512 ) || \
((PRESCALER) == TIM2_PRESCALER_1024 ) || \
((PRESCALER) == TIM2_PRESCALER_2048 ) || \
((PRESCALER) == TIM2_PRESCALER_4096 ) || \
((PRESCALER) == TIM2_PRESCALER_8192 ) || \
((PRESCALER) == TIM2_PRESCALER_16384 ) || \
((PRESCALER) == TIM2_PRESCALER_32768 ))
/** TIM2 Output Compare and PWM modes */
typedef enum {
TIM2_OCMODE_TIMING = ((uint8_t) 0x00),
TIM2_OCMODE_ACTIVE = ((uint8_t) 0x10),
TIM2_OCMODE_INACTIVE = ((uint8_t) 0x20),
TIM2_OCMODE_TOGGLE = ((uint8_t) 0x30),
TIM2_OCMODE_PWM1 = ((uint8_t) 0x60),
TIM2_OCMODE_PWM2 = ((uint8_t) 0x70)
} TIM2_OCMode_TypeDef;
#define IS_TIM2_OC_MODE_OK(MODE) (((MODE) == TIM2_OCMODE_TIMING) || \
((MODE) == TIM2_OCMODE_ACTIVE) || \
((MODE) == TIM2_OCMODE_INACTIVE) || \
((MODE) == TIM2_OCMODE_TOGGLE)|| \
((MODE) == TIM2_OCMODE_PWM1) || \
((MODE) == TIM2_OCMODE_PWM2))
#define IS_TIM2_OCM_OK(MODE)(((MODE) == TIM2_OCMODE_TIMING) || \
((MODE) == TIM2_OCMODE_ACTIVE) || \
((MODE) == TIM2_OCMODE_INACTIVE) || \
((MODE) == TIM2_OCMODE_TOGGLE)|| \
((MODE) == TIM2_OCMODE_PWM1) || \
((MODE) == TIM2_OCMODE_PWM2) || \
((MODE) == (uint8_t)TIM2_FORCEDACTION_ACTIVE) || \
((MODE) == (uint8_t)TIM2_FORCEDACTION_INACTIVE))
/** TIM2 One Pulse Mode */
typedef enum {
TIM2_OPMODE_SINGLE = ((uint8_t) 0x01),
TIM2_OPMODE_REPETITIVE = ((uint8_t) 0x00)
} TIM2_OPMode_TypeDef;
#define IS_TIM2_OPM_MODE_OK(MODE) (((MODE) == TIM2_OPMODE_SINGLE) || \
((MODE) == TIM2_OPMODE_REPETITIVE))
/** TIM2 Channel */
typedef enum {
TIM2_CHANNEL_1 = ((uint8_t) 0x00),
TIM2_CHANNEL_2 = ((uint8_t) 0x01),
TIM2_CHANNEL_3 = ((uint8_t) 0x02)
} TIM2_Channel_TypeDef;
#define IS_TIM2_CHANNEL_OK(CHANNEL) (((CHANNEL) == TIM2_CHANNEL_1) || \
((CHANNEL) == TIM2_CHANNEL_2) || \
((CHANNEL) == TIM2_CHANNEL_3))
#define IS_TIM2_PWMI_CHANNEL_OK(CHANNEL) (((CHANNEL) == TIM2_CHANNEL_1) || \
((CHANNEL) == TIM2_CHANNEL_2))
/** TIM2 Output Compare Polarity */
typedef enum {
TIM2_OCPOLARITY_HIGH = ((uint8_t) 0x00),
TIM2_OCPOLARITY_LOW = ((uint8_t) 0x22)
} TIM2_OCPolarity_TypeDef;
#define IS_TIM2_OC_POLARITY_OK(POLARITY) (((POLARITY) == TIM2_OCPOLARITY_HIGH) || \
((POLARITY) == TIM2_OCPOLARITY_LOW))
/** TIM2 Output Compare states */
typedef enum {
TIM2_OUTPUTSTATE_DISABLE = ((uint8_t) 0x00),
TIM2_OUTPUTSTATE_ENABLE = ((uint8_t) 0x11)
} TIM2_OutputState_TypeDef;
#define IS_TIM2_OUTPUT_STATE_OK(STATE) (((STATE) == TIM2_OUTPUTSTATE_DISABLE) || \
((STATE) == TIM2_OUTPUTSTATE_ENABLE))
/** TIM2 Input Capture Polarity */
typedef enum {
TIM2_ICPOLARITY_RISING = ((uint8_t) 0x00),
TIM2_ICPOLARITY_FALLING = ((uint8_t) 0x44)
} TIM2_ICPolarity_TypeDef;
#define IS_TIM2_IC_POLARITY_OK(POLARITY) (((POLARITY) == TIM2_ICPOLARITY_RISING) || \
((POLARITY) == TIM2_ICPOLARITY_FALLING))
/** TIM2 Input Capture Selection */
typedef enum {
TIM2_ICSELECTION_DIRECTTI = ((uint8_t) 0x01),
TIM2_ICSELECTION_INDIRECTTI = ((uint8_t) 0x02),
TIM2_ICSELECTION_TRGI = ((uint8_t) 0x03)
} TIM2_ICSelection_TypeDef;
#define IS_TIM2_IC_SELECTION_OK(SELECTION) (((SELECTION) == TIM2_ICSELECTION_DIRECTTI) || \
((SELECTION) == TIM2_ICSELECTION_INDIRECTTI) || \
((SELECTION) == TIM2_ICSELECTION_TRGI))
#define IS_TIM2_IC_SELECTION1_OK(SELECTION) (((SELECTION) == TIM2_ICSELECTION_DIRECTTI) || \
((SELECTION) == TIM2_ICSELECTION_TRGI))
/** TIM2 Input Capture Prescaler */
typedef enum {
TIM2_ICPSC_DIV1 = ((uint8_t) 0x00),
TIM2_ICPSC_DIV2 = ((uint8_t) 0x04),
TIM2_ICPSC_DIV4 = ((uint8_t) 0x08),
TIM2_ICPSC_DIV8 = ((uint8_t) 0x0C)
} TIM2_ICPSC_TypeDef;
#define IS_TIM2_IC_PRESCALER_OK(PRESCALER) (((PRESCALER) == TIM2_ICPSC_DIV1) || \
((PRESCALER) == TIM2_ICPSC_DIV2) || \
((PRESCALER) == TIM2_ICPSC_DIV4) || \
((PRESCALER) == TIM2_ICPSC_DIV8))
/** TIM2 Input Capture Filer Value */
#define IS_TIM2_IC_FILTER_OK(ICFILTER) ((ICFILTER) <= 0x0F)
/** TIM2 interrupt sources */
typedef enum {
TIM2_IT_UPDATE = ((uint8_t) 0x01),
TIM2_IT_CC1 = ((uint8_t) 0x02),
TIM2_IT_CC2 = ((uint8_t) 0x04),
TIM2_IT_CC3 = ((uint8_t) 0x08)
} TIM2_IT_TypeDef;
#define IS_TIM2_IT_OK(IT) (((IT) != 0x00) && ((IT) <= 0x0F))
#define IS_TIM2_GET_IT_OK(IT) (((IT) == TIM2_IT_UPDATE) || \
((IT) == TIM2_IT_CC1) || \
((IT) == TIM2_IT_CC2) || \
((IT) == TIM2_IT_CC3))
/** TIM2 Prescaler Reload Mode */
typedef enum {
TIM2_PSCRELOADMODE_UPDATE = ((uint8_t) 0x00),
TIM2_PSCRELOADMODE_IMMEDIATE = ((uint8_t) 0x01)
} TIM2_PSCReloadMode_TypeDef;
#define IS_TIM2_PRESCALER_RELOAD_OK(RELOAD) (((RELOAD) == TIM2_PSCRELOADMODE_UPDATE) || \
((RELOAD) == TIM2_PSCRELOADMODE_IMMEDIATE))
/** TIM2 Event Source */
typedef enum {
TIM2_EVENTSOURCE_UPDATE = ((uint8_t) 0x01),
TIM2_EVENTSOURCE_CC1 = ((uint8_t) 0x02),
TIM2_EVENTSOURCE_CC2 = ((uint8_t) 0x04),
TIM2_EVENTSOURCE_CC3 = ((uint8_t) 0x08)
} TIM2_EventSource_TypeDef;
#define IS_TIM2_EVENT_SOURCE_OK(SOURCE) (((SOURCE) != 0x00))
/** TIM2 Update Source */
typedef enum {
TIM2_UPDATESOURCE_GLOBAL = ((uint8_t) 0x00),
TIM2_UPDATESOURCE_REGULAR = ((uint8_t) 0x01)
} TIM2_UpdateSource_TypeDef;
#define IS_TIM2_UPDATE_SOURCE_OK(SOURCE) (((SOURCE) == TIM2_UPDATESOURCE_GLOBAL) || \
((SOURCE) == TIM2_UPDATESOURCE_REGULAR))
/** TIM2 Flags */
typedef enum {
TIM2_FLAG_UPDATE = ((uint16_t) 0x0001),
TIM2_FLAG_CC1 = ((uint16_t) 0x0002),
TIM2_FLAG_CC2 = ((uint16_t) 0x0004),
TIM2_FLAG_CC3 = ((uint16_t) 0x0008),
TIM2_FLAG_CC1OF = ((uint16_t) 0x0200),
TIM2_FLAG_CC2OF = ((uint16_t) 0x0400),
TIM2_FLAG_CC3OF = ((uint16_t) 0x0800)
} TIM2_FLAG_TypeDef;
#define IS_TIM2_GET_FLAG_OK(FLAG) (((FLAG) == TIM2_FLAG_UPDATE) || \
((FLAG) == TIM2_FLAG_CC1) || \
((FLAG) == TIM2_FLAG_CC2) || \
((FLAG) == TIM2_FLAG_CC3) || \
((FLAG) == TIM2_FLAG_CC1OF) || \
((FLAG) == TIM2_FLAG_CC2OF) || \
((FLAG) == TIM2_FLAG_CC3OF))
#define IS_TIM2_CLEAR_FLAG_OK(FLAG) ((((uint16_t)(FLAG) & 0xF1F0) == 0x0000) && ((uint16_t)(FLAG) != 0x0000))
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup TIM2_Exported_Functions
* @{
*/
#if 0
void TIM2_DeInit(void);
void TIM2_TimeBaseInit(TIM2_Prescaler_TypeDef TIM2_Prescaler, uint16_t TIM2_Period);
void TIM2_OC1Init(TIM2_OCMode_TypeDef TIM2_OCMode, TIM2_OutputState_TypeDef TIM2_OutputState, uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_OC2Init(TIM2_OCMode_TypeDef TIM2_OCMode, TIM2_OutputState_TypeDef TIM2_OutputState, uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_OC3Init(TIM2_OCMode_TypeDef TIM2_OCMode, TIM2_OutputState_TypeDef TIM2_OutputState, uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_ICInit(TIM2_Channel_TypeDef TIM2_Channel, TIM2_ICPolarity_TypeDef TIM2_ICPolarity,
TIM2_ICSelection_TypeDef TIM2_ICSelection, TIM2_ICPSC_TypeDef TIM2_ICPrescaler, uint8_t TIM2_ICFilter);
void TIM2_PWMIConfig(TIM2_Channel_TypeDef TIM2_Channel, TIM2_ICPolarity_TypeDef TIM2_ICPolarity,
TIM2_ICSelection_TypeDef TIM2_ICSelection, TIM2_ICPSC_TypeDef TIM2_ICPrescaler,
uint8_t TIM2_ICFilter);
void TIM2_Cmd(FunctionalState NewState);
void TIM2_ITConfig(TIM2_IT_TypeDef TIM2_IT, FunctionalState NewState);
void TIM2_InternalClockConfig(void);
void TIM2_UpdateDisableConfig(FunctionalState NewState);
void TIM2_UpdateRequestConfig(TIM2_UpdateSource_TypeDef TIM2_UpdateSource);
void TIM2_SelectOnePulseMode(TIM2_OPMode_TypeDef TIM2_OPMode);
void TIM2_PrescalerConfig(TIM2_Prescaler_TypeDef Prescaler, TIM2_PSCReloadMode_TypeDef TIM2_PSCReloadMode);
void TIM2_ForcedOC1Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction);
void TIM2_ForcedOC2Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction);
void TIM2_ForcedOC3Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction);
void TIM2_ARRPreloadConfig(FunctionalState NewState);
void TIM2_CCPreloadControl(FunctionalState NewState);
void TIM2_OC1PreloadConfig(FunctionalState NewState);
void TIM2_OC2PreloadConfig(FunctionalState NewState);
void TIM2_OC3PreloadConfig(FunctionalState NewState);
void TIM2_GenerateEvent(TIM2_EventSource_TypeDef TIM2_EventSource);
void TIM2_OC1PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_OC2PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_OC3PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity);
void TIM2_CCxCmd(TIM2_Channel_TypeDef TIM2_Channel, FunctionalState NewState);
void TIM2_SelectOCxM(TIM2_Channel_TypeDef TIM2_Channel, TIM2_OCMode_TypeDef TIM2_OCMode);
void TIM2_SetCounter(uint16_t Counter);
void TIM2_SetAutoreload(uint16_t Autoreload);
void TIM2_SetCompare1(uint16_t Compare1);
void TIM2_SetCompare2(uint16_t Compare2);
void TIM2_SetCompare3(uint16_t Compare3);
void TIM2_SetIC1Prescaler(TIM2_ICPSC_TypeDef TIM2_IC1Prescaler);
void TIM2_SetIC2Prescaler(TIM2_ICPSC_TypeDef TIM2_IC2Prescaler);
void TIM2_SetIC3Prescaler(TIM2_ICPSC_TypeDef TIM2_IC3Prescaler);
uint16_t TIM2_GetCapture1(void);
uint16_t TIM2_GetCapture2(void);
uint16_t TIM2_GetCapture3(void);
uint16_t TIM2_GetCounter(void);
TIM2_Prescaler_TypeDef TIM2_GetPrescaler(void);
FlagStatus TIM2_GetFlagStatus(TIM2_FLAG_TypeDef TIM2_FLAG);
void TIM2_ClearFlag(TIM2_FLAG_TypeDef TIM2_FLAG);
ITStatus TIM2_GetITStatus(TIM2_IT_TypeDef TIM2_IT);
void TIM2_ClearITPendingBit(TIM2_IT_TypeDef TIM2_IT);
/**
* @}
*/
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
inline void _TIM2_TI1_Config(uint8_t TIM2_ICPolarity, uint8_t TIM2_ICSelection, uint8_t TIM2_ICFilter);
inline void _TIM2_TI2_Config(uint8_t TIM2_ICPolarity, uint8_t TIM2_ICSelection, uint8_t TIM2_ICFilter);
inline void _TIM2_TI3_Config(uint8_t TIM2_ICPolarity, uint8_t TIM2_ICSelection, uint8_t TIM2_ICFilter);
#endif
/**
* @brief Configure the TI1 as Input.
* @param TIM2_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM2_ICPOLARITY_FALLING
* - TIM2_ICPOLARITY_RISING
* @param TIM2_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM2_ICSELECTION_DIRECTTI: TIM2 Input 1 is selected to
* be connected to IC1.
* - TIM2_ICSELECTION_INDIRECTTI: TIM2 Input 1 is selected to
* be connected to IC2.
* @param TIM2_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
inline void _TIM2_TI1_Config(uint8_t TIM2_ICPolarity,
uint8_t TIM2_ICSelection,
uint8_t TIM2_ICFilter)
{
/* Disable the Channel 1: Reset the CCE Bit */
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC1E);
/* Select the Input and set the filter */
TIM2->CCMR1 = (uint8_t) ((uint8_t) (TIM2->CCMR1 & (uint8_t) (~(uint8_t) (TIM2_CCMR_CCxS | TIM2_CCMR_ICxF)))
| (uint8_t) (((TIM2_ICSelection)) | ((uint8_t) (TIM2_ICFilter << 4))));
/* Select the Polarity */
if (TIM2_ICPolarity != TIM2_ICPOLARITY_RISING) {
TIM2->CCER1 |= TIM2_CCER1_CC1P;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC1P);
}
/* Set the CCE Bit */
TIM2->CCER1 |= TIM2_CCER1_CC1E;
}
/**
* @brief Configure the TI2 as Input.
* @param TIM2_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM2_ICPOLARITY_FALLING
* - TIM2_ICPOLARITY_RISING
* @param TIM2_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM2_ICSELECTION_DIRECTTI: TIM2 Input 2 is selected to
* be connected to IC2.
* - TIM2_ICSELECTION_INDIRECTTI: TIM2 Input 2 is selected to
* be connected to IC1.
* @param TIM2_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
inline void _TIM2_TI2_Config(uint8_t TIM2_ICPolarity,
uint8_t TIM2_ICSelection,
uint8_t TIM2_ICFilter)
{
/* Disable the Channel 2: Reset the CCE Bit */
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC2E);
/* Select the Input and set the filter */
TIM2->CCMR2 = (uint8_t) ((uint8_t) (TIM2->CCMR2 & (uint8_t) (~(uint8_t) (TIM2_CCMR_CCxS | TIM2_CCMR_ICxF)))
| (uint8_t) (((TIM2_ICSelection)) | ((uint8_t) (TIM2_ICFilter << 4))));
/* Select the Polarity */
if (TIM2_ICPolarity != TIM2_ICPOLARITY_RISING) {
TIM2->CCER1 |= TIM2_CCER1_CC2P;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC2P);
}
/* Set the CCE Bit */
TIM2->CCER1 |= TIM2_CCER1_CC2E;
}
/**
* @brief Configure the TI3 as Input.
* @param TIM2_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM2_ICPOLARITY_FALLING
* - TIM2_ICPOLARITY_RISING
* @param TIM2_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM2_ICSELECTION_DIRECTTI: TIM2 Input 3 is selected to
* be connected to IC3.
* @param TIM2_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
inline void _TIM2_TI3_Config(uint8_t TIM2_ICPolarity, uint8_t TIM2_ICSelection,
uint8_t TIM2_ICFilter)
{
/* Disable the Channel 3: Reset the CCE Bit */
TIM2->CCER2 &= (uint8_t) (~TIM2_CCER2_CC3E);
/* Select the Input and set the filter */
TIM2->CCMR3 = (uint8_t) ((uint8_t) (TIM2->CCMR3 & (uint8_t) (~(TIM2_CCMR_CCxS | TIM2_CCMR_ICxF)))
| (uint8_t) (((TIM2_ICSelection)) | ((uint8_t) (TIM2_ICFilter << 4))));
/* Select the Polarity */
if (TIM2_ICPolarity != TIM2_ICPOLARITY_RISING) {
TIM2->CCER2 |= TIM2_CCER2_CC3P;
} else {
TIM2->CCER2 &= (uint8_t) (~TIM2_CCER2_CC3P);
}
/* Set the CCE Bit */
TIM2->CCER2 |= TIM2_CCER2_CC3E;
}
/**
* @addtogroup TIM2_Public_Functions
* @{
*/
/**
* @brief Deinitializes the TIM2 peripheral registers to their default reset values.
* @param None
* @retval None
*/
inline void TIM2_DeInit(void)
{
TIM2->CR1 = (uint8_t) TIM2_CR1_RESET_VALUE;
TIM2->IER = (uint8_t) TIM2_IER_RESET_VALUE;
TIM2->SR2 = (uint8_t) TIM2_SR2_RESET_VALUE;
/* Disable channels */
TIM2->CCER1 = (uint8_t) TIM2_CCER1_RESET_VALUE;
TIM2->CCER2 = (uint8_t) TIM2_CCER2_RESET_VALUE;
/* Then reset channel registers: it also works if lock level is equal to 2 or 3 */
TIM2->CCER1 = (uint8_t) TIM2_CCER1_RESET_VALUE;
TIM2->CCER2 = (uint8_t) TIM2_CCER2_RESET_VALUE;
TIM2->CCMR1 = (uint8_t) TIM2_CCMR1_RESET_VALUE;
TIM2->CCMR2 = (uint8_t) TIM2_CCMR2_RESET_VALUE;
TIM2->CCMR3 = (uint8_t) TIM2_CCMR3_RESET_VALUE;
TIM2->CNTRH = (uint8_t) TIM2_CNTRH_RESET_VALUE;
TIM2->CNTRL = (uint8_t) TIM2_CNTRL_RESET_VALUE;
TIM2->PSCR = (uint8_t) TIM2_PSCR_RESET_VALUE;
TIM2->ARRH = (uint8_t) TIM2_ARRH_RESET_VALUE;
TIM2->ARRL = (uint8_t) TIM2_ARRL_RESET_VALUE;
TIM2->CCR1H = (uint8_t) TIM2_CCR1H_RESET_VALUE;
TIM2->CCR1L = (uint8_t) TIM2_CCR1L_RESET_VALUE;
TIM2->CCR2H = (uint8_t) TIM2_CCR2H_RESET_VALUE;
TIM2->CCR2L = (uint8_t) TIM2_CCR2L_RESET_VALUE;
TIM2->CCR3H = (uint8_t) TIM2_CCR3H_RESET_VALUE;
TIM2->CCR3L = (uint8_t) TIM2_CCR3L_RESET_VALUE;
TIM2->SR1 = (uint8_t) TIM2_SR1_RESET_VALUE;
}
/**
* @brief Initializes the TIM2 Time Base Unit according to the specified parameters.
* @param TIM2_Prescaler specifies the Prescaler from TIM2_Prescaler_TypeDef.
* @param TIM2_Period specifies the Period value.
* @retval None
*/
inline void TIM2_TimeBaseInit(TIM2_Prescaler_TypeDef TIM2_Prescaler,
uint16_t TIM2_Period)
{
/* Set the Prescaler value */
TIM2->PSCR = (uint8_t) (TIM2_Prescaler);
/* Set the Autoreload value */
TIM2->ARRH = (uint8_t) (TIM2_Period >> 8);
TIM2->ARRL = (uint8_t) (TIM2_Period);
}
/**
* @brief Initializes the TIM2 Channel1 according to the specified parameters.
* @param TIM2_OCMode specifies the Output Compare mode from @ref TIM2_OCMode_TypeDef.
* @param TIM2_OutputState specifies the Output State from @ref TIM2_OutputState_TypeDef.
* @param TIM2_Pulse specifies the Pulse width value.
* @param TIM2_OCPolarity specifies the Output Compare Polarity from @ref TIM2_OCPolarity_TypeDef.
* @retval None
*/
inline void TIM2_OC1Init(TIM2_OCMode_TypeDef TIM2_OCMode,
TIM2_OutputState_TypeDef TIM2_OutputState,
uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_MODE_OK(TIM2_OCMode));
assert_param(IS_TIM2_OUTPUT_STATE_OK(TIM2_OutputState));
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State , the Output Polarity */
TIM2->CCER1 &= (uint8_t) (~(TIM2_CCER1_CC1E | TIM2_CCER1_CC1P));
/* Set the Output State & Set the Output Polarity */
TIM2->CCER1 |= (uint8_t) ((uint8_t) (TIM2_OutputState & TIM2_CCER1_CC1E) |
(uint8_t) (TIM2_OCPolarity & TIM2_CCER1_CC1P));
/* Reset the Output Compare Bits & Set the Ouput Compare Mode */
TIM2->CCMR1 = (uint8_t) ((uint8_t) (TIM2->CCMR1 & (uint8_t) (~TIM2_CCMR_OCM)) |
(uint8_t) TIM2_OCMode);
/* Set the Pulse value */
TIM2->CCR1H = (uint8_t) (TIM2_Pulse >> 8);
TIM2->CCR1L = (uint8_t) (TIM2_Pulse);
}
/**
* @brief Initializes the TIM2 Channel2 according to the specified parameters.
* @param TIM2_OCMode specifies the Output Compare mode from @ref TIM2_OCMode_TypeDef.
* @param TIM2_OutputState specifies the Output State from @ref TIM2_OutputState_TypeDef.
* @param TIM2_Pulse specifies the Pulse width value.
* @param TIM2_OCPolarity specifies the Output Compare Polarity from @ref TIM2_OCPolarity_TypeDef.
* @retval None
*/
inline void TIM2_OC2Init(TIM2_OCMode_TypeDef TIM2_OCMode,
TIM2_OutputState_TypeDef TIM2_OutputState,
uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_MODE_OK(TIM2_OCMode));
assert_param(IS_TIM2_OUTPUT_STATE_OK(TIM2_OutputState));
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State, the Output Polarity */
TIM2->CCER1 &= (uint8_t) (~(TIM2_CCER1_CC2E | TIM2_CCER1_CC2P));
/* Set the Output State & Set the Output Polarity */
TIM2->CCER1 |= (uint8_t) ((uint8_t) (TIM2_OutputState & TIM2_CCER1_CC2E) |
(uint8_t) (TIM2_OCPolarity & TIM2_CCER1_CC2P));
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM2->CCMR2 = (uint8_t) ((uint8_t) (TIM2->CCMR2 & (uint8_t) (~TIM2_CCMR_OCM)) |
(uint8_t) TIM2_OCMode);
/* Set the Pulse value */
TIM2->CCR2H = (uint8_t) (TIM2_Pulse >> 8);
TIM2->CCR2L = (uint8_t) (TIM2_Pulse);
}
/**
* @brief Initializes the TIM2 Channel3 according to the specified parameters.
* @param TIM2_OCMode specifies the Output Compare mode from @ref TIM2_OCMode_TypeDef.
* @param TIM2_OutputState specifies the Output State from @ref TIM2_OutputState_TypeDef.
* @param TIM2_Pulse specifies the Pulse width value.
* @param TIM2_OCPolarity specifies the Output Compare Polarity from @ref TIM2_OCPolarity_TypeDef.
* @retval None
*/
inline void TIM2_OC3Init(TIM2_OCMode_TypeDef TIM2_OCMode,
TIM2_OutputState_TypeDef TIM2_OutputState,
uint16_t TIM2_Pulse,
TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_MODE_OK(TIM2_OCMode));
assert_param(IS_TIM2_OUTPUT_STATE_OK(TIM2_OutputState));
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State, the Output Polarity */
TIM2->CCER2 &= (uint8_t) (~(TIM2_CCER2_CC3E | TIM2_CCER2_CC3P));
/* Set the Output State & Set the Output Polarity */
TIM2->CCER2 |= (uint8_t) ((uint8_t) (TIM2_OutputState & TIM2_CCER2_CC3E) |
(uint8_t) (TIM2_OCPolarity & TIM2_CCER2_CC3P));
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM2->CCMR3 = (uint8_t) ((uint8_t) (TIM2->CCMR3 & (uint8_t) (~TIM2_CCMR_OCM)) |
(uint8_t) TIM2_OCMode);
/* Set the Pulse value */
TIM2->CCR3H = (uint8_t) (TIM2_Pulse >> 8);
TIM2->CCR3L = (uint8_t) (TIM2_Pulse);
}
/**
* @brief Sets the TIM2 Input Capture 1 Prescaler.
* @param TIM2_IC1Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM2_ICPSC_DIV1: no prescaler
* - TIM2_ICPSC_DIV2: capture is done once every 2 events
* - TIM2_ICPSC_DIV4: capture is done once every 4 events
* - TIM2_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
inline void TIM2_SetIC1Prescaler(TIM2_ICPSC_TypeDef TIM2_IC1Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM2_IC_PRESCALER_OK(TIM2_IC1Prescaler));
/* Reset the IC1PSC Bits &Set the IC1PSC value */
TIM2->CCMR1 = (uint8_t) ((uint8_t) (TIM2->CCMR1 & (uint8_t) (~TIM2_CCMR_ICxPSC))
| (uint8_t) TIM2_IC1Prescaler);
}
/**
* @brief Sets the TIM2 Input Capture 2 prescaler.
* @param TIM2_IC2Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM2_ICPSC_DIV1: no prescaler
* - TIM2_ICPSC_DIV2: capture is done once every 2 events
* - TIM2_ICPSC_DIV4: capture is done once every 4 events
* - TIM2_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
inline void TIM2_SetIC2Prescaler(TIM2_ICPSC_TypeDef TIM2_IC2Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM2_IC_PRESCALER_OK(TIM2_IC2Prescaler));
/* Reset the IC1PSC Bits &Set the IC1PSC value */
TIM2->CCMR2 = (uint8_t) ((uint8_t) (TIM2->CCMR2 & (uint8_t) (~TIM2_CCMR_ICxPSC))
| (uint8_t) TIM2_IC2Prescaler);
}
/**
* @brief Sets the TIM2 Input Capture 3 prescaler.
* @param TIM2_IC3Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM2_ICPSC_DIV1: no prescaler
* - TIM2_ICPSC_DIV2: capture is done once every 2 events
* - TIM2_ICPSC_DIV4: capture is done once every 4 events
* - TIM2_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
inline void TIM2_SetIC3Prescaler(TIM2_ICPSC_TypeDef TIM2_IC3Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM2_IC_PRESCALER_OK(TIM2_IC3Prescaler));
/* Reset the IC1PSC Bits &Set the IC1PSC value */
TIM2->CCMR3 = (uint8_t) ((uint8_t) (TIM2->CCMR3 & (uint8_t) (~TIM2_CCMR_ICxPSC))
| (uint8_t) TIM2_IC3Prescaler);
}
/**
* @brief Initializes the TIM2 peripheral according to the specified parameters.
* @param TIM2_Channel specifies the Input Capture Channel from @ref TIM2_Channel_TypeDef.
* @param TIM2_ICPolarity specifies the Input Capture Polarity from @ref TIM2_ICPolarity_TypeDef.
* @param TIM2_ICSelection specifies the Input Capture Selection from @ref TIM2_ICSelection_TypeDef.
* @param TIM2_ICPrescaler specifies the Input Capture Prescaler from @ref TIM2_ICPSC_TypeDef.
* @param TIM2_ICFilter specifies the Input Capture Filter value (value can be an integer from 0x00 to 0x0F).
* @retval None
*/
inline void TIM2_ICInit(TIM2_Channel_TypeDef TIM2_Channel,
TIM2_ICPolarity_TypeDef TIM2_ICPolarity,
TIM2_ICSelection_TypeDef TIM2_ICSelection,
TIM2_ICPSC_TypeDef TIM2_ICPrescaler,
uint8_t TIM2_ICFilter)
{
/* Check the parameters */
assert_param(IS_TIM2_CHANNEL_OK(TIM2_Channel));
assert_param(IS_TIM2_IC_POLARITY_OK(TIM2_ICPolarity));
assert_param(IS_TIM2_IC_SELECTION_OK(TIM2_ICSelection));
assert_param(IS_TIM2_IC_PRESCALER_OK(TIM2_ICPrescaler));
assert_param(IS_TIM2_IC_FILTER_OK(TIM2_ICFilter));
if (TIM2_Channel == TIM2_CHANNEL_1) {
/* TI1 Configuration */
_TIM2_TI1_Config((uint8_t) TIM2_ICPolarity,
(uint8_t) TIM2_ICSelection,
(uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC1Prescaler(TIM2_ICPrescaler);
} else if (TIM2_Channel == TIM2_CHANNEL_2) {
/* TI2 Configuration */
_TIM2_TI2_Config((uint8_t) TIM2_ICPolarity,
(uint8_t) TIM2_ICSelection,
(uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC2Prescaler(TIM2_ICPrescaler);
} else {
/* TI3 Configuration */
_TIM2_TI3_Config((uint8_t) TIM2_ICPolarity,
(uint8_t) TIM2_ICSelection,
(uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC3Prescaler(TIM2_ICPrescaler);
}
}
/**
* @brief Configures the TIM2 peripheral in PWM Input Mode according to the specified parameters.
* @param TIM2_Channel specifies the Input Capture Channel from @ref TIM2_Channel_TypeDef.
* @param TIM2_ICPolarity specifies the Input Capture Polarity from @ref TIM2_ICPolarity_TypeDef.
* @param TIM2_ICSelection specifies the Input Capture Selection from @ref TIM2_ICSelection_TypeDef.
* @param TIM2_ICPrescaler specifies the Input Capture Prescaler from @ref TIM2_ICPSC_TypeDef.
* @param TIM2_ICFilter specifies the Input Capture Filter value (value can be an integer from 0x00 to 0x0F).
* @retval None
*/
inline void TIM2_PWMIConfig(TIM2_Channel_TypeDef TIM2_Channel,
TIM2_ICPolarity_TypeDef TIM2_ICPolarity,
TIM2_ICSelection_TypeDef TIM2_ICSelection,
TIM2_ICPSC_TypeDef TIM2_ICPrescaler,
uint8_t TIM2_ICFilter)
{
uint8_t icpolarity = (uint8_t) TIM2_ICPOLARITY_RISING;
uint8_t icselection = (uint8_t) TIM2_ICSELECTION_DIRECTTI;
/* Check the parameters */
assert_param(IS_TIM2_PWMI_CHANNEL_OK(TIM2_Channel));
assert_param(IS_TIM2_IC_POLARITY_OK(TIM2_ICPolarity));
assert_param(IS_TIM2_IC_SELECTION_OK(TIM2_ICSelection));
assert_param(IS_TIM2_IC_PRESCALER_OK(TIM2_ICPrescaler));
/* Select the Opposite Input Polarity */
if (TIM2_ICPolarity != TIM2_ICPOLARITY_FALLING) {
icpolarity = (uint8_t) TIM2_ICPOLARITY_FALLING;
} else {
icpolarity = (uint8_t) TIM2_ICPOLARITY_RISING;
}
/* Select the Opposite Input */
if (TIM2_ICSelection == TIM2_ICSELECTION_DIRECTTI) {
icselection = (uint8_t) TIM2_ICSELECTION_INDIRECTTI;
} else {
icselection = (uint8_t) TIM2_ICSELECTION_DIRECTTI;
}
if (TIM2_Channel == TIM2_CHANNEL_1) {
/* TI1 Configuration */
_TIM2_TI1_Config((uint8_t) TIM2_ICPolarity, (uint8_t) TIM2_ICSelection,
(uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC1Prescaler(TIM2_ICPrescaler);
/* TI2 Configuration */
_TIM2_TI2_Config(icpolarity, icselection, TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC2Prescaler(TIM2_ICPrescaler);
} else {
/* TI2 Configuration */
_TIM2_TI2_Config((uint8_t) TIM2_ICPolarity, (uint8_t) TIM2_ICSelection,
(uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC2Prescaler(TIM2_ICPrescaler);
/* TI1 Configuration */
_TIM2_TI1_Config((uint8_t) icpolarity, icselection, (uint8_t) TIM2_ICFilter);
/* Set the Input Capture Prescaler value */
TIM2_SetIC1Prescaler(TIM2_ICPrescaler);
}
}
/**
* @brief Enables or disables the TIM2 peripheral.
* @param NewState new state of the TIM2 peripheral. This parameter can
* be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* set or Reset the CEN Bit */
if (NewState != DISABLE) {
TIM2->CR1 |= (uint8_t) TIM2_CR1_CEN;
} else {
TIM2->CR1 &= (uint8_t) (~TIM2_CR1_CEN);
}
}
/**
* @brief Enables or disables the specified TIM2 interrupts.
* @param NewState new state of the TIM2 peripheral.
* This parameter can be: ENABLE or DISABLE.
* @param TIM2_IT specifies the TIM2 interrupts sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* - TIM2_IT_UPDATE: TIM2 update Interrupt source
* - TIM2_IT_CC1: TIM2 Capture Compare 1 Interrupt source
* - TIM2_IT_CC2: TIM2 Capture Compare 2 Interrupt source
* - TIM2_IT_CC3: TIM2 Capture Compare 3 Interrupt source
* @param NewState new state of the TIM2 peripheral.
* @retval None
*/
inline void TIM2_ITConfig(TIM2_IT_TypeDef TIM2_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_TIM2_IT_OK(TIM2_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the Interrupt sources */
TIM2->IER |= (uint8_t) TIM2_IT;
} else {
/* Disable the Interrupt sources */
TIM2->IER &= (uint8_t) (~TIM2_IT);
}
}
/**
* @brief Enables or Disables the TIM2 Update event.
* @param NewState new state of the TIM2 peripheral Preload register. This parameter can
* be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_UpdateDisableConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the UDIS Bit */
if (NewState != DISABLE) {
TIM2->CR1 |= (uint8_t) TIM2_CR1_UDIS;
} else {
TIM2->CR1 &= (uint8_t) (~TIM2_CR1_UDIS);
}
}
/**
* @brief Selects the TIM2 Update Request Interrupt source.
* @param TIM2_UpdateSource specifies the Update source.
* This parameter can be one of the following values
* - TIM2_UPDATESOURCE_REGULAR
* - TIM2_UPDATESOURCE_GLOBAL
* @retval None
*/
inline void TIM2_UpdateRequestConfig(TIM2_UpdateSource_TypeDef TIM2_UpdateSource)
{
/* Check the parameters */
assert_param(IS_TIM2_UPDATE_SOURCE_OK(TIM2_UpdateSource));
/* Set or Reset the URS Bit */
if (TIM2_UpdateSource != TIM2_UPDATESOURCE_GLOBAL) {
TIM2->CR1 |= (uint8_t) TIM2_CR1_URS;
} else {
TIM2->CR1 &= (uint8_t) (~TIM2_CR1_URS);
}
}
/**
* @brief Selects the TIM2's One Pulse Mode.
* @param TIM2_OPMode specifies the OPM Mode to be used.
* This parameter can be one of the following values
* - TIM2_OPMODE_SINGLE
* - TIM2_OPMODE_REPETITIVE
* @retval None
*/
inline void TIM2_SelectOnePulseMode(TIM2_OPMode_TypeDef TIM2_OPMode)
{
/* Check the parameters */
assert_param(IS_TIM2_OPM_MODE_OK(TIM2_OPMode));
/* Set or Reset the OPM Bit */
if (TIM2_OPMode != TIM2_OPMODE_REPETITIVE) {
TIM2->CR1 |= (uint8_t) TIM2_CR1_OPM;
} else {
TIM2->CR1 &= (uint8_t) (~TIM2_CR1_OPM);
}
}
/**
* @brief Configures the TIM2 Prescaler.
* @param Prescaler specifies the Prescaler Register value
* This parameter can be one of the following values
* - TIM2_PRESCALER_1
* - TIM2_PRESCALER_2
* - TIM2_PRESCALER_4
* - TIM2_PRESCALER_8
* - TIM2_PRESCALER_16
* - TIM2_PRESCALER_32
* - TIM2_PRESCALER_64
* - TIM2_PRESCALER_128
* - TIM2_PRESCALER_256
* - TIM2_PRESCALER_512
* - TIM2_PRESCALER_1024
* - TIM2_PRESCALER_2048
* - TIM2_PRESCALER_4096
* - TIM2_PRESCALER_8192
* - TIM2_PRESCALER_16384
* - TIM2_PRESCALER_32768
* @param TIM2_PSCReloadMode specifies the TIM2 Prescaler Reload mode.
* This parameter can be one of the following values
* - TIM2_PSCRELOADMODE_IMMEDIATE: The Prescaler is loaded
* immediately.
* - TIM2_PSCRELOADMODE_UPDATE: The Prescaler is loaded at
* the update event.
* @retval None
*/
inline void TIM2_PrescalerConfig(TIM2_Prescaler_TypeDef Prescaler,
TIM2_PSCReloadMode_TypeDef TIM2_PSCReloadMode)
{
/* Check the parameters */
assert_param(IS_TIM2_PRESCALER_RELOAD_OK(TIM2_PSCReloadMode));
assert_param(IS_TIM2_PRESCALER_OK(Prescaler));
/* Set the Prescaler value */
TIM2->PSCR = (uint8_t) Prescaler;
/* Set or reset the UG Bit */
TIM2->EGR = (uint8_t) TIM2_PSCReloadMode;
}
/**
* @brief Forces the TIM2 Channel1 output waveform to active or inactive level.
* @param TIM2_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM2_FORCEDACTION_ACTIVE: Force active level on OC1REF
* - TIM2_FORCEDACTION_INACTIVE: Force inactive level on
* OC1REF.
* @retval None
*/
inline void TIM2_ForcedOC1Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM2_FORCED_ACTION_OK(TIM2_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM2->CCMR1 = (uint8_t) ((uint8_t) (TIM2->CCMR1 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_ForcedAction);
}
/**
* @brief Forces the TIM2 Channel2 output waveform to active or inactive level.
* @param TIM2_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM2_FORCEDACTION_ACTIVE: Force active level on OC2REF
* - TIM2_FORCEDACTION_INACTIVE: Force inactive level on
* OC2REF.
* @retval None
*/
inline void TIM2_ForcedOC2Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM2_FORCED_ACTION_OK(TIM2_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM2->CCMR2 = (uint8_t) ((uint8_t) (TIM2->CCMR2 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_ForcedAction);
}
/**
* @brief Forces the TIM2 Channel3 output waveform to active or inactive level.
* @param TIM2_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM2_FORCEDACTION_ACTIVE: Force active level on OC3REF
* - TIM2_FORCEDACTION_INACTIVE: Force inactive level on
* OC3REF.
* @retval None
*/
inline void TIM2_ForcedOC3Config(TIM2_ForcedAction_TypeDef TIM2_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM2_FORCED_ACTION_OK(TIM2_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM2->CCMR3 = (uint8_t) ((uint8_t) (TIM2->CCMR3 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_ForcedAction);
}
/**
* @brief Enables or disables TIM2 peripheral Preload register on ARR.
* @param NewState new state of the TIM2 peripheral Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_ARRPreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the ARPE Bit */
if (NewState != DISABLE) {
TIM2->CR1 |= (uint8_t) TIM2_CR1_ARPE;
} else {
TIM2->CR1 &= (uint8_t) (~TIM2_CR1_ARPE);
}
}
/**
* @brief Enables or disables the TIM2 peripheral Preload Register on CCR1.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_OC1PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC1PE Bit */
if (NewState != DISABLE) {
TIM2->CCMR1 |= (uint8_t) TIM2_CCMR_OCxPE;
} else {
TIM2->CCMR1 &= (uint8_t) (~TIM2_CCMR_OCxPE);
}
}
/**
* @brief Enables or disables the TIM2 peripheral Preload Register on CCR2.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_OC2PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC2PE Bit */
if (NewState != DISABLE) {
TIM2->CCMR2 |= (uint8_t) TIM2_CCMR_OCxPE;
} else {
TIM2->CCMR2 &= (uint8_t) (~TIM2_CCMR_OCxPE);
}
}
/**
* @brief Enables or disables the TIM2 peripheral Preload Register on CCR3.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_OC3PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC3PE Bit */
if (NewState != DISABLE) {
TIM2->CCMR3 |= (uint8_t) TIM2_CCMR_OCxPE;
} else {
TIM2->CCMR3 &= (uint8_t) (~TIM2_CCMR_OCxPE);
}
}
/**
* @brief Configures the TIM2 event to be generated by software.
* @param TIM2_EventSource specifies the event source.
* This parameter can be one of the following values:
* - TIM2_EVENTSOURCE_UPDATE: TIM2 update Event source
* - TIM2_EVENTSOURCE_CC1: TIM2 Capture Compare 1 Event source
* - TIM2_EVENTSOURCE_CC2: TIM2 Capture Compare 2 Event source
* - TIM2_EVENTSOURCE_CC3: TIM2 Capture Compare 3 Event source
* @retval None
*/
inline void TIM2_GenerateEvent(TIM2_EventSource_TypeDef TIM2_EventSource)
{
/* Check the parameters */
assert_param(IS_TIM2_EVENT_SOURCE_OK(TIM2_EventSource));
/* Set the event sources */
TIM2->EGR = (uint8_t) TIM2_EventSource;
}
/**
* @brief Configures the TIM2 Channel 1 polarity.
* @param TIM2_OCPolarity specifies the OC1 Polarity.
* This parameter can be one of the following values:
* - TIM2_OCPOLARITY_LOW: Output Compare active low
* - TIM2_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
inline void TIM2_OC1PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Set or Reset the CC1P Bit */
if (TIM2_OCPolarity != TIM2_OCPOLARITY_HIGH) {
TIM2->CCER1 |= (uint8_t) TIM2_CCER1_CC1P;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC1P);
}
}
/**
* @brief Configures the TIM2 Channel 2 polarity.
* @param TIM2_OCPolarity specifies the OC2 Polarity.
* This parameter can be one of the following values:
* - TIM2_OCPOLARITY_LOW: Output Compare active low
* - TIM2_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
inline void TIM2_OC2PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Set or Reset the CC2P Bit */
if (TIM2_OCPolarity != TIM2_OCPOLARITY_HIGH) {
TIM2->CCER1 |= TIM2_CCER1_CC2P;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC2P);
}
}
/**
* @brief Configures the TIM2 Channel 3 polarity.
* @param TIM2_OCPolarity specifies the OC3 Polarity.
* This parameter can be one of the following values:
* - TIM2_OCPOLARITY_LOW: Output Compare active low
* - TIM2_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
inline void TIM2_OC3PolarityConfig(TIM2_OCPolarity_TypeDef TIM2_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM2_OC_POLARITY_OK(TIM2_OCPolarity));
/* Set or Reset the CC3P Bit */
if (TIM2_OCPolarity != TIM2_OCPOLARITY_HIGH) {
TIM2->CCER2 |= (uint8_t) TIM2_CCER2_CC3P;
} else {
TIM2->CCER2 &= (uint8_t) (~TIM2_CCER2_CC3P);
}
}
/**
* @brief Enables or disables the TIM2 Capture Compare Channel x.
* @param TIM2_Channel specifies the TIM2 Channel.
* This parameter can be one of the following values:
* - TIM2_CHANNEL_1: TIM2 Channel1
* - TIM2_CHANNEL_2: TIM2 Channel2
* - TIM2_CHANNEL_3: TIM2 Channel3
* @param NewState specifies the TIM2 Channel CCxE bit new state.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void TIM2_CCxCmd(TIM2_Channel_TypeDef TIM2_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_TIM2_CHANNEL_OK(TIM2_Channel));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (TIM2_Channel == TIM2_CHANNEL_1) {
/* Set or Reset the CC1E Bit */
if (NewState != DISABLE) {
TIM2->CCER1 |= (uint8_t) TIM2_CCER1_CC1E;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC1E);
}
} else if (TIM2_Channel == TIM2_CHANNEL_2) {
/* Set or Reset the CC2E Bit */
if (NewState != DISABLE) {
TIM2->CCER1 |= (uint8_t) TIM2_CCER1_CC2E;
} else {
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC2E);
}
} else {
/* Set or Reset the CC3E Bit */
if (NewState != DISABLE) {
TIM2->CCER2 |= (uint8_t) TIM2_CCER2_CC3E;
} else {
TIM2->CCER2 &= (uint8_t) (~TIM2_CCER2_CC3E);
}
}
}
/**
* @brief Selects the TIM2 Output Compare Mode. This function disables the
* selected channel before changing the Output Compare Mode. User has to
* enable this channel using TIM2_CCxCmd and TIM2_CCxNCmd functions.
* @param TIM2_Channel specifies the TIM2 Channel.
* This parameter can be one of the following values:
* - TIM2_CHANNEL_1: TIM2 Channel1
* - TIM2_CHANNEL_2: TIM2 Channel2
* - TIM2_CHANNEL_3: TIM2 Channel3
* @param TIM2_OCMode specifies the TIM2 Output Compare Mode.
* This parameter can be one of the following values:
* - TIM2_OCMODE_TIMING
* - TIM2_OCMODE_ACTIVE
* - TIM2_OCMODE_TOGGLE
* - TIM2_OCMODE_PWM1
* - TIM2_OCMODE_PWM2
* - TIM2_FORCEDACTION_ACTIVE
* - TIM2_FORCEDACTION_INACTIVE
* @retval None
*/
inline void TIM2_SelectOCxM(TIM2_Channel_TypeDef TIM2_Channel, TIM2_OCMode_TypeDef TIM2_OCMode)
{
/* Check the parameters */
assert_param(IS_TIM2_CHANNEL_OK(TIM2_Channel));
assert_param(IS_TIM2_OCM_OK(TIM2_OCMode));
if (TIM2_Channel == TIM2_CHANNEL_1) {
/* Disable the Channel 1: Reset the CCE Bit */
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC1E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM2->CCMR1 = (uint8_t) ((uint8_t) (TIM2->CCMR1 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_OCMode);
} else if (TIM2_Channel == TIM2_CHANNEL_2) {
/* Disable the Channel 2: Reset the CCE Bit */
TIM2->CCER1 &= (uint8_t) (~TIM2_CCER1_CC2E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM2->CCMR2 = (uint8_t) ((uint8_t) (TIM2->CCMR2 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_OCMode);
} else {
/* Disable the Channel 3: Reset the CCE Bit */
TIM2->CCER2 &= (uint8_t) (~TIM2_CCER2_CC3E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM2->CCMR3 = (uint8_t) ((uint8_t) (TIM2->CCMR3 & (uint8_t) (~TIM2_CCMR_OCM))
| (uint8_t) TIM2_OCMode);
}
}
/**
* @brief Sets the TIM2 Counter Register value.
* @param Counter specifies the Counter register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
inline void TIM2_SetCounter(uint16_t Counter)
{
/* Set the Counter Register value */
TIM2->CNTRH = (uint8_t) (Counter >> 8);
TIM2->CNTRL = (uint8_t) (Counter);
}
/**
* @brief Sets the TIM2 Autoreload Register value.
* @param Autoreload specifies the Autoreload register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
inline void TIM2_SetAutoreload(uint16_t Autoreload)
{
/* Set the Autoreload Register value */
TIM2->ARRH = (uint8_t) (Autoreload >> 8);
TIM2->ARRL = (uint8_t) (Autoreload);
}
/**
* @brief Sets the TIM2 Capture Compare1 Register value.
* @param Compare1 specifies the Capture Compare1 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
inline void TIM2_SetCompare1(uint16_t Compare1)
{
/* Set the Capture Compare1 Register value */
TIM2->CCR1H = (uint8_t) (Compare1 >> 8);
TIM2->CCR1L = (uint8_t) (Compare1);
}
/**
* @brief Sets the TIM2 Capture Compare2 Register value.
* @param Compare2 specifies the Capture Compare2 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
inline void TIM2_SetCompare2(uint16_t Compare2)
{
/* Set the Capture Compare2 Register value */
TIM2->CCR2H = (uint8_t) (Compare2 >> 8);
TIM2->CCR2L = (uint8_t) (Compare2);
}
/**
* @brief Sets the TIM2 Capture Compare3 Register value.
* @param Compare3 specifies the Capture Compare3 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
inline void TIM2_SetCompare3(uint16_t Compare3)
{
/* Set the Capture Compare3 Register value */
TIM2->CCR3H = (uint8_t) (Compare3 >> 8);
TIM2->CCR3L = (uint8_t) (Compare3);
}
/**
* @brief Gets the TIM2 Input Capture 1 value.
* @param None
* @retval Capture Compare 1 Register value.
*/
inline uint16_t TIM2_GetCapture1(void)
{
/* Get the Capture 1 Register value */
uint16_t tmpccr1 = 0;
uint8_t tmpccr1l = 0, tmpccr1h = 0;
tmpccr1h = TIM2->CCR1H;
tmpccr1l = TIM2->CCR1L;
tmpccr1 = (uint16_t) (tmpccr1l);
tmpccr1 |= (uint16_t) ((uint16_t) tmpccr1h << 8);
/* Get the Capture 1 Register value */
return (uint16_t) tmpccr1;
}
/**
* @brief Gets the TIM2 Input Capture 2 value.
* @param None
* @retval Capture Compare 2 Register value.
*/
inline uint16_t TIM2_GetCapture2(void)
{
/* Get the Capture 2 Register value */
uint16_t tmpccr2 = 0;
uint8_t tmpccr2l = 0, tmpccr2h = 0;
tmpccr2h = TIM2->CCR2H;
tmpccr2l = TIM2->CCR2L;
tmpccr2 = (uint16_t) (tmpccr2l);
tmpccr2 |= (uint16_t) ((uint16_t) tmpccr2h << 8);
/* Get the Capture 2 Register value */
return (uint16_t) tmpccr2;
}
/**
* @brief Gets the TIM2 Input Capture 3 value.
* @param None
* @retval Capture Compare 3 Register value.
*/
inline uint16_t TIM2_GetCapture3(void)
{
/* Get the Capture 3 Register value */
uint16_t tmpccr3 = 0;
uint8_t tmpccr3l = 0, tmpccr3h = 0;
tmpccr3h = TIM2->CCR3H;
tmpccr3l = TIM2->CCR3L;
tmpccr3 = (uint16_t) (tmpccr3l);
tmpccr3 |= (uint16_t) ((uint16_t) tmpccr3h << 8);
/* Get the Capture 3 Register value */
return (uint16_t) tmpccr3;
}
/**
* @brief Gets the TIM2 Counter value.
* @param None
* @retval Counter Register value.
*/
inline uint16_t TIM2_GetCounter(void)
{
uint16_t tmpcntr = 0;
tmpcntr = ((uint16_t) TIM2->CNTRH << 8);
/* Get the Counter Register value */
return (uint16_t) (tmpcntr | (uint16_t) (TIM2->CNTRL));
}
/**
* @brief Gets the TIM2 Prescaler value.
* @param None
* @retval Prescaler Register configuration value @ref TIM2_Prescaler_TypeDef.
*/
inline TIM2_Prescaler_TypeDef TIM2_GetPrescaler(void)
{
/* Get the Prescaler Register value */
return (TIM2_Prescaler_TypeDef) (TIM2->PSCR);
}
/**
* @brief Checks whether the specified TIM2 flag is set or not.
* @param TIM2_FLAG specifies the flag to check.
* This parameter can be one of the following values:
* - TIM2_FLAG_UPDATE: TIM2 update Flag
* - TIM2_FLAG_CC1: TIM2 Capture Compare 1 Flag
* - TIM2_FLAG_CC2: TIM2 Capture Compare 2 Flag
* - TIM2_FLAG_CC3: TIM2 Capture Compare 3 Flag
* - TIM2_FLAG_CC1OF: TIM2 Capture Compare 1 over capture Flag
* - TIM2_FLAG_CC2OF: TIM2 Capture Compare 2 over capture Flag
* - TIM2_FLAG_CC3OF: TIM2 Capture Compare 3 over capture Flag
* @retval FlagStatus The new state of TIM2_FLAG (SET or RESET).
*/
inline FlagStatus TIM2_GetFlagStatus(TIM2_FLAG_TypeDef TIM2_FLAG)
{
FlagStatus bitstatus = RESET;
uint8_t tim2_flag_l = 0, tim2_flag_h = 0;
/* Check the parameters */
assert_param(IS_TIM2_GET_FLAG_OK(TIM2_FLAG));
tim2_flag_l = (uint8_t) (TIM2->SR1 & (uint8_t) TIM2_FLAG);
tim2_flag_h = (uint8_t) ((uint16_t) TIM2_FLAG >> 8);
if ((tim2_flag_l | (uint8_t) (TIM2->SR2 & tim2_flag_h)) != (uint8_t) RESET) {
bitstatus = SET;
} else {
bitstatus = RESET;
}
return (FlagStatus) bitstatus;
}
/**
* @brief Clears the TIM2's pending flags.
* @param TIM2_FLAG specifies the flag to clear.
* This parameter can be one of the following values:
* - TIM2_FLAG_UPDATE: TIM2 update Flag
* - TIM2_FLAG_CC1: TIM2 Capture Compare 1 Flag
* - TIM2_FLAG_CC2: TIM2 Capture Compare 2 Flag
* - TIM2_FLAG_CC3: TIM2 Capture Compare 3 Flag
* - TIM2_FLAG_CC1OF: TIM2 Capture Compare 1 over capture Flag
* - TIM2_FLAG_CC2OF: TIM2 Capture Compare 2 over capture Flag
* - TIM2_FLAG_CC3OF: TIM2 Capture Compare 3 over capture Flag
* @retval None.
*/
inline void TIM2_ClearFlag(TIM2_FLAG_TypeDef TIM2_FLAG)
{
/* Check the parameters */
assert_param(IS_TIM2_CLEAR_FLAG_OK(TIM2_FLAG));
/* Clear the flags (rc_w0) clear this bit by writing 0. Writing '1' has no effect*/
TIM2->SR1 = (uint8_t) (~((uint8_t) (TIM2_FLAG)));
TIM2->SR2 = (uint8_t) (~((uint8_t) ((uint16_t) TIM2_FLAG >> 8)));
}
/**
* @brief Checks whether the TIM2 interrupt has occurred or not.
* @param TIM2_IT specifies the TIM2 interrupt source to check.
* This parameter can be one of the following values:
* - TIM2_IT_UPDATE: TIM2 update Interrupt source
* - TIM2_IT_CC1: TIM2 Capture Compare 1 Interrupt source
* - TIM2_IT_CC2: TIM2 Capture Compare 2 Interrupt source
* - TIM2_IT_CC3: TIM2 Capture Compare 3 Interrupt source
* @retval ITStatus The new state of the TIM2_IT(SET or RESET).
*/
inline ITStatus TIM2_GetITStatus(TIM2_IT_TypeDef TIM2_IT)
{
ITStatus bitstatus = RESET;
uint8_t TIM2_itStatus = 0, TIM2_itEnable = 0;
/* Check the parameters */
assert_param(IS_TIM2_GET_IT_OK(TIM2_IT));
TIM2_itStatus = (uint8_t) (TIM2->SR1 & TIM2_IT);
TIM2_itEnable = (uint8_t) (TIM2->IER & TIM2_IT);
if ((TIM2_itStatus != (uint8_t) RESET) && (TIM2_itEnable != (uint8_t) RESET)) {
bitstatus = SET;
} else {
bitstatus = RESET;
}
return (ITStatus) (bitstatus);
}
/**
* @brief Clears the TIM2's interrupt pending bits.
* @param TIM2_IT specifies the pending bit to clear.
* This parameter can be one of the following values:
* - TIM2_IT_UPDATE: TIM2 update Interrupt source
* - TIM2_IT_CC1: TIM2 Capture Compare 1 Interrupt source
* - TIM2_IT_CC2: TIM2 Capture Compare 2 Interrupt source
* - TIM2_IT_CC3: TIM2 Capture Compare 3 Interrupt source
* @retval None.
*/
inline void TIM2_ClearITPendingBit(TIM2_IT_TypeDef TIM2_IT)
{
/* Check the parameters */
assert_param(IS_TIM2_IT_OK(TIM2_IT));
/* Clear the IT pending Bit */
TIM2->SR1 = (uint8_t) (~TIM2_IT);
}
#endif /* __STM8S_TIM2_H */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/