Regulátor pro remosku s STM8
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
remostat/TinySPL_S103/stm8s_uart1.h

1136 lines
38 KiB

8 years ago
/**
********************************************************************************
* @file stm8s_uart1.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all functions prototypes and macros for the UART1 peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_UART1_H
#define __STM8S_UART1_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @addtogroup UART1_Exported_Types
* @{
*/
/**
* @brief UART1 Irda Modes
*/
typedef enum {
UART1_IRDAMODE_NORMAL = (uint8_t) 0x00, /**< 0x00 Irda Normal Mode */
UART1_IRDAMODE_LOWPOWER = (uint8_t) 0x01 /**< 0x01 Irda Low Power Mode */
} UART1_IrDAMode_TypeDef;
/**
* @brief UART1 WakeUP Modes
*/
typedef enum {
UART1_WAKEUP_IDLELINE = (uint8_t) 0x00, /**< 0x01 Idle Line wake up */
UART1_WAKEUP_ADDRESSMARK = (uint8_t) 0x08 /**< 0x02 Address Mark wake up */
} UART1_WakeUp_TypeDef;
/**
* @brief UART1 LIN Break detection length possible values
*/
typedef enum {
UART1_LINBREAKDETECTIONLENGTH_10BITS = (uint8_t) 0x00, /**< 0x01 10 bits Lin Break detection */
UART1_LINBREAKDETECTIONLENGTH_11BITS = (uint8_t) 0x01 /**< 0x02 11 bits Lin Break detection */
} UART1_LINBreakDetectionLength_TypeDef;
/**
* @brief UART1 stop bits possible values
*/
typedef enum {
UART1_STOPBITS_1 = (uint8_t) 0x00, /**< One stop bit is transmitted at the end of frame*/
UART1_STOPBITS_0_5 = (uint8_t) 0x10, /**< Half stop bits is transmitted at the end of frame*/
UART1_STOPBITS_2 = (uint8_t) 0x20, /**< Two stop bits are transmitted at the end of frame*/
UART1_STOPBITS_1_5 = (uint8_t) 0x30 /**< One and half stop bits*/
} UART1_StopBits_TypeDef;
/**
* @brief UART1 parity possible values
*/
typedef enum {
UART1_PARITY_NO = (uint8_t) 0x00, /**< No Parity*/
UART1_PARITY_EVEN = (uint8_t) 0x04, /**< Even Parity*/
UART1_PARITY_ODD = (uint8_t) 0x06 /**< Odd Parity*/
} UART1_Parity_TypeDef;
/**
* @brief UART1 Synchrone modes
*/
typedef enum {
UART1_SYNCMODE_CLOCK_DISABLE = (uint8_t) 0x80, /**< 0x80 Sync mode Disable, SLK pin Disable */
UART1_SYNCMODE_CLOCK_ENABLE = (uint8_t) 0x08, /**< 0x08 Sync mode Enable, SLK pin Enable */
UART1_SYNCMODE_CPOL_LOW = (uint8_t) 0x40, /**< 0x40 Steady low value on SCLK pin outside transmission window */
UART1_SYNCMODE_CPOL_HIGH = (uint8_t) 0x04, /**< 0x04 Steady high value on SCLK pin outside transmission window */
UART1_SYNCMODE_CPHA_MIDDLE = (uint8_t) 0x20, /**< 0x20 SCLK clock line activated in middle of data bit */
UART1_SYNCMODE_CPHA_BEGINING = (uint8_t) 0x02, /**< 0x02 SCLK clock line activated at beginning of data bit */
UART1_SYNCMODE_LASTBIT_DISABLE = (uint8_t) 0x10, /**< 0x10 The clock pulse of the last data bit is not output to the SCLK pin */
UART1_SYNCMODE_LASTBIT_ENABLE = (uint8_t) 0x01 /**< 0x01 The clock pulse of the last data bit is output to the SCLK pin */
} UART1_SyncMode_TypeDef;
/**
* @brief UART1 Word length possible values
*/
typedef enum {
UART1_WORDLENGTH_8D = (uint8_t) 0x00,/**< 0x00 8 bits Data */
UART1_WORDLENGTH_9D = (uint8_t) 0x10 /**< 0x10 9 bits Data */
} UART1_WordLength_TypeDef;
/**
* @brief UART1 Mode possible values
*/
typedef enum {
UART1_MODE_RX_ENABLE = (uint8_t) 0x08, /**< 0x08 Receive Enable */
UART1_MODE_TX_ENABLE = (uint8_t) 0x04, /**< 0x04 Transmit Enable */
UART1_MODE_TX_DISABLE = (uint8_t) 0x80, /**< 0x80 Transmit Disable */
UART1_MODE_RX_DISABLE = (uint8_t) 0x40, /**< 0x40 Single-wire Half-duplex mode */
UART1_MODE_TXRX_ENABLE = (uint8_t) 0x0C /**< 0x0C Transmit Enable and Receive Enable */
} UART1_Mode_TypeDef;
/**
* @brief UART1 Flag possible values
*/
typedef enum {
UART1_FLAG_TXE = (uint16_t) 0x0080, /*!< Transmit Data Register Empty flag */
UART1_FLAG_TC = (uint16_t) 0x0040, /*!< Transmission Complete flag */
UART1_FLAG_RXNE = (uint16_t) 0x0020, /*!< Read Data Register Not Empty flag */
UART1_FLAG_IDLE = (uint16_t) 0x0010, /*!< Idle line detected flag */
UART1_FLAG_OR = (uint16_t) 0x0008, /*!< OverRun error flag */
UART1_FLAG_NF = (uint16_t) 0x0004, /*!< Noise error flag */
UART1_FLAG_FE = (uint16_t) 0x0002, /*!< Framing Error flag */
UART1_FLAG_PE = (uint16_t) 0x0001, /*!< Parity Error flag */
UART1_FLAG_LBDF = (uint16_t) 0x0210, /*!< Line Break Detection Flag */
UART1_FLAG_SBK = (uint16_t) 0x0101 /*!< Send Break characters Flag */
} UART1_Flag_TypeDef;
/**
* @brief UART1 Interrupt definition
* UART1_IT possible values
* Elements values convention: 0xZYX
* X: Position of the corresponding Interrupt
* - For the following values, X means the interrupt position in the CR2 register.
* UART1_IT_TXE
* UART1_IT_TC
* UART1_IT_RXNE
* UART1_IT_IDLE
* UART1_IT_OR
* - For the UART1_IT_PE value, X means the flag position in the CR1 register.
* - For the UART1_IT_LBDF value, X means the flag position in the CR4 register.
* Y: Flag position
* - For the following values, Y means the flag (pending bit) position in the SR register.
* UART1_IT_TXE
* UART1_IT_TC
* UART1_IT_RXNE
* UART1_IT_IDLE
* UART1_IT_OR
* UART1_IT_PE
* - For the UART1_IT_LBDF value, Y means the flag position in the CR4 register.
* Z: Register index: indicate in which register the dedicated interrupt source is:
* - 1==> CR1 register
* - 2==> CR2 register
* - 3==> CR4 register
*/
typedef enum {
UART1_IT_TXE = (uint16_t) 0x0277, /*!< Transmit interrupt */
UART1_IT_TC = (uint16_t) 0x0266, /*!< Transmission Complete interrupt */
UART1_IT_RXNE = (uint16_t) 0x0255, /*!< Receive interrupt */
UART1_IT_IDLE = (uint16_t) 0x0244, /*!< IDLE line interrupt */
UART1_IT_OR = (uint16_t) 0x0235, /*!< Overrun Error interrupt */
UART1_IT_PE = (uint16_t) 0x0100, /*!< Parity Error interrupt */
UART1_IT_LBDF = (uint16_t) 0x0346, /**< LIN break detection interrupt */
UART1_IT_RXNE_OR = (uint16_t) 0x0205 /*!< Receive/Overrun interrupt */
} UART1_IT_TypeDef;
/**
* Baud rates at 16 MHz
*/
typedef enum {
UART_BAUD_9600 = (uint16_t) 0x0368,
UART_BAUD_19200 = (uint16_t) 0x0134,
UART_BAUD_57600 = (uint16_t) 0x0611,
UART_BAUD_115200 = (uint16_t) 0x0B08,
UART_BAUD_230400 = (uint16_t) 0x0504,
UART_BAUD_460800 = (uint16_t) 0x0302,
UART_BAUD_921600 = (uint16_t) 0x0101
} UART_Baud_TypeDef;
/**
* Initialize UART for a 16 MHz clock to 8-bit, 1 stopbit, no parity.
* Sets baud rate, enables Tx and Rx and turns on the peripheral.
*
* @param baud - UART_BAUD_*
*/
void inline UART_SimpleInit(UART_Baud_TypeDef baud) {
UART1->BRR2 = (uint8_t) (((baud) >> 8) & 0xFF);
UART1->BRR1 = (uint8_t) ((baud) & 0xFF);
UART1->CR2 = (uint8_t) (UART1_CR2_TEN | UART1_CR2_REN);
}
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macros ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup UART1_Private_Macros
* @{
*/
/**
* @brief Macro used by the assert function to check the different functions parameters.
*/
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the MODEs possible combination should be one of
* the following
*/
#define IS_UART1_MODE_OK(Mode) \
(((Mode) == (uint8_t)UART1_MODE_RX_ENABLE) || \
((Mode) == (uint8_t)UART1_MODE_RX_DISABLE) || \
((Mode) == (uint8_t)UART1_MODE_TX_ENABLE) || \
((Mode) == (uint8_t)UART1_MODE_TX_DISABLE) || \
((Mode) == (uint8_t)UART1_MODE_TXRX_ENABLE) || \
((Mode) == (uint8_t)((uint8_t)UART1_MODE_TX_ENABLE|(uint8_t)UART1_MODE_RX_ENABLE)) || \
((Mode) == (uint8_t)((uint8_t)UART1_MODE_TX_ENABLE|(uint8_t)UART1_MODE_RX_DISABLE)) || \
((Mode) == (uint8_t)((uint8_t)UART1_MODE_TX_DISABLE|(uint8_t)UART1_MODE_RX_DISABLE)) || \
((Mode) == (uint8_t)((uint8_t)UART1_MODE_TX_DISABLE|(uint8_t)UART1_MODE_RX_ENABLE)))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the WordLengths
*/
#define IS_UART1_WORDLENGTH_OK(WordLength) \
(((WordLength) == UART1_WORDLENGTH_8D) || \
((WordLength) == UART1_WORDLENGTH_9D))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the SyncModes; it should exclude values such
* as UART1_CLOCK_ENABLE|UART1_CLOCK_DISABLE
*/
#define IS_UART1_SYNCMODE_OK(SyncMode) \
(!((((SyncMode)&(((uint8_t)UART1_SYNCMODE_CLOCK_ENABLE)|((uint8_t)UART1_SYNCMODE_CLOCK_DISABLE))) == (((uint8_t)UART1_SYNCMODE_CLOCK_ENABLE)|((uint8_t)UART1_SYNCMODE_CLOCK_DISABLE))) \
|| (((SyncMode)&(((uint8_t)UART1_SYNCMODE_CPOL_LOW )|((uint8_t)UART1_SYNCMODE_CPOL_HIGH))) == (((uint8_t)UART1_SYNCMODE_CPOL_LOW )|((uint8_t)UART1_SYNCMODE_CPOL_HIGH))) \
||(((SyncMode)&(((uint8_t)UART1_SYNCMODE_CPHA_MIDDLE)|((uint8_t)UART1_SYNCMODE_CPHA_BEGINING))) == (((uint8_t)UART1_SYNCMODE_CPHA_MIDDLE)|((uint8_t)UART1_SYNCMODE_CPHA_BEGINING))) \
|| (((SyncMode)&(((uint8_t)UART1_SYNCMODE_LASTBIT_DISABLE)|((uint8_t)UART1_SYNCMODE_LASTBIT_ENABLE))) == (((uint8_t)UART1_SYNCMODE_LASTBIT_DISABLE)|((uint8_t)UART1_SYNCMODE_LASTBIT_ENABLE)))))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the FLAGs
*/
#define IS_UART1_FLAG_OK(Flag) \
(((Flag) == UART1_FLAG_TXE) || \
((Flag) == UART1_FLAG_TC) || \
((Flag) == UART1_FLAG_RXNE) || \
((Flag) == UART1_FLAG_IDLE) || \
((Flag) == UART1_FLAG_OR) || \
((Flag) == UART1_FLAG_NF) || \
((Flag) == UART1_FLAG_FE) || \
((Flag) == UART1_FLAG_PE) || \
((Flag) == UART1_FLAG_SBK) || \
((Flag) == UART1_FLAG_LBDF))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the FLAGs that can be cleared by writing 0
*/
#define IS_UART1_CLEAR_FLAG_OK(Flag) \
(((Flag) == UART1_FLAG_RXNE) || \
((Flag) == UART1_FLAG_LBDF))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the Interrupts
*/
#define IS_UART1_CONFIG_IT_OK(Interrupt) \
(((Interrupt) == UART1_IT_PE) || \
((Interrupt) == UART1_IT_TXE) || \
((Interrupt) == UART1_IT_TC) || \
((Interrupt) == UART1_IT_RXNE_OR ) || \
((Interrupt) == UART1_IT_IDLE) || \
((Interrupt) == UART1_IT_LBDF))
/**
* @brief Macro used by the assert function in order to check the different
* sensitivity values for the pending bit
*/
#define IS_UART1_GET_IT_OK(ITPendingBit) \
(((ITPendingBit) == UART1_IT_TXE) || \
((ITPendingBit) == UART1_IT_TC) || \
((ITPendingBit) == UART1_IT_RXNE) || \
((ITPendingBit) == UART1_IT_IDLE) || \
((ITPendingBit) == UART1_IT_OR) || \
((ITPendingBit) == UART1_IT_LBDF) || \
((ITPendingBit) == UART1_IT_PE))
/**
* @brief Macro used by the assert function in order to check the different
* sensitivity values for the pending bit that can be cleared by writing 0
*/
#define IS_UART1_CLEAR_IT_OK(ITPendingBit) \
(((ITPendingBit) == UART1_IT_RXNE) || \
((ITPendingBit) == UART1_IT_LBDF))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the IrDAModes
*/
#define IS_UART1_IRDAMODE_OK(IrDAMode) \
(((IrDAMode) == UART1_IRDAMODE_LOWPOWER) || \
((IrDAMode) == UART1_IRDAMODE_NORMAL))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the WakeUps
*/
#define IS_UART1_WAKEUP_OK(WakeUp) \
(((WakeUp) == UART1_WAKEUP_IDLELINE) || \
((WakeUp) == UART1_WAKEUP_ADDRESSMARK))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the LINBreakDetectionLengths
*/
#define IS_UART1_LINBREAKDETECTIONLENGTH_OK(LINBreakDetectionLength) \
(((LINBreakDetectionLength) == UART1_LINBREAKDETECTIONLENGTH_10BITS) || \
((LINBreakDetectionLength) == UART1_LINBREAKDETECTIONLENGTH_11BITS))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the UART1_StopBits
*/
#define IS_UART1_STOPBITS_OK(StopBit) (((StopBit) == UART1_STOPBITS_1) || \
((StopBit) == UART1_STOPBITS_0_5) || \
((StopBit) == UART1_STOPBITS_2) || \
((StopBit) == UART1_STOPBITS_1_5 ))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the Parity
*/
#define IS_UART1_PARITY_OK(Parity) (((Parity) == UART1_PARITY_NO) || \
((Parity) == UART1_PARITY_EVEN) || \
((Parity) == UART1_PARITY_ODD ))
/**
* @brief Macro used by the assert_param function in order to check the maximum
* baudrate value
*/
#define IS_UART1_BAUDRATE_OK(NUM) ((NUM) <= (uint32_t)625000)
/**
* @brief Macro used by the assert_param function in order to check the address
* of the UART1 or UART node
*/
#define UART1_ADDRESS_MAX ((uint8_t)16)
#define IS_UART1_ADDRESS_OK(node) ((node) < UART1_ADDRESS_MAX )
/**
* @}
*/
/* Exported functions ------------------------------------------------------- */
#if 0
/** @addtogroup UART1_Exported_Functions
* @{
*/
void UART1_DeInit(void);
void UART1_Init(uint32_t BaudRate, UART1_WordLength_TypeDef WordLength,
UART1_StopBits_TypeDef StopBits, UART1_Parity_TypeDef Parity,
UART1_SyncMode_TypeDef SyncMode, UART1_Mode_TypeDef Mode);
void UART1_Cmd(FunctionalState NewState);
void UART1_ITConfig(UART1_IT_TypeDef UART1_IT, FunctionalState NewState);
void UART1_HalfDuplexCmd(FunctionalState NewState);
void UART1_IrDAConfig(UART1_IrDAMode_TypeDef UART1_IrDAMode);
void UART1_IrDACmd(FunctionalState NewState);
void UART1_LINBreakDetectionConfig(UART1_LINBreakDetectionLength_TypeDef UART1_LINBreakDetectionLength);
void UART1_LINCmd(FunctionalState NewState);
void UART1_SmartCardCmd(FunctionalState NewState);
void UART1_SmartCardNACKCmd(FunctionalState NewState);
void UART1_WakeUpConfig(UART1_WakeUp_TypeDef UART1_WakeUp);
void UART1_ReceiverWakeUpCmd(FunctionalState NewState);
uint8_t UART1_ReceiveData8(void);
uint16_t UART1_ReceiveData9(void);
void UART1_SendData8(uint8_t Data);
void UART1_SendData9(uint16_t Data);
void UART1_SendBreak(void);
void UART1_SetAddress(uint8_t UART1_Address);
void UART1_SetGuardTime(uint8_t UART1_GuardTime);
void UART1_SetPrescaler(uint8_t UART1_Prescaler);
FlagStatus UART1_GetFlagStatus(UART1_Flag_TypeDef UART1_FLAG);
void UART1_ClearFlag(UART1_Flag_TypeDef UART1_FLAG);
ITStatus UART1_GetITStatus(UART1_IT_TypeDef UART1_IT);
void UART1_ClearITPendingBit(UART1_IT_TypeDef UART1_IT);
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Public functions ----------------------------------------------------------*/
/** @}
* @addtogroup UART1_Public_Functions
* @{
*/
/**
* @brief Deinitializes the UART peripheral.
* @param None
* @retval None
*/
inline void UART1_DeInit(void)
{
/* Clear the Idle Line Detected bit in the status register by a read
to the UART1_SR register followed by a Read to the UART1_DR register */
(void) UART1->SR;
(void) UART1->DR;
UART1->BRR2 = UART1_BRR2_RESET_VALUE; /* Set UART1_BRR2 to reset value 0x00 */
UART1->BRR1 = UART1_BRR1_RESET_VALUE; /* Set UART1_BRR1 to reset value 0x00 */
UART1->CR1 = UART1_CR1_RESET_VALUE; /* Set UART1_CR1 to reset value 0x00 */
UART1->CR2 = UART1_CR2_RESET_VALUE; /* Set UART1_CR2 to reset value 0x00 */
UART1->CR3 = UART1_CR3_RESET_VALUE; /* Set UART1_CR3 to reset value 0x00 */
UART1->CR4 = UART1_CR4_RESET_VALUE; /* Set UART1_CR4 to reset value 0x00 */
UART1->CR5 = UART1_CR5_RESET_VALUE; /* Set UART1_CR5 to reset value 0x00 */
UART1->GTR = UART1_GTR_RESET_VALUE;
UART1->PSCR = UART1_PSCR_RESET_VALUE;
}
/**
* @brief Initializes the UART1 according to the specified parameters.
* @note Configure in Push Pull or Open Drain mode the Tx pin by setting the
* correct I/O Port register according the product package and line
* configuration
* @param BaudRate: The baudrate.
* @param WordLength : This parameter can be any of the
* @ref UART1_WordLength_TypeDef enumeration.
* @param StopBits: This parameter can be any of the
* @ref UART1_StopBits_TypeDef enumeration.
* @param Parity: This parameter can be any of the
* @ref UART1_Parity_TypeDef enumeration.
* @param SyncMode: This parameter can be any of the
* @ref UART1_SyncMode_TypeDef values.
* @param Mode: This parameter can be any of the @ref UART1_Mode_TypeDef values
* @retval None
*/
inline void UART1_Init(uint32_t BaudRate, UART1_WordLength_TypeDef WordLength,
UART1_StopBits_TypeDef StopBits, UART1_Parity_TypeDef Parity,
UART1_SyncMode_TypeDef SyncMode, UART1_Mode_TypeDef Mode)
{
uint32_t BaudRate_Mantissa = 0, BaudRate_Mantissa100 = 0;
/* Check the parameters */
assert_param(IS_UART1_BAUDRATE_OK(BaudRate));
assert_param(IS_UART1_WORDLENGTH_OK(WordLength));
assert_param(IS_UART1_STOPBITS_OK(StopBits));
assert_param(IS_UART1_PARITY_OK(Parity));
assert_param(IS_UART1_MODE_OK((uint8_t) Mode));
assert_param(IS_UART1_SYNCMODE_OK((uint8_t) SyncMode));
/* Clear the word length bit */
UART1->CR1 &= (uint8_t) (~UART1_CR1_M);
/* Set the word length bit according to UART1_WordLength value */
UART1->CR1 |= (uint8_t) WordLength;
/* Clear the STOP bits */
UART1->CR3 &= (uint8_t) (~UART1_CR3_STOP);
/* Set the STOP bits number according to UART1_StopBits value */
UART1->CR3 |= (uint8_t) StopBits;
/* Clear the Parity Control bit */
UART1->CR1 &= (uint8_t) (~(UART1_CR1_PCEN | UART1_CR1_PS));
/* Set the Parity Control bit to UART1_Parity value */
UART1->CR1 |= (uint8_t) Parity;
/* Clear the LSB mantissa of UART1DIV */
UART1->BRR1 &= (uint8_t) (~UART1_BRR1_DIVM);
/* Clear the MSB mantissa of UART1DIV */
UART1->BRR2 &= (uint8_t) (~UART1_BRR2_DIVM);
/* Clear the Fraction bits of UART1DIV */
UART1->BRR2 &= (uint8_t) (~UART1_BRR2_DIVF);
/* Set the UART1 BaudRates in BRR1 and BRR2 registers according to UART1_BaudRate value */
BaudRate_Mantissa = ((uint32_t) CLK_GetClockFreq() / (BaudRate << 4));
BaudRate_Mantissa100 = (((uint32_t) CLK_GetClockFreq() * 100) / (BaudRate << 4));
/* Set the fraction of UART1DIV */
UART1->BRR2 |= (uint8_t) ((uint8_t) (((BaudRate_Mantissa100 - (BaudRate_Mantissa * 100)) << 4) / 100) &
(uint8_t) 0x0F);
/* Set the MSB mantissa of UART1DIV */
UART1->BRR2 |= (uint8_t) ((BaudRate_Mantissa >> 4) & (uint8_t) 0xF0);
/* Set the LSB mantissa of UART1DIV */
UART1->BRR1 |= (uint8_t) BaudRate_Mantissa;
/* Disable the Transmitter and Receiver before setting the LBCL, CPOL and CPHA bits */
UART1->CR2 &= (uint8_t) ~(UART1_CR2_TEN | UART1_CR2_REN);
/* Clear the Clock Polarity, lock Phase, Last Bit Clock pulse */
UART1->CR3 &= (uint8_t) ~(UART1_CR3_CPOL | UART1_CR3_CPHA | UART1_CR3_LBCL);
/* Set the Clock Polarity, lock Phase, Last Bit Clock pulse */
UART1->CR3 |= (uint8_t) ((uint8_t) SyncMode & (uint8_t) (UART1_CR3_CPOL |
UART1_CR3_CPHA | UART1_CR3_LBCL));
if ((uint8_t) (Mode & UART1_MODE_TX_ENABLE)) {
/* Set the Transmitter Enable bit */
UART1->CR2 |= (uint8_t) UART1_CR2_TEN;
} else {
/* Clear the Transmitter Disable bit */
UART1->CR2 &= (uint8_t) (~UART1_CR2_TEN);
}
if ((uint8_t) (Mode & UART1_MODE_RX_ENABLE)) {
/* Set the Receiver Enable bit */
UART1->CR2 |= (uint8_t) UART1_CR2_REN;
} else {
/* Clear the Receiver Disable bit */
UART1->CR2 &= (uint8_t) (~UART1_CR2_REN);
}
/* Set the Clock Enable bit, lock Polarity, lock Phase and Last Bit Clock
pulse bits according to UART1_Mode value */
if ((uint8_t) (SyncMode & UART1_SYNCMODE_CLOCK_DISABLE)) {
/* Clear the Clock Enable bit */
UART1->CR3 &= (uint8_t) (~UART1_CR3_CKEN);
} else {
UART1->CR3 |= (uint8_t) ((uint8_t) SyncMode & UART1_CR3_CKEN);
}
}
/**
* @brief Enable the UART1 peripheral.
* @param NewState : The new state of the UART Communication.
* This parameter can be any of the @ref FunctionalState enumeration.
* @retval None
*/
inline void UART1_Cmd(FunctionalState NewState)
{
if (NewState != DISABLE) {
/* UART1 Enable */
UART1->CR1 &= (uint8_t) (~UART1_CR1_UARTD);
} else {
/* UART Disable */
UART1->CR1 |= UART1_CR1_UARTD;
}
}
/**
* @brief Enables or disables the specified USART interrupts.
* @param UART1_IT specifies the USART interrupt sources to be enabled or disabled.
* This parameter can be one of the following values:
* - UART1_IT_TXE: Transmit Data Register empty interrupt
* - UART1_IT_TC: Transmission complete interrupt
* - UART1_IT_RXNE_OR: Receive Data register not empty and Overrun interrupt
* - UART1_IT_IDLE: Idle line detection interrupt
* - USRT1_IT_ERR: Error interrupt
* @param NewState new state of the specified USART interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_ITConfig(UART1_IT_TypeDef UART1_IT, FunctionalState NewState)
{
uint8_t uartreg = 0, itpos = 0x00;
/* Check the parameters */
assert_param(IS_UART1_CONFIG_IT_OK(UART1_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Get the UART1 register index */
uartreg = (uint8_t) ((uint16_t) UART1_IT >> 0x08);
/* Get the UART1 IT index */
itpos = (uint8_t) ((uint8_t) 1 << (uint8_t) ((uint8_t) UART1_IT & (uint8_t) 0x0F));
if (NewState != DISABLE) {
/**< Enable the Interrupt bits according to UART1_IT mask */
if (uartreg == 0x01) {
UART1->CR1 |= itpos;
} else if (uartreg == 0x02) {
UART1->CR2 |= itpos;
} else {
UART1->CR4 |= itpos;
}
} else {
/**< Disable the interrupt bits according to UART1_IT mask */
if (uartreg == 0x01) {
UART1->CR1 &= (uint8_t) (~itpos);
} else if (uartreg == 0x02) {
UART1->CR2 &= (uint8_t) (~itpos);
} else {
UART1->CR4 &= (uint8_t) (~itpos);
}
}
}
/**
* @brief Enables or disables the UART's Half Duplex communication.
* @param NewState new state of the UART Communication.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_HalfDuplexCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
UART1->CR5 |= UART1_CR5_HDSEL; /**< UART1 Half Duplex Enable */
} else {
UART1->CR5 &= (uint8_t) ~UART1_CR5_HDSEL; /**< UART1 Half Duplex Disable */
}
}
/**
* @brief Configures the UART's IrDA interface.
* @param UART1_IrDAMode specifies the IrDA mode.
* This parameter can be any of the @ref UART1_IrDAMode_TypeDef values.
* @retval None
*/
inline void UART1_IrDAConfig(UART1_IrDAMode_TypeDef UART1_IrDAMode)
{
assert_param(IS_UART1_IRDAMODE_OK(UART1_IrDAMode));
if (UART1_IrDAMode != UART1_IRDAMODE_NORMAL) {
UART1->CR5 |= UART1_CR5_IRLP;
} else {
UART1->CR5 &= ((uint8_t) ~UART1_CR5_IRLP);
}
}
/**
* @brief Enables or disables the UART's IrDA interface.
* @param NewState new state of the IrDA mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_IrDACmd(FunctionalState NewState)
{
/* Check parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the IrDA mode by setting the IREN bit in the CR3 register */
UART1->CR5 |= UART1_CR5_IREN;
} else {
/* Disable the IrDA mode by clearing the IREN bit in the CR3 register */
UART1->CR5 &= ((uint8_t) ~UART1_CR5_IREN);
}
}
/**
* @brief Sets the UART1 LIN Break detection length.
* @param UART1_LINBreakDetectionLength specifies the LIN break detection length.
* This parameter can be any of the
* @ref UART1_LINBreakDetectionLength_TypeDef values.
* @retval None
*/
inline void UART1_LINBreakDetectionConfig(UART1_LINBreakDetectionLength_TypeDef UART1_LINBreakDetectionLength)
{
assert_param(IS_UART1_LINBREAKDETECTIONLENGTH_OK(UART1_LINBreakDetectionLength));
if (UART1_LINBreakDetectionLength != UART1_LINBREAKDETECTIONLENGTH_10BITS) {
UART1->CR4 |= UART1_CR4_LBDL;
} else {
UART1->CR4 &= ((uint8_t) ~UART1_CR4_LBDL);
}
}
/**
* @brief Enables or disables the UART1's LIN mode.
* @param NewState is new state of the UART1 LIN mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_LINCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the LIN mode by setting the LINE bit in the CR2 register */
UART1->CR3 |= UART1_CR3_LINEN;
} else {
/* Disable the LIN mode by clearing the LINE bit in the CR2 register */
UART1->CR3 &= ((uint8_t) ~UART1_CR3_LINEN);
}
}
/**
* @brief Enables or disables the UART1 Smart Card mode.
* @param NewState: new state of the Smart Card mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_SmartCardCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the SC mode by setting the SCEN bit in the CR5 register */
UART1->CR5 |= UART1_CR5_SCEN;
} else {
/* Disable the SC mode by clearing the SCEN bit in the CR5 register */
UART1->CR5 &= ((uint8_t) (~UART1_CR5_SCEN));
}
}
/**
* @brief Enables or disables NACK transmission.
* @note This function is valid only for UART1 because is related to SmartCard mode.
* @param NewState: new state of the Smart Card mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_SmartCardNACKCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the NACK transmission by setting the NACK bit in the CR5 register */
UART1->CR5 |= UART1_CR5_NACK;
} else {
/* Disable the NACK transmission by clearing the NACK bit in the CR5 register */
UART1->CR5 &= ((uint8_t) ~(UART1_CR5_NACK));
}
}
/**
* @brief Selects the UART1 WakeUp method.
* @param UART1_WakeUp: specifies the UART1 wakeup method.
* This parameter can be any of the @ref UART1_WakeUp_TypeDef values.
* @retval None
*/
inline void UART1_WakeUpConfig(UART1_WakeUp_TypeDef UART1_WakeUp)
{
assert_param(IS_UART1_WAKEUP_OK(UART1_WakeUp));
UART1->CR1 &= ((uint8_t) ~UART1_CR1_WAKE);
UART1->CR1 |= (uint8_t) UART1_WakeUp;
}
/**
* @brief Determines if the UART1 is in mute mode or not.
* @param NewState: new state of the UART1 mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void UART1_ReceiverWakeUpCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the mute mode UART1 by setting the RWU bit in the CR2 register */
UART1->CR2 |= UART1_CR2_RWU;
} else {
/* Disable the mute mode UART1 by clearing the RWU bit in the CR1 register */
UART1->CR2 &= ((uint8_t) ~UART1_CR2_RWU);
}
}
/**
* @brief Returns the most recent received data by the UART1 peripheral.
* @param None
* @retval The received data.
*/
inline uint8_t UART1_ReceiveData8(void)
{
return ((uint8_t) UART1->DR);
}
/**
* @brief Returns the most recent received data by the UART1 peripheral.
* @param None
* @retval The received data.
*/
inline uint16_t UART1_ReceiveData9(void)
{
uint16_t temp = 0;
temp = (uint16_t) (((uint16_t) ((uint16_t) UART1->CR1 & (uint16_t) UART1_CR1_R8)) << 1);
return (uint16_t) ((((uint16_t) UART1->DR) | temp) & ((uint16_t) 0x01FF));
}
/**
* @brief Transmits 8 bit data through the UART1 peripheral.
* @param Data: The data to transmit.
* @retval None
*/
inline void UART1_SendData8(uint8_t Data)
{
/* Transmit Data */
UART1->DR = Data;
}
/**
* @brief Transmits 9 bit data through the UART peripheral.
* @param Data : The data to transmit.
* This parameter should be lower than 0x1FF.
* @retval None
*/
inline void UART1_SendData9(uint16_t Data)
{
/**< Clear the transmit data bit 8 [8] */
UART1->CR1 &= ((uint8_t) ~UART1_CR1_T8);
/**< Write the transmit data bit [8] */
UART1->CR1 |= (uint8_t) (((uint8_t) (Data >> 2)) & UART1_CR1_T8);
/**< Write the transmit data bit [0:7] */
UART1->DR = (uint8_t) (Data);
}
/**
* @brief Transmits break characters.
* @param None
* @retval None
*/
inline void UART1_SendBreak(void)
{
UART1->CR2 |= UART1_CR2_SBK;
}
/**
* @brief Sets the address of the UART1 node.
* @param UART1_Address: Indicates the address of the UART1 node.
* @retval None
*/
inline void UART1_SetAddress(uint8_t UART1_Address)
{
/*assert_param for UART1_Address*/
assert_param(IS_UART1_ADDRESS_OK(UART1_Address));
/* Clear the UART1 address */
UART1->CR4 &= ((uint8_t) ~UART1_CR4_ADD);
/* Set the UART1 address node */
UART1->CR4 |= UART1_Address;
}
/**
* @brief Sets the specified UART guard time.
* @note SmartCard Mode should be Enabled
* @param UART1_GuardTime: specifies the guard time.
* @retval None
*/
inline void UART1_SetGuardTime(uint8_t UART1_GuardTime)
{
/* Set the UART1 guard time */
UART1->GTR = UART1_GuardTime;
}
/**
* @brief Sets the system clock prescaler.
* @note IrDA Low Power mode or smartcard mode should be enabled
* @note This function is related to SmartCard and IrDa mode.
* @param UART1_Prescaler: specifies the prescaler clock.
* This parameter can be one of the following values:
* @par IrDA Low Power Mode
* The clock source is divided by the value given in the register (8 bits)
* - 0000 0000 Reserved
* - 0000 0001 divides the clock source by 1
* - 0000 0010 divides the clock source by 2
* - ...
* @par Smart Card Mode
* The clock source is divided by the value given in the register
* (5 significant bits) multiplied by 2
* - 0 0000 Reserved
* - 0 0001 divides the clock source by 2
* - 0 0010 divides the clock source by 4
* - 0 0011 divides the clock source by 6
* - ...
* @retval None
*/
inline void UART1_SetPrescaler(uint8_t UART1_Prescaler)
{
/* Load the UART1 prescaler value*/
UART1->PSCR = UART1_Prescaler;
}
/**
* @brief Checks whether the specified UART1 flag is set or not.
* @param UART1_FLAG specifies the flag to check.
* This parameter can be any of the @ref UART1_Flag_TypeDef enumeration.
* @retval FlagStatus (SET or RESET)
*/
inline FlagStatus UART1_GetFlagStatus(UART1_Flag_TypeDef UART1_FLAG)
{
FlagStatus status = RESET;
/* Check parameters */
assert_param(IS_UART1_FLAG_OK(UART1_FLAG));
/* Check the status of the specified UART1 flag*/
if (UART1_FLAG == UART1_FLAG_LBDF) {
if ((UART1->CR4 & (uint8_t) UART1_FLAG) != (uint8_t) 0x00) {
/* UART1_FLAG is set*/
status = SET;
} else {
/* UART1_FLAG is reset*/
status = RESET;
}
} else if (UART1_FLAG == UART1_FLAG_SBK) {
if ((UART1->CR2 & (uint8_t) UART1_FLAG) != (uint8_t) 0x00) {
/* UART1_FLAG is set*/
status = SET;
} else {
/* UART1_FLAG is reset*/
status = RESET;
}
} else {
if ((UART1->SR & (uint8_t) UART1_FLAG) != (uint8_t) 0x00) {
/* UART1_FLAG is set*/
status = SET;
} else {
/* UART1_FLAG is reset*/
status = RESET;
}
}
/* Return the UART1_FLAG status*/
return status;
}
/**
* @brief Clears the UART1 flags.
* @param UART1_FLAG specifies the flag to clear
* This parameter can be any combination of the following values:
* - UART1_FLAG_LBDF: LIN Break detection flag.
* - UART1_FLAG_RXNE: Receive data register not empty flag.
* @note
* - PE (Parity error), FE (Framing error), NE (Noise error),
* OR (OverRun error) and IDLE (Idle line detected) flags are
* cleared by software sequence: a read operation to UART1_SR register
* (UART1_GetFlagStatus())followed by a read operation to UART1_DR
* register(UART1_ReceiveData8() or UART1_ReceiveData9()).
*
* - RXNE flag can be also cleared by a read to the UART1_DR register
* (UART1_ReceiveData8()or UART1_ReceiveData9()).
*
* - TC flag can be also cleared by software sequence: a read operation
* to UART1_SR register (UART1_GetFlagStatus()) followed by a write
* operation to UART1_DR register (UART1_SendData8() or UART1_SendData9()).
*
* - TXE flag is cleared only by a write to the UART1_DR register
* (UART1_SendData8() or UART1_SendData9()).
*
* - SBK flag is cleared during the stop bit of break.
* @retval None
*/
inline void UART1_ClearFlag(UART1_Flag_TypeDef UART1_FLAG)
{
assert_param(IS_UART1_CLEAR_FLAG_OK(UART1_FLAG));
/* Clear the Receive Register Not Empty flag */
if (UART1_FLAG == UART1_FLAG_RXNE) {
UART1->SR = (uint8_t) ~(UART1_SR_RXNE);
}
/* Clear the LIN Break Detection flag */
else {
UART1->CR4 &= (uint8_t) ~(UART1_CR4_LBDF);
}
}
/**
* @brief Checks whether the specified UART1 interrupt has occurred or not.
* @param UART1_IT: Specifies the UART1 interrupt pending bit to check.
* This parameter can be one of the following values:
* - UART1_IT_LBDF: LIN Break detection interrupt
* - UART1_IT_TXE: Transmit Data Register empty interrupt
* - UART1_IT_TC: Transmission complete interrupt
* - UART1_IT_RXNE: Receive Data register not empty interrupt
* - UART1_IT_IDLE: Idle line detection interrupt
* - UART1_IT_OR: OverRun Error interrupt
* - UART1_IT_PE: Parity Error interrupt
* @retval The new state of UART1_IT (SET or RESET).
*/
inline ITStatus UART1_GetITStatus(UART1_IT_TypeDef UART1_IT)
{
ITStatus pendingbitstatus = RESET;
uint8_t itpos = 0;
uint8_t itmask1 = 0;
uint8_t itmask2 = 0;
uint8_t enablestatus = 0;
/* Check parameters */
assert_param(IS_UART1_GET_IT_OK(UART1_IT));
/* Get the UART1 IT index */
itpos = (uint8_t) ((uint8_t) 1 << (uint8_t) ((uint8_t) UART1_IT & (uint8_t) 0x0F));
/* Get the UART1 IT index */
itmask1 = (uint8_t) ((uint8_t) UART1_IT >> (uint8_t) 4);
/* Set the IT mask*/
itmask2 = (uint8_t) ((uint8_t) 1 << itmask1);
/* Check the status of the specified UART1 pending bit*/
if (UART1_IT == UART1_IT_PE) {
/* Get the UART1_IT enable bit status*/
enablestatus = (uint8_t) ((uint8_t) UART1->CR1 & itmask2);
/* Check the status of the specified UART1 interrupt*/
if (((UART1->SR & itpos) != (uint8_t) 0x00) && enablestatus) {
/* Interrupt occurred*/
pendingbitstatus = SET;
} else {
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
} else if (UART1_IT == UART1_IT_LBDF) {
/* Get the UART1_IT enable bit status*/
enablestatus = (uint8_t) ((uint8_t) UART1->CR4 & itmask2);
/* Check the status of the specified UART1 interrupt*/
if (((UART1->CR4 & itpos) != (uint8_t) 0x00) && enablestatus) {
/* Interrupt occurred*/
pendingbitstatus = SET;
} else {
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
} else {
/* Get the UART1_IT enable bit status*/
enablestatus = (uint8_t) ((uint8_t) UART1->CR2 & itmask2);
/* Check the status of the specified UART1 interrupt*/
if (((UART1->SR & itpos) != (uint8_t) 0x00) && enablestatus) {
/* Interrupt occurred*/
pendingbitstatus = SET;
} else {
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
}
/* Return the UART1_IT status*/
return pendingbitstatus;
}
/**
* @brief Clears the UART1 pending flags.
* @param UART1_IT specifies the pending bit to clear
* This parameter can be one of the following values:
* - UART1_IT_LBDF: LIN Break detection interrupt
* - UART1_IT_RXNE: Receive Data register not empty interrupt.
* @note
* - PE (Parity error), FE (Framing error), NE (Noise error),
* OR (OverRun error) and IDLE (Idle line detected) pending bits are
* cleared by software sequence: a read operation to UART1_SR register
* (UART1_GetITStatus()) followed by a read operation to UART1_DR register
* (UART1_ReceiveData8() or UART1_ReceiveData9()).
*
* - RXNE pending bit can be also cleared by a read to the UART1_DR register
* (UART1_ReceiveData8() or UART1_ReceiveData9()).
*
* - TC (Transmit complete) pending bit can be cleared by software
* sequence: a read operation to UART1_SR register (UART1_GetITStatus())
* followed by a write operation to UART1_DR register (UART1_SendData8()
* or UART1_SendData9()).
*
* - TXE pending bit is cleared only by a write to the UART1_DR register
* (UART1_SendData8() or UART1_SendData9()).
* @retval None
*/
inline void UART1_ClearITPendingBit(UART1_IT_TypeDef UART1_IT)
{
assert_param(IS_UART1_CLEAR_IT_OK(UART1_IT));
/* Clear the Receive Register Not Empty pending bit */
if (UART1_IT == UART1_IT_RXNE) {
UART1->SR = (uint8_t) ~(UART1_SR_RXNE);
}
/* Clear the LIN Break Detection pending bit */
else {
UART1->CR4 &= (uint8_t) ~(UART1_CR4_LBDF);
}
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#endif /* __STM8S_UART1_H */