#include #include #include #include #include #include #include "vec_match.h" #define SQ(a) ((a)*(a)) #define IS_FZERO(f) ((f) < 0.0f) #define F2ZERO(f) roundf(-(f)) #define ZERO2F(z) (0.0f - z) bool vec_match(const float *data, const float *ref, const vec_match_cfg_t *cfg, float *fuzzy_match_error, float *abs_match_error) { int a, b; int err_cnt = 0; float env_err = 0; float abs_err = 0; for (uint32_t i = 0; i < cfg->length; i++) { float peak = FLT_MIN; float base = FLT_MAX; // bounds for base and peak search if (i < cfg->drift_x) { a = 0; } else { a = i - cfg->drift_x; } if (i + cfg->drift_x >= cfg->length) { b = cfg->length - 1; } else { b = i + cfg->drift_x; } // find base and peak for (int j = a; j <= b; j++) { if (peak < ref[j]) peak = ref[j]; if (base > ref[j]) base = ref[j]; } // apply drift_y peak += cfg->offset_y; // add abs threshold on top base -= cfg->offset_y; // ignore abs threshold difference (float precision error) if (fabs(ref[i] - data[i]) > cfg->abs_threshold) { abs_err += SQ(ref[i] - data[i]); } if (data[i] >= (base - cfg->abs_threshold) && data[i] <= (peak + cfg->abs_threshold)) { // within limits continue; } else { //printf("data[%d] out of range: %f, [%f ; %f]\n", i, data[i], base, peak); if (data[i] < base) env_err += SQ(base - data[i]); if (data[i] > peak) env_err += SQ(data[i] - peak); err_cnt++; } } // write error values to provided fields if (fuzzy_match_error != NULL) *fuzzy_match_error = env_err; if (abs_match_error != NULL) *abs_match_error = abs_err; return err_cnt == 0; } bool vec_match_packed(const float *data, const float *ref_packed, uint32_t ref_p_len, const vec_match_cfg_t *cfg, float *fuzzy_match_error, float *abs_match_error) { uint32_t a, b; float f; // tmp float pack_walker_t w; // walker pw_init(&w, ref_packed, ref_p_len); int err_cnt = 0; float env_err = 0; float abs_err = 0; float ref_at; for (uint32_t i = 0; i < cfg->length; i++) { float peak = FLT_MIN; float base = FLT_MAX; // bounds for base and peak search if (i < cfg->drift_x) { a = 0; } else { a = i - cfg->drift_x; } if (i + cfg->drift_x >= cfg->length) { b = cfg->length - 1; } else { b = i + cfg->drift_x; } // find base and peak for (uint32_t j = a; j <= b; j++) { f = pw_get(&w, j); if (peak < f) peak = f; if (base > f) base = f; } ref_at = pw_get(&w, i); // apply drift_y peak += cfg->offset_y; // add abs threshold on top base -= cfg->offset_y; // ignore abs threshold difference (float precision error) if (fabs(ref_at - data[i]) > cfg->abs_threshold) { abs_err += SQ(ref_at - data[i]); } if (data[i] >= (base - cfg->abs_threshold) && data[i] <= (peak + cfg->abs_threshold)) { // within limits continue; } else { //printf("data[%d] out of range: %f, [%f ; %f]\n", i, data[i], base, peak); if (data[i] < base) env_err += SQ(base - data[i]); if (data[i] > peak) env_err += SQ(data[i] - peak); err_cnt++; } } // write error values to provided fields if (fuzzy_match_error != NULL) *fuzzy_match_error = env_err; if (abs_match_error != NULL) *abs_match_error = abs_err; return err_cnt == 0; } // ---- PACKING UTILS ---- uint32_t vec_pack(float *result, uint32_t result_capacity, const float *data, uint32_t data_length, float threshold) { uint32_t result_len = 0; uint32_t zeroes = 0; for (uint32_t i = 0; i < data_length; i++) { if (data[i] < threshold) { zeroes++; } else { // not a zero // write zero marker to result if (zeroes) { if (result_len < result_capacity) { result[result_len] = ZERO2F(zeroes); // float and negative } zeroes = 0; result_len++; //length is increased even if buffer full } if (result_len < result_capacity) { result[result_len] = data[i]; } result_len++; } } // handle trailing zeroes if (zeroes) { if (result_len < result_capacity) { result[result_len] = 0.0f - zeroes; } result_len++; } return result_len; } uint32_t vec_pack_auto(float *result, uint32_t result_capacity, const float *data, uint32_t data_length, float *threshold_p) { float thr = 0; uint32_t ref_pack_len; // TODO use smarter algorithm while(true) { ref_pack_len = vec_pack(result, result_capacity, data, data_length, thr); printf("try %f -> %d\n", thr, ref_pack_len);//FIXME remove if (ref_pack_len <= result_capacity) { if (threshold_p != NULL) *threshold_p = thr; return result_capacity; } thr += 0.1f; } } uint32_t vec_unpack(float *result, uint32_t result_capacity, const float *compr_data, uint32_t compr_length) { uint32_t idx = 0; for (uint32_t i = 0; i < compr_length; i++) { if (IS_FZERO(compr_data[i])) { uint32_t zeroes = F2ZERO(compr_data[i]); for (uint32_t j = 0; j < zeroes; j++) { if (idx < result_capacity) { result[idx] = 0; } idx++; } } else { if (idx < result_capacity) { result[idx] = compr_data[i]; } idx++; } } return idx; } // ---- PACK WALKER CODE ---- // init the pack walker struct void pw_init(pack_walker_t *wlkr, const float *packed_vec, uint32_t packed_len) { wlkr->p_vec = packed_vec; wlkr->p_length = packed_len; wlkr->real_idx = 0; wlkr->p_idx = 0; wlkr->p_zero_j = 0; wlkr->p_zero_n = 0; } // rewind the struct to first entry, handle leading zero(s) void pw_rewind(pack_walker_t *w) { w->real_idx = 0; w->p_idx = 0; if (IS_FZERO(w->p_vec[0])) { // multi-zero w->p_zero_n = F2ZERO(w->p_vec[0]); w->p_zero_j = 1; } else { w->p_zero_j = 0; w->p_zero_n = 0; } } // get value at index in packed vector float pw_get(pack_walker_t *w, uint32_t idx) { if (idx < w->real_idx && idx > w->real_idx / 2) { // backtrack while (w->real_idx > idx) { if (w->p_zero_n && w->p_zero_j > 1) { // multi-zero value w->p_zero_j--; } else { // go to previous w->p_idx--; if (IS_FZERO(w->p_vec[w->p_idx])) { // multi-zero w->p_zero_n = F2ZERO(w->p_vec[w->p_idx]); w->p_zero_j = w->p_zero_n; } else { w->p_zero_n = 0; // no zeros } } w->real_idx--; } } else { // forward if (idx < w->real_idx || idx == 0) { pw_rewind(w); } // add until reached while (w->real_idx < idx && w->p_idx < w->p_length) { if (w->p_zero_n && w->p_zero_j < w->p_zero_n) { // multi-zero value w->p_zero_j++; } else { // go to next w->p_idx++; if (IS_FZERO(w->p_vec[w->p_idx])) { // multi-zero w->p_zero_n = F2ZERO(w->p_vec[w->p_idx]); w->p_zero_j = 1; } else { w->p_zero_n = 0; // no zeros } } w->real_idx++; } } // handle overflow. underflow impossible <- index is unsigned if (w->p_idx >= w->p_length) { w->p_idx = w->p_length - 1; return 0; } return w->p_zero_n ? 0 : w->p_vec[w->p_idx]; }