/* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ // gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test #include <esp8266.h> #include <stdint.h> #include <string.h> #include "sha1.h" //according to http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf // the cpu is normally defined as little ending, but can be big endian too. // for the esp this seems to work //#define SHA_BIG_ENDIAN /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void ICACHE_FLASH_ATTR sha1_init(sha1nfo *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } uint32_t ICACHE_FLASH_ATTR sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32-bits))); } void ICACHE_FLASH_ATTR sha1_hashBlock(sha1nfo *s) { uint8_t i; uint32_t a,b,c,d,e,t; a=s->state[0]; b=s->state[1]; c=s->state[2]; d=s->state[3]; e=s->state[4]; for (i=0; i<80; i++) { if (i>=16) { t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15]; s->buffer[i&15] = sha1_rol32(t,1); } if (i<20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i<40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i<60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t+=sha1_rol32(a,5) + e + s->buffer[i&15]; e=d; d=c; c=sha1_rol32(b,30); b=a; a=t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } void ICACHE_FLASH_ATTR sha1_addUncounted(sha1nfo *s, uint8_t data) { uint8_t * const b = (uint8_t*) s->buffer; #ifdef SHA_BIG_ENDIAN b[s->bufferOffset] = data; #else b[s->bufferOffset ^ 3] = data; #endif s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void ICACHE_FLASH_ATTR sha1_writebyte(sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void ICACHE_FLASH_ATTR sha1_write(sha1nfo *s, const char *data, size_t len) { for (;len--;) sha1_writebyte(s, (uint8_t) *data++); } void ICACHE_FLASH_ATTR sha1_pad(sha1nfo *s) { // Implement SHA-1 padding (fips180-2 §5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, s->byteCount >> 13); // byte. sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } uint8_t* ICACHE_FLASH_ATTR sha1_result(sha1nfo *s) { // Pad to complete the last block sha1_pad(s); #ifndef SHA_BIG_ENDIAN // Swap byte order back int i; for (i=0; i<5; i++) { s->state[i]= (((s->state[i])<<24)& 0xff000000) | (((s->state[i])<<8) & 0x00ff0000) | (((s->state[i])>>8) & 0x0000ff00) | (((s->state[i])>>24)& 0x000000ff); } #endif // Return pointer to hash (20 characters) return (uint8_t*) s->state; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void ICACHE_FLASH_ATTR sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) { uint8_t i; memset(s->keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys sha1_init(s); for (;keyLength--;) sha1_writebyte(s, *key++); memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH); } else { // Block length keys are used as is memcpy(s->keyBuffer, key, keyLength); } // Start inner hash sha1_init(s); for (i=0; i<BLOCK_LENGTH; i++) { sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD); } } uint8_t* ICACHE_FLASH_ATTR sha1_resultHmac(sha1nfo *s) { uint8_t i; // Complete inner hash memcpy(s->innerHash,sha1_result(s),HASH_LENGTH); // Calculate outer hash sha1_init(s); for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD); for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]); return sha1_result(s); }