You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
4.3 KiB
169 lines
4.3 KiB
9 years ago
|
/* This code is public-domain - it is based on libcrypt
|
||
|
* placed in the public domain by Wei Dai and other contributors.
|
||
|
*/
|
||
|
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
|
||
|
|
||
|
#include <esp8266.h>
|
||
|
#include <stdint.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "sha1.h"
|
||
|
|
||
|
//according to http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf
|
||
|
// the cpu is normally defined as little ending, but can be big endian too.
|
||
|
// for the esp this seems to work
|
||
|
//#define SHA_BIG_ENDIAN
|
||
|
|
||
|
|
||
|
|
||
|
/* code */
|
||
|
#define SHA1_K0 0x5a827999
|
||
|
#define SHA1_K20 0x6ed9eba1
|
||
|
#define SHA1_K40 0x8f1bbcdc
|
||
|
#define SHA1_K60 0xca62c1d6
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_init(sha1nfo *s) {
|
||
|
s->state[0] = 0x67452301;
|
||
|
s->state[1] = 0xefcdab89;
|
||
|
s->state[2] = 0x98badcfe;
|
||
|
s->state[3] = 0x10325476;
|
||
|
s->state[4] = 0xc3d2e1f0;
|
||
|
s->byteCount = 0;
|
||
|
s->bufferOffset = 0;
|
||
|
}
|
||
|
|
||
|
uint32_t ICACHE_FLASH_ATTR sha1_rol32(uint32_t number, uint8_t bits) {
|
||
|
return ((number << bits) | (number >> (32-bits)));
|
||
|
}
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_hashBlock(sha1nfo *s) {
|
||
|
uint8_t i;
|
||
|
uint32_t a,b,c,d,e,t;
|
||
|
|
||
|
a=s->state[0];
|
||
|
b=s->state[1];
|
||
|
c=s->state[2];
|
||
|
d=s->state[3];
|
||
|
e=s->state[4];
|
||
|
for (i=0; i<80; i++) {
|
||
|
if (i>=16) {
|
||
|
t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
|
||
|
s->buffer[i&15] = sha1_rol32(t,1);
|
||
|
}
|
||
|
if (i<20) {
|
||
|
t = (d ^ (b & (c ^ d))) + SHA1_K0;
|
||
|
} else if (i<40) {
|
||
|
t = (b ^ c ^ d) + SHA1_K20;
|
||
|
} else if (i<60) {
|
||
|
t = ((b & c) | (d & (b | c))) + SHA1_K40;
|
||
|
} else {
|
||
|
t = (b ^ c ^ d) + SHA1_K60;
|
||
|
}
|
||
|
t+=sha1_rol32(a,5) + e + s->buffer[i&15];
|
||
|
e=d;
|
||
|
d=c;
|
||
|
c=sha1_rol32(b,30);
|
||
|
b=a;
|
||
|
a=t;
|
||
|
}
|
||
|
s->state[0] += a;
|
||
|
s->state[1] += b;
|
||
|
s->state[2] += c;
|
||
|
s->state[3] += d;
|
||
|
s->state[4] += e;
|
||
|
}
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_addUncounted(sha1nfo *s, uint8_t data) {
|
||
|
uint8_t * const b = (uint8_t*) s->buffer;
|
||
|
#ifdef SHA_BIG_ENDIAN
|
||
|
b[s->bufferOffset] = data;
|
||
|
#else
|
||
|
b[s->bufferOffset ^ 3] = data;
|
||
|
#endif
|
||
|
s->bufferOffset++;
|
||
|
if (s->bufferOffset == BLOCK_LENGTH) {
|
||
|
sha1_hashBlock(s);
|
||
|
s->bufferOffset = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_writebyte(sha1nfo *s, uint8_t data) {
|
||
|
++s->byteCount;
|
||
|
sha1_addUncounted(s, data);
|
||
|
}
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_write(sha1nfo *s, const char *data, size_t len) {
|
||
|
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
|
||
|
}
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_pad(sha1nfo *s) {
|
||
|
// Implement SHA-1 padding (fips180-2 §5.1.1)
|
||
|
|
||
|
// Pad with 0x80 followed by 0x00 until the end of the block
|
||
|
sha1_addUncounted(s, 0x80);
|
||
|
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
|
||
|
|
||
|
// Append length in the last 8 bytes
|
||
|
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
|
||
|
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
|
||
|
sha1_addUncounted(s, 0); // So zero pad the top bits
|
||
|
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
|
||
|
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
|
||
|
sha1_addUncounted(s, s->byteCount >> 13); // byte.
|
||
|
sha1_addUncounted(s, s->byteCount >> 5);
|
||
|
sha1_addUncounted(s, s->byteCount << 3);
|
||
|
}
|
||
|
|
||
|
uint8_t* ICACHE_FLASH_ATTR sha1_result(sha1nfo *s) {
|
||
|
// Pad to complete the last block
|
||
|
sha1_pad(s);
|
||
|
|
||
|
#ifndef SHA_BIG_ENDIAN
|
||
|
// Swap byte order back
|
||
|
int i;
|
||
|
for (i=0; i<5; i++) {
|
||
|
s->state[i]=
|
||
|
(((s->state[i])<<24)& 0xff000000)
|
||
|
| (((s->state[i])<<8) & 0x00ff0000)
|
||
|
| (((s->state[i])>>8) & 0x0000ff00)
|
||
|
| (((s->state[i])>>24)& 0x000000ff);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Return pointer to hash (20 characters)
|
||
|
return (uint8_t*) s->state;
|
||
|
}
|
||
|
|
||
|
#define HMAC_IPAD 0x36
|
||
|
#define HMAC_OPAD 0x5c
|
||
|
|
||
|
void ICACHE_FLASH_ATTR sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
|
||
|
uint8_t i;
|
||
|
memset(s->keyBuffer, 0, BLOCK_LENGTH);
|
||
|
if (keyLength > BLOCK_LENGTH) {
|
||
|
// Hash long keys
|
||
|
sha1_init(s);
|
||
|
for (;keyLength--;) sha1_writebyte(s, *key++);
|
||
|
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
|
||
|
} else {
|
||
|
// Block length keys are used as is
|
||
|
memcpy(s->keyBuffer, key, keyLength);
|
||
|
}
|
||
|
// Start inner hash
|
||
|
sha1_init(s);
|
||
|
for (i=0; i<BLOCK_LENGTH; i++) {
|
||
|
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint8_t* ICACHE_FLASH_ATTR sha1_resultHmac(sha1nfo *s) {
|
||
|
uint8_t i;
|
||
|
// Complete inner hash
|
||
|
memcpy(s->innerHash,sha1_result(s),HASH_LENGTH);
|
||
|
// Calculate outer hash
|
||
|
sha1_init(s);
|
||
|
for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
|
||
|
for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
|
||
|
return sha1_result(s);
|
||
|
}
|