#include "mode_audio.h" #include #include "bus/event_queue.h" #include "utils/timebase.h" #include "dotmatrix.h" static bool audio_mode_active = true; static volatile bool capture_pending = false; //static volatile bool print_next_fft = false; #define SAMP_BUF_LEN 256 union samp_buf_union { uint32_t uints[SAMP_BUF_LEN]; float floats[SAMP_BUF_LEN]; uint8_t as_bytes[SAMP_BUF_LEN * sizeof(uint32_t)]; }; // sample buffers (static - invalidated when sampling starts anew). static union samp_buf_union samp_buf; static task_pid_t capture_task_id; // prototypes static void audio_capture_done(void* unused); static void capture_audio(void *unused); static void boot_animation(void) { dmtx_clear(dmtx); // Boot animation (for FFT) for (int i = 0; i < SCREEN_W; i++) { dmtx_set(dmtx, i, 0, 1); dmtx_show(dmtx); delay_ms(20); } } /** Init audio mode */ void mode_audio_init(void) { capture_task_id = add_periodic_task(capture_audio, NULL, 10, false); enable_periodic_task(capture_task_id, false); } /** Start audio mode */ void mode_audio_start(void) { boot_animation(); audio_mode_active = true; enable_periodic_task(capture_task_id, true); } /** Stop audio mode */ void mode_audio_stop(void) { audio_mode_active = false; enable_periodic_task(capture_task_id, false); } /** Start DMA capture */ static void start_adc_dma(uint32_t *memory, uint32_t count) { ADC_Cmd(ADC1, DISABLE); DMA_DeInit(DMA1_Channel1); DMA_InitTypeDef dma_cnf; dma_cnf.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; dma_cnf.DMA_MemoryBaseAddr = (uint32_t)memory; dma_cnf.DMA_DIR = DMA_DIR_PeripheralSRC; dma_cnf.DMA_BufferSize = count; dma_cnf.DMA_PeripheralInc = DMA_PeripheralInc_Disable; dma_cnf.DMA_MemoryInc = DMA_MemoryInc_Enable; dma_cnf.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; dma_cnf.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; dma_cnf.DMA_Mode = DMA_Mode_Normal; dma_cnf.DMA_Priority = DMA_Priority_Low; dma_cnf.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &dma_cnf); DMA_ITConfig(DMA1_Channel1, DMA1_IT_TC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_DMACmd(ADC1, ENABLE); DMA_Cmd(DMA1_Channel1, ENABLE); TIM_Cmd(TIM3, ENABLE); } /** IRQ */ void DMA1_Channel1_IRQHandler(void) { DMA_ClearITPendingBit(DMA1_IT_TC1); DMA_ClearITPendingBit(DMA1_IT_TE1); DMA_DeInit(DMA1_Channel1); TIM_Cmd(TIM3, DISABLE); ADC_DMACmd(ADC1, DISABLE); tq_post(audio_capture_done, NULL); } /** Capture done callback */ static void audio_capture_done(void* unused) { (void)unused; if (! audio_mode_active) { capture_pending = false; return; } const int samp_count = SAMP_BUF_LEN / 2; const int bin_count = SAMP_BUF_LEN / 4; float *bins = samp_buf.floats; // Convert to floats for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] = (float)samp_buf.uints[i]; } // normalize float mean; arm_mean_f32(samp_buf.floats, samp_count, &mean); for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] -= mean; } for (int i = samp_count - 1; i >= 0; i--) { bins[i * 2 + 1] = 0; // imaginary bins[i * 2] = samp_buf.floats[i]; // real } const arm_cfft_instance_f32 *S; S = &arm_cfft_sR_f32_len128; arm_cfft_f32(S, bins, 0, true); // bit reversed FFT arm_cmplx_mag_f32(bins, bins, bin_count); // get magnitude (extract real values) // normalize dmtx_clear(dmtx); float factor = (1.0f / bin_count) * 0.25f; for (int i = 0; i < MIN(bin_count, SCREEN_W) + 1; i++) { // +1 because bin 0 is always 0 bins[i] *= factor; for (int j = 0; j < 1 + floorf(bins[i]); j++) { dmtx_set(dmtx, i - 1, j, 1); // hide zero 0th bin } } dmtx_show(dmtx); capture_pending = false; } void capture_audio(void *unused) { (void)unused; if (capture_pending) return; if (! audio_mode_active) return; capture_pending = true; start_adc_dma(samp_buf.uints, SAMP_BUF_LEN / 2); }