#include "mode_audio.h" #include #include "bus/event_queue.h" #include "dotmatrix.h" static volatile bool capture_pending = false; static volatile bool print_next_fft = false; static float virt_zero_value = 2045.0f; #define SAMP_BUF_LEN 256 union samp_buf_union { uint32_t uints[SAMP_BUF_LEN]; float floats[SAMP_BUF_LEN]; uint8_t as_bytes[SAMP_BUF_LEN*sizeof(uint32_t)]; }; // sample buffers (static - invalidated when sampling starts anew). static union samp_buf_union samp_buf; // prototypes static void audio_capture_done(void* unused); static void start_adc_dma(uint32_t *memory, uint32_t count) { ADC_Cmd(ADC1, DISABLE); DMA_DeInit(DMA1_Channel1); DMA_InitTypeDef dma_cnf; dma_cnf.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; dma_cnf.DMA_MemoryBaseAddr = (uint32_t)memory; dma_cnf.DMA_DIR = DMA_DIR_PeripheralSRC; dma_cnf.DMA_BufferSize = count; dma_cnf.DMA_PeripheralInc = DMA_PeripheralInc_Disable; dma_cnf.DMA_MemoryInc = DMA_MemoryInc_Enable; dma_cnf.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; dma_cnf.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; dma_cnf.DMA_Mode = DMA_Mode_Normal; dma_cnf.DMA_Priority = DMA_Priority_Low; dma_cnf.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &dma_cnf); DMA_ITConfig(DMA1_Channel1, DMA1_IT_TC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_DMACmd(ADC1, ENABLE); DMA_Cmd(DMA1_Channel1, ENABLE); TIM_Cmd(TIM3, ENABLE); } void DMA1_Channel1_IRQHandler(void) { DMA_ClearITPendingBit(DMA1_IT_TC1); DMA_ClearITPendingBit(DMA1_IT_TE1); DMA_DeInit(DMA1_Channel1); TIM_Cmd(TIM3, DISABLE); ADC_DMACmd(ADC1, DISABLE); tq_post(audio_capture_done, NULL); } static void audio_capture_done(void* unused) { (void)unused; const int samp_count = SAMP_BUF_LEN/2; const int bin_count = SAMP_BUF_LEN/4; float *bins = samp_buf.floats; // Convert to floats for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] = (float)samp_buf.uints[i]; } // normalize float mean; arm_mean_f32(samp_buf.floats, samp_count, &mean); virt_zero_value = mean; for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] -= virt_zero_value; } if (print_next_fft) { printf("--- Raw (adjusted) ---\n"); for(int i = 0; i < samp_count; i++) { printf("%.2f, ", samp_buf.floats[i]); } printf("\n"); } for (int i = samp_count - 1; i >= 0; i--) { bins[i * 2 + 1] = 0; // imaginary bins[i * 2] = samp_buf.floats[i]; // real } const arm_cfft_instance_f32 *S; S = &arm_cfft_sR_f32_len128; arm_cfft_f32(S, bins, 0, true); // bit reversed FFT arm_cmplx_mag_f32(bins, bins, bin_count); // get magnitude (extract real values) if (print_next_fft) { printf("--- Bins ---\n"); for(int i = 0; i < bin_count; i++) { printf("%.2f, ", bins[i]); } printf("\n"); } // normalize dmtx_clear(dmtx); float factor = (1.0f/bin_count)*0.2f; for(int i = 0; i < bin_count-1; i+=2) { bins[i] *= factor; bins[i+1] *= factor; //float avg = i==0 ? bins[1] : (bins[i] + bins[i+1])/2; float avg = (bins[i] + bins[i+1])/2; for(int j = 0; j < 1+floorf(avg); j++) { //dmtx_toggle(dmtx, i/2, j); dmtx_toggle(dmtx, i/2, j); //dmtx_toggle(dmtx, j, 15-i/2); //dmtx_toggle(dmtx, 15- i/2, 15-j); } } dmtx_show(dmtx); print_next_fft = false; capture_pending = false; } void capture_audio(void *unused) { (void)unused; if (capture_pending) return; capture_pending = true; start_adc_dma(samp_buf.uints, SAMP_BUF_LEN/2); }