#include "main.h" #include "hw_init.h" #include "com/debug.h" #include "com/com_fileio.h" #include "com/com_iface.h" #include "bus/event_queue.h" #include "bus/event_handler.h" #include "utils/timebase.h" #include "colorled.h" #include "display.h" #include #include //#include "matrixdsp.h" #include "max2719.h" #include "dotmatrix.h" #include "arm_math.h" static volatile bool capture_pending = false; static volatile bool print_next_fft = false; static float virt_zero_value = 2045.0f; static void poll_subsystems(void); static DotMatrix_Cfg *dmtx; #define SAMP_BUF_LEN 256 union samp_buf_union { uint32_t uints[SAMP_BUF_LEN]; float floats[SAMP_BUF_LEN]; uint8_t as_bytes[SAMP_BUF_LEN*sizeof(uint32_t)]; }; // sample buffers (static - invalidated when sampling starts anew). static union samp_buf_union samp_buf; void audio_capture_done(void* unused) { (void)unused; const int samp_count = SAMP_BUF_LEN/2; const int bin_count = SAMP_BUF_LEN/4; float *bins = samp_buf.floats; // Convert to floats for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] = (float)samp_buf.uints[i]; } // normalize float mean; arm_mean_f32(samp_buf.floats, samp_count, &mean); virt_zero_value = mean; for (int i = 0; i < samp_count; i++) { samp_buf.floats[i] -= virt_zero_value; } if (print_next_fft) { printf("--- Raw (adjusted) ---\n"); for(int i = 0; i < samp_count; i++) { printf("%.2f, ", samp_buf.floats[i]); } printf("\n"); } for (int i = samp_count - 1; i >= 0; i--) { bins[i * 2 + 1] = 0; // imaginary bins[i * 2] = samp_buf.floats[i]; // real } const arm_cfft_instance_f32 *S; S = &arm_cfft_sR_f32_len128; arm_cfft_f32(S, bins, 0, true); // bit reversed FFT arm_cmplx_mag_f32(bins, bins, bin_count); // get magnitude (extract real values) if (print_next_fft) { printf("--- Bins ---\n"); for(int i = 0; i < bin_count; i++) { printf("%.2f, ", bins[i]); } printf("\n"); } // normalize dmtx_clear(dmtx); float factor = (1.0f/bin_count)*0.2f; for(int i = 0; i < bin_count-1; i+=2) { bins[i] *= factor; bins[i+1] *= factor; //float avg = i==0 ? bins[1] : (bins[i] + bins[i+1])/2; float avg = (bins[i] + bins[i+1])/2; for(int j = 0; j < 1+floorf(avg); j++) { //dmtx_toggle(dmtx, i/2, j); dmtx_toggle(dmtx, i/2, j); //dmtx_toggle(dmtx, j, 15-i/2); //dmtx_toggle(dmtx, 15- i/2, 15-j); } } dmtx_show(dmtx); print_next_fft = false; capture_pending = false; } static void capture_audio(void *unused) { (void)unused; if (capture_pending) return; capture_pending = true; start_adc_dma(samp_buf.uints, SAMP_BUF_LEN/2); } static void rx_char(ComIface *iface) { uint8_t ch; while(com_rx(iface, &ch)) { if (ch == 'p') { info("PRINT_NEXT"); print_next_fft = true; } } } static task_pid_t capture_task_id; int main(void) { hw_init(); banner("*** FFT dot matrix display ***"); banner_info("(c) Ondrej Hruska, 2016"); debug_iface->rx_callback = rx_char; DotMatrix_Init dmtx_cfg; dmtx_cfg.CS_GPIOx = GPIOA; dmtx_cfg.CS_PINx = GPIO_Pin_4; dmtx_cfg.SPIx = SPI1; dmtx_cfg.cols = 2; dmtx_cfg.rows = 2; dmtx = dmtx_init(&dmtx_cfg); dmtx_intensity(dmtx, 7); for(int i = 0; i < 16; i++) { dmtx_set(dmtx, i, 0, 1); dmtx_show(dmtx); delay_ms(25); } capture_task_id = add_periodic_task(capture_audio, NULL, 10, false); ms_time_t last; while (1) { if (ms_loop_elapsed(&last, 500)) { GPIOC->ODR ^= 1 << 13; } poll_subsystems(); } } static void poll_subsystems(void) { // poll serial buffers (runs callback) com_poll(debug_iface); com_poll(data_iface); // run queued tasks tq_poll(); // handle queued events Event evt; until_timeout(2) { // take 2 ms max if (eq_take(&evt)) { run_event_handler(&evt); } else { break; } } } void dlnk_rx(SBMP_Datagram *dg) { dbg("Rx dg type %d", dg->type); }