Demo application running on STM8 demonstrating a web interface with ESPTerm
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

734 lines
24 KiB

/**
******************************************************************************
* @file stm8s_spi.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all functions prototype and macros for the SPI peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_SPI_H
#define __STM8S_SPI_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/** @addtogroup SPI_Exported_Types
* @{
*/
/**
* @brief SPI data direction mode
* Warning: element values correspond to BDM, BDOE, RXONLY bits position
*/
typedef enum {
SPI_DATADIRECTION_2LINES_FULLDUPLEX = (uint8_t) 0x00, /*!< 2-line uni-directional data mode enable */
SPI_DATADIRECTION_2LINES_RXONLY = (uint8_t) 0x04, /*!< Receiver only in 2 line uni-directional data mode */
SPI_DATADIRECTION_1LINE_RX = (uint8_t) 0x80, /*!< Receiver only in 1 line bi-directional data mode */
SPI_DATADIRECTION_1LINE_TX = (uint8_t) 0xC0 /*!< Transmit only in 1 line bi-directional data mode */
} SPI_DataDirection_TypeDef;
/**
* @brief SPI Slave Select management
* Warning: element values correspond to LSBFIRST bit position
*/
typedef enum {
SPI_NSS_SOFT = (uint8_t) 0x02, /*!< Software slave management disabled */
SPI_NSS_HARD = (uint8_t) 0x00 /*!< Software slave management enabled */
} SPI_NSS_TypeDef;
/**
* @brief SPI direction transmit/receive
*/
typedef enum {
SPI_DIRECTION_RX = (uint8_t) 0x00, /*!< Selects Rx receive direction in bi-directional mode */
SPI_DIRECTION_TX = (uint8_t) 0x01 /*!< Selects Tx transmission direction in bi-directional mode */
} SPI_Direction_TypeDef;
/**
* @brief SPI master/slave mode
* Warning: element values correspond to MSTR bit position
*/
typedef enum {
SPI_MODE_MASTER = (uint8_t) 0x04, /*!< SPI Master configuration */
SPI_MODE_SLAVE = (uint8_t) 0x00 /*!< SPI Slave configuration */
} SPI_Mode_TypeDef;
/**
* @brief SPI BaudRate Prescaler
* Warning: element values correspond to BR bits position
*/
typedef enum {
SPI_BAUDRATEPRESCALER_2 = (uint8_t) 0x00, /*!< SPI frequency = frequency(CPU)/2 */
SPI_BAUDRATEPRESCALER_4 = (uint8_t) 0x08, /*!< SPI frequency = frequency(CPU)/4 */
SPI_BAUDRATEPRESCALER_8 = (uint8_t) 0x10, /*!< SPI frequency = frequency(CPU)/8 */
SPI_BAUDRATEPRESCALER_16 = (uint8_t) 0x18, /*!< SPI frequency = frequency(CPU)/16 */
SPI_BAUDRATEPRESCALER_32 = (uint8_t) 0x20, /*!< SPI frequency = frequency(CPU)/32 */
SPI_BAUDRATEPRESCALER_64 = (uint8_t) 0x28, /*!< SPI frequency = frequency(CPU)/64 */
SPI_BAUDRATEPRESCALER_128 = (uint8_t) 0x30, /*!< SPI frequency = frequency(CPU)/128 */
SPI_BAUDRATEPRESCALER_256 = (uint8_t) 0x38 /*!< SPI frequency = frequency(CPU)/256 */
} SPI_BaudRatePrescaler_TypeDef;
/**
* @brief SPI Clock Polarity
* Warning: element values correspond to CPOL bit position
*/
typedef enum {
SPI_CLOCKPOLARITY_LOW = (uint8_t) 0x00, /*!< Clock to 0 when idle */
SPI_CLOCKPOLARITY_HIGH = (uint8_t) 0x02 /*!< Clock to 1 when idle */
} SPI_ClockPolarity_TypeDef;
/**
* @brief SPI Clock Phase
* Warning: element values correspond to CPHA bit position
*/
typedef enum {
SPI_CLOCKPHASE_1EDGE = (uint8_t) 0x00, /*!< The first clock transition is the first data capture edge */
SPI_CLOCKPHASE_2EDGE = (uint8_t) 0x01 /*!< The second clock transition is the first data capture edge */
} SPI_ClockPhase_TypeDef;
/**
* @brief SPI Frame Format: MSB or LSB transmitted first
* Warning: element values correspond to LSBFIRST bit position
*/
typedef enum {
SPI_FIRSTBIT_MSB = (uint8_t) 0x00, /*!< MSB bit will be transmitted first */
SPI_FIRSTBIT_LSB = (uint8_t) 0x80 /*!< LSB bit will be transmitted first */
} SPI_FirstBit_TypeDef;
/**
* @brief SPI CRC Transmit/Receive
*/
typedef enum {
SPI_CRC_RX = (uint8_t) 0x00, /*!< Select Tx CRC register */
SPI_CRC_TX = (uint8_t) 0x01 /*!< Select Rx CRC register */
} SPI_CRC_TypeDef;
/**
* @brief SPI flags definition - Warning : FLAG value = mapping position register
*/
typedef enum {
SPI_FLAG_BSY = (uint8_t) 0x80, /*!< Busy flag */
SPI_FLAG_OVR = (uint8_t) 0x40, /*!< Overrun flag */
SPI_FLAG_MODF = (uint8_t) 0x20, /*!< Mode fault */
SPI_FLAG_CRCERR = (uint8_t) 0x10, /*!< CRC error flag */
SPI_FLAG_WKUP = (uint8_t) 0x08, /*!< Wake-up flag */
SPI_FLAG_TXE = (uint8_t) 0x02, /*!< Transmit buffer empty */
SPI_FLAG_RXNE = (uint8_t) 0x01 /*!< Receive buffer empty */
} SPI_Flag_TypeDef;
/**
* @brief SPI_IT possible values
* Elements values convention: 0xYX
* X: Position of the corresponding Interrupt
* Y: ITPENDINGBIT position
*/
typedef enum {
SPI_IT_WKUP = (uint8_t) 0x34, /*!< Wake-up interrupt*/
SPI_IT_OVR = (uint8_t) 0x65, /*!< Overrun interrupt*/
SPI_IT_MODF = (uint8_t) 0x55, /*!< Mode fault interrupt*/
SPI_IT_CRCERR = (uint8_t) 0x45, /*!< CRC error interrupt*/
SPI_IT_TXE = (uint8_t) 0x17, /*!< Transmit buffer empty interrupt*/
SPI_IT_RXNE = (uint8_t) 0x06, /*!< Receive buffer not empty interrupt*/
SPI_IT_ERR = (uint8_t) 0x05 /*!< Error interrupt*/
} SPI_IT_TypeDef;
/**
* @}
*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup SPI_Private_Macros
* @brief Macros used by the assert_param function to check the different functions parameters.
* @{
*/
/**
* @brief Macro used by the assert_param function in order to check the data direction mode values
*/
#define IS_SPI_DATA_DIRECTION_OK(MODE) (((MODE) == SPI_DATADIRECTION_2LINES_FULLDUPLEX) || \
((MODE) == SPI_DATADIRECTION_2LINES_RXONLY) || \
((MODE) == SPI_DATADIRECTION_1LINE_RX) || \
((MODE) == SPI_DATADIRECTION_1LINE_TX))
/**
* @brief Macro used by the assert_param function in order to check the mode
* half duplex data direction values
*/
#define IS_SPI_DIRECTION_OK(DIRECTION) (((DIRECTION) == SPI_DIRECTION_RX) || \
((DIRECTION) == SPI_DIRECTION_TX))
/**
* @brief Macro used by the assert_param function in order to check the NSS
* management values
*/
#define IS_SPI_SLAVEMANAGEMENT_OK(NSS) (((NSS) == SPI_NSS_SOFT) || \
((NSS) == SPI_NSS_HARD))
/**
* @brief Macro used by the assert_param function in order to check the different
* sensitivity values for the CRC polynomial
*/
#define IS_SPI_CRC_POLYNOMIAL_OK(POLYNOMIAL) ((POLYNOMIAL) > (uint8_t)0x00)
/**
* @brief Macro used by the assert_param function in order to check the SPI Mode values
*/
#define IS_SPI_MODE_OK(MODE) (((MODE) == SPI_MODE_MASTER) || \
((MODE) == SPI_MODE_SLAVE))
/**
* @brief Macro used by the assert_param function in order to check the baudrate values
*/
#define IS_SPI_BAUDRATE_PRESCALER_OK(PRESCALER) (((PRESCALER) == SPI_BAUDRATEPRESCALER_2) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_4) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_8) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_16) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_32) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_64) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_128) || \
((PRESCALER) == SPI_BAUDRATEPRESCALER_256))
/**
* @brief Macro used by the assert_param function in order to check the polarity values
*/
#define IS_SPI_POLARITY_OK(CLKPOL) (((CLKPOL) == SPI_CLOCKPOLARITY_LOW) || \
((CLKPOL) == SPI_CLOCKPOLARITY_HIGH))
/**
* @brief Macro used by the assert_param function in order to check the phase values
*/
#define IS_SPI_PHASE_OK(CLKPHA) (((CLKPHA) == SPI_CLOCKPHASE_1EDGE) || \
((CLKPHA) == SPI_CLOCKPHASE_2EDGE))
/**
* @brief Macro used by the assert_param function in order to check the first
* bit to be transmited values
*/
#define IS_SPI_FIRSTBIT_OK(BIT) (((BIT) == SPI_FIRSTBIT_MSB) || \
((BIT) == SPI_FIRSTBIT_LSB))
/**
* @brief Macro used by the assert_param function in order to check the CRC
* Transmit/Receive
*/
#define IS_SPI_CRC_OK(CRC) (((CRC) == SPI_CRC_TX) || \
((CRC) == SPI_CRC_RX))
/**
* @brief Macro used by the assert_param function in order to check the
* different flags values
*/
#define IS_SPI_FLAGS_OK(FLAG) (((FLAG) == SPI_FLAG_OVR) || \
((FLAG) == SPI_FLAG_MODF) || \
((FLAG) == SPI_FLAG_CRCERR) || \
((FLAG) == SPI_FLAG_WKUP) || \
((FLAG) == SPI_FLAG_TXE) || \
((FLAG) == SPI_FLAG_RXNE) || \
((FLAG) == SPI_FLAG_BSY))
/**
* @brief Macro used by the assert_param function in order to check the
* different sensitivity values for the flag that can be cleared
* by writing 0
*/
#define IS_SPI_CLEAR_FLAGS_OK(FLAG) (((FLAG) == SPI_FLAG_CRCERR) || \
((FLAG) == SPI_FLAG_WKUP))
/**
* @brief Macro used by the assert_param function in order to check the
* different sensitivity values for the Interrupts
*/
#define IS_SPI_CONFIG_IT_OK(Interrupt) (((Interrupt) == SPI_IT_TXE) || \
((Interrupt) == SPI_IT_RXNE) || \
((Interrupt) == SPI_IT_ERR) || \
((Interrupt) == SPI_IT_WKUP))
/**
* @brief Macro used by the assert_param function in order to check the
* different sensitivity values for the pending bit
*/
#define IS_SPI_GET_IT_OK(ITPendingBit) (((ITPendingBit) == SPI_IT_OVR) || \
((ITPendingBit) == SPI_IT_MODF) || \
((ITPendingBit) == SPI_IT_CRCERR) || \
((ITPendingBit) == SPI_IT_WKUP) || \
((ITPendingBit) == SPI_IT_TXE) || \
((ITPendingBit) == SPI_IT_RXNE))
/**
* @brief Macro used by the assert_param function in order to check the
* different sensitivity values for the pending bit that can be cleared
* by writing 0
*/
#define IS_SPI_CLEAR_IT_OK(ITPendingBit) (((ITPendingBit) == SPI_IT_CRCERR) || \
((ITPendingBit) == SPI_IT_WKUP))
/**
* @}
*/
#if 0
/** @addtogroup SPI_Exported_Functions
* @{
*/
void SPI_DeInit(void);
void SPI_Init(SPI_FirstBit_TypeDef FirstBit,
SPI_BaudRatePrescaler_TypeDef BaudRatePrescaler,
SPI_Mode_TypeDef Mode, SPI_ClockPolarity_TypeDef ClockPolarity,
SPI_ClockPhase_TypeDef ClockPhase,
SPI_DataDirection_TypeDef Data_Direction,
SPI_NSS_TypeDef Slave_Management, uint8_t CRCPolynomial);
void SPI_Cmd(FunctionalState NewState);
void SPI_ITConfig(SPI_IT_TypeDef SPI_IT, FunctionalState NewState);
void SPI_SendData(uint8_t Data);
uint8_t SPI_ReceiveData(void);
void SPI_NSSInternalSoftwareCmd(FunctionalState NewState);
void SPI_TransmitCRC(void);
void SPI_CalculateCRCCmd(FunctionalState NewState);
uint8_t SPI_GetCRC(SPI_CRC_TypeDef SPI_CRC);
void SPI_ResetCRC(void);
uint8_t SPI_GetCRCPolynomial(void);
void SPI_BiDirectionalLineConfig(SPI_Direction_TypeDef SPI_Direction);
FlagStatus SPI_GetFlagStatus(SPI_Flag_TypeDef SPI_FLAG);
void SPI_ClearFlag(SPI_Flag_TypeDef SPI_FLAG);
ITStatus SPI_GetITStatus(SPI_IT_TypeDef SPI_IT);
void SPI_ClearITPendingBit(SPI_IT_TypeDef SPI_IT);
#endif
/**
* @}
*/
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup SPI_Public_Functions
* @{
*/
/**
* @brief Deinitializes the SPI peripheral registers to their default reset values.
* @param None
* @retval None
*/
inline void SPI_DeInit(void)
{
SPI->CR1 = SPI_CR1_RESET_VALUE;
SPI->CR2 = SPI_CR2_RESET_VALUE;
SPI->ICR = SPI_ICR_RESET_VALUE;
SPI->SR = SPI_SR_RESET_VALUE;
SPI->CRCPR = SPI_CRCPR_RESET_VALUE;
}
/**
* @brief Initializes the SPI according to the specified parameters.
* @param FirstBit : This parameter can be any of the
* @ref SPI_FirstBit_TypeDef enumeration.
* @param BaudRatePrescaler : This parameter can be any of the
* @ref SPI_BaudRatePrescaler_TypeDef enumeration.
* @param Mode : This parameter can be any of the
* @ref SPI_Mode_TypeDef enumeration.
* @param ClockPolarity : This parameter can be any of the
* @ref SPI_ClockPolarity_TypeDef enumeration.
* @param ClockPhase : This parameter can be any of the
* @ref SPI_ClockPhase_TypeDef enumeration.
* @param Data_Direction : This parameter can be any of the
* @ref SPI_DataDirection_TypeDef enumeration.
* @param Slave_Management : This parameter can be any of the
* @ref SPI_NSS_TypeDef enumeration.
* @param CRCPolynomial : Configures the CRC polynomial.
* @retval None
*/
inline void
SPI_Init(SPI_FirstBit_TypeDef FirstBit, SPI_BaudRatePrescaler_TypeDef BaudRatePrescaler, SPI_Mode_TypeDef Mode,
SPI_ClockPolarity_TypeDef ClockPolarity, SPI_ClockPhase_TypeDef ClockPhase,
SPI_DataDirection_TypeDef Data_Direction, SPI_NSS_TypeDef Slave_Management, uint8_t CRCPolynomial)
{
/* Check structure elements */
assert_param(IS_SPI_FIRSTBIT_OK(FirstBit));
assert_param(IS_SPI_BAUDRATE_PRESCALER_OK(BaudRatePrescaler));
assert_param(IS_SPI_MODE_OK(Mode));
assert_param(IS_SPI_POLARITY_OK(ClockPolarity));
assert_param(IS_SPI_PHASE_OK(ClockPhase));
assert_param(IS_SPI_DATA_DIRECTION_OK(Data_Direction));
assert_param(IS_SPI_SLAVEMANAGEMENT_OK(Slave_Management));
assert_param(IS_SPI_CRC_POLYNOMIAL_OK(CRCPolynomial));
/* Frame Format, BaudRate, Clock Polarity and Phase configuration */
SPI->CR1 = (uint8_t) ((uint8_t) ((uint8_t) FirstBit | BaudRatePrescaler) |
(uint8_t) ((uint8_t) ClockPolarity | ClockPhase));
/* Data direction configuration: BDM, BDOE and RXONLY bits */
SPI->CR2 = (uint8_t) ((uint8_t) (Data_Direction) | (uint8_t) (Slave_Management));
if (Mode == SPI_MODE_MASTER) {
SPI->CR2 |= (uint8_t) SPI_CR2_SSI;
} else {
SPI->CR2 &= (uint8_t) ~(SPI_CR2_SSI);
}
/* Master/Slave mode configuration */
SPI->CR1 |= (uint8_t) (Mode);
/* CRC configuration */
SPI->CRCPR = (uint8_t) CRCPolynomial;
}
/**
* @brief Enables or disables the SPI peripheral.
* @param NewState New state of the SPI peripheral.
* This parameter can be: ENABLE or DISABLE
* @retval None
*/
inline void SPI_Cmd(FunctionalState NewState)
{
/* Check function parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
SPI->CR1 |= SPI_CR1_SPE; /* Enable the SPI peripheral*/
} else {
SPI->CR1 &= (uint8_t) (~SPI_CR1_SPE); /* Disable the SPI peripheral*/
}
}
/**
* @brief Enables or disables the specified interrupts.
* @param SPI_IT Specifies the SPI interrupts sources to be enabled or disabled.
* @param NewState: The new state of the specified SPI interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void SPI_ITConfig(SPI_IT_TypeDef SPI_IT, FunctionalState NewState)
{
uint8_t itpos = 0;
/* Check function parameters */
assert_param(IS_SPI_CONFIG_IT_OK(SPI_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Get the SPI IT index */
itpos = (uint8_t) ((uint8_t) 1 << (uint8_t) ((uint8_t) SPI_IT & (uint8_t) 0x0F));
if (NewState != DISABLE) {
SPI->ICR |= itpos; /* Enable interrupt*/
} else {
SPI->ICR &= (uint8_t) (~itpos); /* Disable interrupt*/
}
}
/**
* @brief Transmits a Data through the SPI peripheral.
* @param Data : Byte to be transmitted.
* @retval None
*/
inline void SPI_SendData(uint8_t Data)
{
SPI->DR = Data; /* Write in the DR register the data to be sent*/
}
/**
* @brief Returns the most recent received data by the SPI peripheral.
* @param None
* @retval The value of the received data.
*/
inline uint8_t SPI_ReceiveData(void)
{
return ((uint8_t) SPI->DR); /* Return the data in the DR register*/
}
/**
* @brief Configures internally by software the NSS pin.
* @param NewState Indicates the new state of the SPI Software slave management.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void SPI_NSSInternalSoftwareCmd(FunctionalState NewState)
{
/* Check function parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
SPI->CR2 |= SPI_CR2_SSI; /* Set NSS pin internally by software*/
} else {
SPI->CR2 &= (uint8_t) (~SPI_CR2_SSI); /* Reset NSS pin internally by software*/
}
}
/**
* @brief Enables the transmit of the CRC value.
* @param None
* @retval None
*/
inline void SPI_TransmitCRC(void)
{
SPI->CR2 |= SPI_CR2_CRCNEXT; /* Enable the CRC transmission*/
}
/**
* @brief Enables or disables the CRC value calculation of the transferred bytes.
* @param NewState Indicates the new state of the SPI CRC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
inline void SPI_CalculateCRCCmd(FunctionalState NewState)
{
/* Check function parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
SPI->CR2 |= SPI_CR2_CRCEN; /* Enable the CRC calculation*/
} else {
SPI->CR2 &= (uint8_t) (~SPI_CR2_CRCEN); /* Disable the CRC calculation*/
}
}
/**
* @brief Returns the transmit or the receive CRC register value.
* @param SPI_CRC Specifies the CRC register to be read.
* @retval The selected CRC register value.
*/
inline uint8_t SPI_GetCRC(SPI_CRC_TypeDef SPI_CRC)
{
uint8_t crcreg = 0;
/* Check function parameters */
assert_param(IS_SPI_CRC_OK(SPI_CRC));
if (SPI_CRC != SPI_CRC_RX) {
crcreg = SPI->TXCRCR; /* Get the Tx CRC register*/
} else {
crcreg = SPI->RXCRCR; /* Get the Rx CRC register*/
}
/* Return the selected CRC register status*/
return crcreg;
}
/**
* @brief Reset the Rx CRCR and Tx CRCR registers.
* @param None
* @retval None
*/
inline void SPI_ResetCRC(void)
{
/* Rx CRCR & Tx CRCR registers are reset when CRCEN (hardware calculation)
bit in SPI_CR2 is written to 1 (enable) */
SPI_CalculateCRCCmd(ENABLE);
/* Previous function disable the SPI */
SPI_Cmd(ENABLE);
}
/**
* @brief Returns the CRC Polynomial register value.
* @param None
* @retval The CRC Polynomial register value.
*/
inline uint8_t SPI_GetCRCPolynomial(void)
{
return SPI->CRCPR; /* Return the CRC polynomial register */
}
/**
* @brief Selects the data transfer direction in bi-directional mode.
* @param SPI_Direction Specifies the data transfer direction in bi-directional mode.
* @retval None
*/
inline void SPI_BiDirectionalLineConfig(SPI_Direction_TypeDef SPI_Direction)
{
/* Check function parameters */
assert_param(IS_SPI_DIRECTION_OK(SPI_Direction));
if (SPI_Direction != SPI_DIRECTION_RX) {
SPI->CR2 |= SPI_CR2_BDOE; /* Set the Tx only mode*/
} else {
SPI->CR2 &= (uint8_t) (~SPI_CR2_BDOE); /* Set the Rx only mode*/
}
}
/**
* @brief Checks whether the specified SPI flag is set or not.
* @param SPI_FLAG : Specifies the flag to check.
* This parameter can be any of the @ref SPI_FLAG_TypeDef enumeration.
* @retval FlagStatus : Indicates the state of SPI_FLAG.
* This parameter can be any of the @ref FlagStatus enumeration.
*/
inline FlagStatus SPI_GetFlagStatus(SPI_Flag_TypeDef SPI_FLAG)
{
FlagStatus status = RESET;
/* Check parameters */
assert_param(IS_SPI_FLAGS_OK(SPI_FLAG));
/* Check the status of the specified SPI flag */
if ((SPI->SR & (uint8_t) SPI_FLAG) != (uint8_t) RESET) {
status = SET; /* SPI_FLAG is set */
} else {
status = RESET; /* SPI_FLAG is reset*/
}
/* Return the SPI_FLAG status */
return status;
}
/**
* @brief Clears the SPI flags.
* @param SPI_FLAG : Specifies the flag to clear.
* This parameter can be one of the following values:
* - SPI_FLAG_CRCERR
* - SPI_FLAG_WKUP
* @note - OVR (OverRun Error) interrupt pending bit is cleared by software
* sequence:
* a read operation to SPI_DR register (SPI_ReceiveData()) followed by
* a read operation to SPI_SR register (SPI_GetFlagStatus()).
* - MODF (Mode Fault) interrupt pending bit is cleared by software sequence:
* a read/write operation to SPI_SR register (SPI_GetFlagStatus()) followed by
* a write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
* @retval None
*/
inline void SPI_ClearFlag(SPI_Flag_TypeDef SPI_FLAG)
{
assert_param(IS_SPI_CLEAR_FLAGS_OK(SPI_FLAG));
/* Clear the flag bit */
SPI->SR = (uint8_t) (~SPI_FLAG);
}
/**
* @brief Checks whether the specified interrupt has occurred or not.
* @param SPI_IT: Specifies the SPI interrupt pending bit to check.
* This parameter can be one of the following values:
* - SPI_IT_CRCERR
* - SPI_IT_WKUP
* - SPI_IT_OVR
* - SPI_IT_MODF
* - SPI_IT_RXNE
* - SPI_IT_TXE
* @retval ITStatus : Indicates the state of the SPI_IT.
* This parameter can be any of the @ref ITStatus enumeration.
*/
inline ITStatus SPI_GetITStatus(SPI_IT_TypeDef SPI_IT)
{
ITStatus pendingbitstatus = RESET;
uint8_t itpos = 0;
uint8_t itmask1 = 0;
uint8_t itmask2 = 0;
uint8_t enablestatus = 0;
assert_param(IS_SPI_GET_IT_OK(SPI_IT));
/* Get the SPI IT index */
itpos = (uint8_t) ((uint8_t) 1 << ((uint8_t) SPI_IT & (uint8_t) 0x0F));
/* Get the SPI IT mask */
itmask1 = (uint8_t) ((uint8_t) SPI_IT >> (uint8_t) 4);
/* Set the IT mask */
itmask2 = (uint8_t) ((uint8_t) 1 << itmask1);
/* Get the SPI_ITPENDINGBIT enable bit status */
enablestatus = (uint8_t) ((uint8_t) SPI->SR & itmask2);
/* Check the status of the specified SPI interrupt */
if (((SPI->ICR & itpos) != RESET) && enablestatus) {
/* SPI_ITPENDINGBIT is set */
pendingbitstatus = SET;
} else {
/* SPI_ITPENDINGBIT is reset */
pendingbitstatus = RESET;
}
/* Return the SPI_ITPENDINGBIT status */
return pendingbitstatus;
}
/**
* @brief Clears the interrupt pending bits.
* @param SPI_IT: Specifies the interrupt pending bit to clear.
* This parameter can be one of the following values:
* - SPI_IT_CRCERR
* - SPI_IT_WKUP
* @note - OVR (OverRun Error) interrupt pending bit is cleared by software sequence:
* a read operation to SPI_DR register (SPI_ReceiveData()) followed by
* a read operation to SPI_SR register (SPI_GetITStatus()).
* - MODF (Mode Fault) interrupt pending bit is cleared by software sequence:
* a read/write operation to SPI_SR register (SPI_GetITStatus()) followed by
* a write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
* @retval None
*/
inline void SPI_ClearITPendingBit(SPI_IT_TypeDef SPI_IT)
{
uint8_t itpos = 0;
assert_param(IS_SPI_CLEAR_IT_OK(SPI_IT));
/* Clear SPI_IT_CRCERR or SPI_IT_WKUP interrupt pending bits */
/* Get the SPI pending bit index */
itpos = (uint8_t) ((uint8_t) 1 << (uint8_t) ((uint8_t) (SPI_IT & (uint8_t) 0xF0) >> 4));
/* Clear the pending bit */
SPI->SR = (uint8_t) (~itpos);
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#endif /* __STM8S_SPI_H */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/