Demo application running on STM8 demonstrating a web interface with ESPTerm
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

2329 lines
80 KiB

/**
******************************************************************************
* @file stm8s_tim1.c
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all the functions for the TIM1 peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm8s_tim1.h"
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TI1_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI2_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI3_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI4_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
/**
* @addtogroup TIM1_Public_Functions
* @{
*/
/**
* @brief Deinitializes the TIM1 peripheral registers to their default reset values.
* @param None
* @retval None
*/
void TIM1_DeInit(void)
{
TIM1->CR1 = TIM1_CR1_RESET_VALUE;
TIM1->CR2 = TIM1_CR2_RESET_VALUE;
TIM1->SMCR = TIM1_SMCR_RESET_VALUE;
TIM1->ETR = TIM1_ETR_RESET_VALUE;
TIM1->IER = TIM1_IER_RESET_VALUE;
TIM1->SR2 = TIM1_SR2_RESET_VALUE;
/* Disable channels */
TIM1->CCER1 = TIM1_CCER1_RESET_VALUE;
TIM1->CCER2 = TIM1_CCER2_RESET_VALUE;
/* Configure channels as inputs: it is necessary if lock level is equal to 2 or 3 */
TIM1->CCMR1 = 0x01;
TIM1->CCMR2 = 0x01;
TIM1->CCMR3 = 0x01;
TIM1->CCMR4 = 0x01;
/* Then reset channel registers: it also works if lock level is equal to 2 or 3 */
TIM1->CCER1 = TIM1_CCER1_RESET_VALUE;
TIM1->CCER2 = TIM1_CCER2_RESET_VALUE;
TIM1->CCMR1 = TIM1_CCMR1_RESET_VALUE;
TIM1->CCMR2 = TIM1_CCMR2_RESET_VALUE;
TIM1->CCMR3 = TIM1_CCMR3_RESET_VALUE;
TIM1->CCMR4 = TIM1_CCMR4_RESET_VALUE;
TIM1->CNTRH = TIM1_CNTRH_RESET_VALUE;
TIM1->CNTRL = TIM1_CNTRL_RESET_VALUE;
TIM1->PSCRH = TIM1_PSCRH_RESET_VALUE;
TIM1->PSCRL = TIM1_PSCRL_RESET_VALUE;
TIM1->ARRH = TIM1_ARRH_RESET_VALUE;
TIM1->ARRL = TIM1_ARRL_RESET_VALUE;
TIM1->CCR1H = TIM1_CCR1H_RESET_VALUE;
TIM1->CCR1L = TIM1_CCR1L_RESET_VALUE;
TIM1->CCR2H = TIM1_CCR2H_RESET_VALUE;
TIM1->CCR2L = TIM1_CCR2L_RESET_VALUE;
TIM1->CCR3H = TIM1_CCR3H_RESET_VALUE;
TIM1->CCR3L = TIM1_CCR3L_RESET_VALUE;
TIM1->CCR4H = TIM1_CCR4H_RESET_VALUE;
TIM1->CCR4L = TIM1_CCR4L_RESET_VALUE;
TIM1->OISR = TIM1_OISR_RESET_VALUE;
TIM1->EGR = 0x01; /* TIM1_EGR_UG */
TIM1->DTR = TIM1_DTR_RESET_VALUE;
TIM1->BKR = TIM1_BKR_RESET_VALUE;
TIM1->RCR = TIM1_RCR_RESET_VALUE;
TIM1->SR1 = TIM1_SR1_RESET_VALUE;
}
/**
* @brief Initializes the TIM1 Time Base Unit according to the specified parameters.
* @param TIM1_Prescaler specifies the Prescaler value.
* @param TIM1_CounterMode specifies the counter mode from @ref TIM1_CounterMode_TypeDef .
* @param TIM1_Period specifies the Period value.
* @param TIM1_RepetitionCounter specifies the Repetition counter value
* @retval None
*/
void TIM1_TimeBaseInit(uint16_t TIM1_Prescaler,
TIM1_CounterMode_TypeDef TIM1_CounterMode,
uint16_t TIM1_Period,
uint8_t TIM1_RepetitionCounter)
{
/* Check parameters */
assert_param(IS_TIM1_COUNTER_MODE_OK(TIM1_CounterMode));
/* Set the Autoreload value */
TIM1->ARRH = (uint8_t)(TIM1_Period >> 8);
TIM1->ARRL = (uint8_t)(TIM1_Period);
/* Set the Prescaler value */
TIM1->PSCRH = (uint8_t)(TIM1_Prescaler >> 8);
TIM1->PSCRL = (uint8_t)(TIM1_Prescaler);
/* Select the Counter Mode */
TIM1->CR1 = (uint8_t)((uint8_t)(TIM1->CR1 & (uint8_t)(~(TIM1_CR1_CMS | TIM1_CR1_DIR)))
| (uint8_t)(TIM1_CounterMode));
/* Set the Repetition Counter value */
TIM1->RCR = TIM1_RepetitionCounter;
}
/**
* @brief Initializes the TIM1 Channel1 according to the specified parameters.
* @param TIM1_OCMode specifies the Output Compare mode from
* @ref TIM1_OCMode_TypeDef.
* @param TIM1_OutputState specifies the Output State from
* @ref TIM1_OutputState_TypeDef.
* @param TIM1_OutputNState specifies the Complementary Output State
* from @ref TIM1_OutputNState_TypeDef.
* @param TIM1_Pulse specifies the Pulse width value.
* @param TIM1_OCPolarity specifies the Output Compare Polarity from
* @ref TIM1_OCPolarity_TypeDef.
* @param TIM1_OCNPolarity specifies the Complementary Output Compare Polarity
* from @ref TIM1_OCNPolarity_TypeDef.
* @param TIM1_OCIdleState specifies the Output Compare Idle State from
* @ref TIM1_OCIdleState_TypeDef.
* @param TIM1_OCNIdleState specifies the Complementary Output Compare Idle
* State from @ref TIM1_OCIdleState_TypeDef.
* @retval None
*/
void TIM1_OC1Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
TIM1_OutputNState_TypeDef TIM1_OutputNState,
uint16_t TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState,
TIM1_OCNIdleState_TypeDef TIM1_OCNIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE_OK(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE_OK(TIM1_OutputState));
assert_param(IS_TIM1_OUTPUTN_STATE_OK(TIM1_OutputNState));
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
assert_param(IS_TIM1_OCIDLE_STATE_OK(TIM1_OCIdleState));
assert_param(IS_TIM1_OCNIDLE_STATE_OK(TIM1_OCNIdleState));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State ,
the Output N State, the Output Polarity & the Output N Polarity*/
TIM1->CCER1 &= (uint8_t)(~( TIM1_CCER1_CC1E | TIM1_CCER1_CC1NE
| TIM1_CCER1_CC1P | TIM1_CCER1_CC1NP));
/* Set the Output State & Set the Output N State & Set the Output Polarity &
Set the Output N Polarity */
TIM1->CCER1 |= (uint8_t)((uint8_t)((uint8_t)(TIM1_OutputState & TIM1_CCER1_CC1E)
| (uint8_t)(TIM1_OutputNState & TIM1_CCER1_CC1NE))
| (uint8_t)( (uint8_t)(TIM1_OCPolarity & TIM1_CCER1_CC1P)
| (uint8_t)(TIM1_OCNPolarity & TIM1_CCER1_CC1NP)));
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_OCM)) |
(uint8_t)TIM1_OCMode);
/* Reset the Output Idle state & the Output N Idle state bits */
TIM1->OISR &= (uint8_t)(~(TIM1_OISR_OIS1 | TIM1_OISR_OIS1N));
/* Set the Output Idle state & the Output N Idle state configuration */
TIM1->OISR |= (uint8_t)((uint8_t)( TIM1_OCIdleState & TIM1_OISR_OIS1 ) |
(uint8_t)( TIM1_OCNIdleState & TIM1_OISR_OIS1N ));
/* Set the Pulse value */
TIM1->CCR1H = (uint8_t)(TIM1_Pulse >> 8);
TIM1->CCR1L = (uint8_t)(TIM1_Pulse);
}
/**
* @brief Initializes the TIM1 Channel2 according to the specified parameters.
* @param TIM1_OCMode specifies the Output Compare mode from
* @ref TIM1_OCMode_TypeDef.
* @param TIM1_OutputState specifies the Output State from
* @ref TIM1_OutputState_TypeDef.
* @param TIM1_OutputNState specifies the Complementary Output State from
* @ref TIM1_OutputNState_TypeDef.
* @param TIM1_Pulse specifies the Pulse width value.
* @param TIM1_OCPolarity specifies the Output Compare Polarity from
* @ref TIM1_OCPolarity_TypeDef.
* @param TIM1_OCNPolarity specifies the Complementary Output Compare Polarity
* from @ref TIM1_OCNPolarity_TypeDef.
* @param TIM1_OCIdleState specifies the Output Compare Idle State from
* @ref TIM1_OCIdleState_TypeDef.
* @param TIM1_OCNIdleState specifies the Complementary Output Compare Idle
* State from @ref TIM1_OCIdleState_TypeDef.
* @retval None
*/
void TIM1_OC2Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
TIM1_OutputNState_TypeDef TIM1_OutputNState,
uint16_t TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState,
TIM1_OCNIdleState_TypeDef TIM1_OCNIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE_OK(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE_OK(TIM1_OutputState));
assert_param(IS_TIM1_OUTPUTN_STATE_OK(TIM1_OutputNState));
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
assert_param(IS_TIM1_OCIDLE_STATE_OK(TIM1_OCIdleState));
assert_param(IS_TIM1_OCNIDLE_STATE_OK(TIM1_OCNIdleState));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State ,
the Output N State, the Output Polarity & the Output N Polarity*/
TIM1->CCER1 &= (uint8_t)(~( TIM1_CCER1_CC2E | TIM1_CCER1_CC2NE |
TIM1_CCER1_CC2P | TIM1_CCER1_CC2NP));
/* Set the Output State & Set the Output N State & Set the Output Polarity &
Set the Output N Polarity */
TIM1->CCER1 |= (uint8_t)((uint8_t)((uint8_t)(TIM1_OutputState & TIM1_CCER1_CC2E ) |
(uint8_t)(TIM1_OutputNState & TIM1_CCER1_CC2NE )) |
(uint8_t)((uint8_t)(TIM1_OCPolarity & TIM1_CCER1_CC2P ) |
(uint8_t)(TIM1_OCNPolarity & TIM1_CCER1_CC2NP )));
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~TIM1_CCMR_OCM)) |
(uint8_t)TIM1_OCMode);
/* Reset the Output Idle state & the Output N Idle state bits */
TIM1->OISR &= (uint8_t)(~(TIM1_OISR_OIS2 | TIM1_OISR_OIS2N));
/* Set the Output Idle state & the Output N Idle state configuration */
TIM1->OISR |= (uint8_t)((uint8_t)(TIM1_OISR_OIS2 & TIM1_OCIdleState) |
(uint8_t)(TIM1_OISR_OIS2N & TIM1_OCNIdleState));
/* Set the Pulse value */
TIM1->CCR2H = (uint8_t)(TIM1_Pulse >> 8);
TIM1->CCR2L = (uint8_t)(TIM1_Pulse);
}
/**
* @brief Initializes the TIM1 Channel3 according to the specified parameters.
* @param TIM1_OCMode specifies the Output Compare mode from
* @ref TIM1_OCMode_TypeDef.
* @param TIM1_OutputState specifies the Output State
* from @ref TIM1_OutputState_TypeDef.
* @param TIM1_OutputNState specifies the Complementary Output State
* from @ref TIM1_OutputNState_TypeDef.
* @param TIM1_Pulse specifies the Pulse width value.
* @param TIM1_OCPolarity specifies the Output Compare Polarity from
* @ref TIM1_OCPolarity_TypeDef.
* @param TIM1_OCNPolarity specifies the Complementary Output Compare
* Polarity from @ref TIM1_OCNPolarity_TypeDef.
* @param TIM1_OCIdleState specifies the Output Compare Idle State
* from @ref TIM1_OCIdleState_TypeDef.
* @param TIM1_OCNIdleState specifies the Complementary Output Compare
* Idle State from @ref TIM1_OCIdleState_TypeDef.
* @retval None
*/
void TIM1_OC3Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
TIM1_OutputNState_TypeDef TIM1_OutputNState,
uint16_t TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState,
TIM1_OCNIdleState_TypeDef TIM1_OCNIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE_OK(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE_OK(TIM1_OutputState));
assert_param(IS_TIM1_OUTPUTN_STATE_OK(TIM1_OutputNState));
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
assert_param(IS_TIM1_OCIDLE_STATE_OK(TIM1_OCIdleState));
assert_param(IS_TIM1_OCNIDLE_STATE_OK(TIM1_OCNIdleState));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State ,
the Output N State, the Output Polarity & the Output N Polarity*/
TIM1->CCER2 &= (uint8_t)(~( TIM1_CCER2_CC3E | TIM1_CCER2_CC3NE |
TIM1_CCER2_CC3P | TIM1_CCER2_CC3NP));
/* Set the Output State & Set the Output N State & Set the Output Polarity &
Set the Output N Polarity */
TIM1->CCER2 |= (uint8_t)((uint8_t)((uint8_t)(TIM1_OutputState & TIM1_CCER2_CC3E ) |
(uint8_t)(TIM1_OutputNState & TIM1_CCER2_CC3NE )) |
(uint8_t)((uint8_t)(TIM1_OCPolarity & TIM1_CCER2_CC3P ) |
(uint8_t)(TIM1_OCNPolarity & TIM1_CCER2_CC3NP )));
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR3 = (uint8_t)((uint8_t)(TIM1->CCMR3 & (uint8_t)(~TIM1_CCMR_OCM)) |
(uint8_t)TIM1_OCMode);
/* Reset the Output Idle state & the Output N Idle state bits */
TIM1->OISR &= (uint8_t)(~(TIM1_OISR_OIS3 | TIM1_OISR_OIS3N));
/* Set the Output Idle state & the Output N Idle state configuration */
TIM1->OISR |= (uint8_t)((uint8_t)(TIM1_OISR_OIS3 & TIM1_OCIdleState) |
(uint8_t)(TIM1_OISR_OIS3N & TIM1_OCNIdleState));
/* Set the Pulse value */
TIM1->CCR3H = (uint8_t)(TIM1_Pulse >> 8);
TIM1->CCR3L = (uint8_t)(TIM1_Pulse);
}
/**
* @brief Initializes the TIM1 Channel4 according to the specified parameters.
* @param TIM1_OCMode specifies the Output Compare mode from
* @ref TIM1_OCMode_TypeDef.
* @param TIM1_OutputState specifies the Output State
* from @ref TIM1_OutputState_TypeDef.
* @param TIM1_Pulse specifies the Pulse width value.
* @param TIM1_OCPolarity specifies the Output Compare Polarity
* from @ref TIM1_OCPolarity_TypeDef.
* @param TIM1_OCIdleState specifies the Output Compare Idle State
* from @ref TIM1_OCIdleState_TypeDef.
* @retval None
*/
void TIM1_OC4Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
uint16_t TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE_OK(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE_OK(TIM1_OutputState));
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
assert_param(IS_TIM1_OCIDLE_STATE_OK(TIM1_OCIdleState));
/* Disable the Channel 4: Reset the CCE Bit */
TIM1->CCER2 &= (uint8_t)(~(TIM1_CCER2_CC4E | TIM1_CCER2_CC4P));
/* Set the Output State & the Output Polarity */
TIM1->CCER2 |= (uint8_t)((uint8_t)(TIM1_OutputState & TIM1_CCER2_CC4E ) |
(uint8_t)(TIM1_OCPolarity & TIM1_CCER2_CC4P ));
/* Reset the Output Compare Bit and Set the Output Compare Mode */
TIM1->CCMR4 = (uint8_t)((uint8_t)(TIM1->CCMR4 & (uint8_t)(~TIM1_CCMR_OCM)) |
TIM1_OCMode);
/* Set the Output Idle state */
if (TIM1_OCIdleState != TIM1_OCIDLESTATE_RESET)
{
TIM1->OISR |= (uint8_t)(~TIM1_CCER2_CC4P);
}
else
{
TIM1->OISR &= (uint8_t)(~TIM1_OISR_OIS4);
}
/* Set the Pulse value */
TIM1->CCR4H = (uint8_t)(TIM1_Pulse >> 8);
TIM1->CCR4L = (uint8_t)(TIM1_Pulse);
}
/**
* @brief Configures the Break feature, dead time, Lock level, the OSSI,
* and the AOE(automatic output enable).
* @param TIM1_OSSIState specifies the OSSIS State from @ref TIM1_OSSIState_TypeDef.
* @param TIM1_LockLevel specifies the lock level from @ref TIM1_LockLevel_TypeDef.
* @param TIM1_DeadTime specifies the dead time value.
* @param TIM1_Break specifies the Break state @ref TIM1_BreakState_TypeDef.
* @param TIM1_BreakPolarity specifies the Break polarity from
* @ref TIM1_BreakPolarity_TypeDef.
* @param TIM1_AutomaticOutput specifies the Automatic Output configuration
* from @ref TIM1_AutomaticOutput_TypeDef.
* @retval None
*/
void TIM1_BDTRConfig(TIM1_OSSIState_TypeDef TIM1_OSSIState,
TIM1_LockLevel_TypeDef TIM1_LockLevel,
uint8_t TIM1_DeadTime,
TIM1_BreakState_TypeDef TIM1_Break,
TIM1_BreakPolarity_TypeDef TIM1_BreakPolarity,
TIM1_AutomaticOutput_TypeDef TIM1_AutomaticOutput)
{
/* Check the parameters */
assert_param(IS_TIM1_OSSI_STATE_OK(TIM1_OSSIState));
assert_param(IS_TIM1_LOCK_LEVEL_OK(TIM1_LockLevel));
assert_param(IS_TIM1_BREAK_STATE_OK(TIM1_Break));
assert_param(IS_TIM1_BREAK_POLARITY_OK(TIM1_BreakPolarity));
assert_param(IS_TIM1_AUTOMATIC_OUTPUT_STATE_OK(TIM1_AutomaticOutput));
TIM1->DTR = (uint8_t)(TIM1_DeadTime);
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSI State,
the dead time value and the Automatic Output Enable Bit */
TIM1->BKR = (uint8_t)((uint8_t)(TIM1_OSSIState | (uint8_t)TIM1_LockLevel) |
(uint8_t)((uint8_t)(TIM1_Break | (uint8_t)TIM1_BreakPolarity) |
(uint8_t)TIM1_AutomaticOutput));
}
/**
* @brief Initializes the TIM1 peripheral according to the specified parameters.
* @param TIM1_Channel specifies the input capture channel from TIM1_Channel_TypeDef.
* @param TIM1_ICPolarity specifies the Input capture polarity from
* TIM1_ICPolarity_TypeDef .
* @param TIM1_ICSelection specifies the Input capture source selection from
* TIM1_ICSelection_TypeDef.
* @param TIM1_ICPrescaler specifies the Input capture Prescaler from
* TIM1_ICPSC_TypeDef.
* @param TIM1_ICFilter specifies the Input capture filter value.
* @retval None
*/
void TIM1_ICInit(TIM1_Channel_TypeDef TIM1_Channel,
TIM1_ICPolarity_TypeDef TIM1_ICPolarity,
TIM1_ICSelection_TypeDef TIM1_ICSelection,
TIM1_ICPSC_TypeDef TIM1_ICPrescaler,
uint8_t TIM1_ICFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_CHANNEL_OK(TIM1_Channel));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_ICPolarity));
assert_param(IS_TIM1_IC_SELECTION_OK(TIM1_ICSelection));
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_ICPrescaler));
assert_param(IS_TIM1_IC_FILTER_OK(TIM1_ICFilter));
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* TI1 Configuration */
TI1_Config((uint8_t)TIM1_ICPolarity,
(uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
}
else if (TIM1_Channel == TIM1_CHANNEL_2)
{
/* TI2 Configuration */
TI2_Config((uint8_t)TIM1_ICPolarity,
(uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
}
else if (TIM1_Channel == TIM1_CHANNEL_3)
{
/* TI3 Configuration */
TI3_Config((uint8_t)TIM1_ICPolarity,
(uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC3Prescaler(TIM1_ICPrescaler);
}
else
{
/* TI4 Configuration */
TI4_Config((uint8_t)TIM1_ICPolarity,
(uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC4Prescaler(TIM1_ICPrescaler);
}
}
/**
* @brief Configures the TIM1 peripheral in PWM Input Mode according to the
* specified parameters.
* @param TIM1_Channel specifies the input capture channel from
* @ref TIM1_Channel_TypeDef.
* @param TIM1_ICPolarity specifies the Input capture polarity from
* @ref TIM1_ICPolarity_TypeDef .
* @param TIM1_ICSelection specifies the Input capture source selection from
* @ref TIM1_ICSelection_TypeDef.
* @param TIM1_ICPrescaler specifies the Input capture Prescaler from
* @ref TIM1_ICPSC_TypeDef.
* @param TIM1_ICFilter specifies the Input capture filter value.
* @retval None
*/
void TIM1_PWMIConfig(TIM1_Channel_TypeDef TIM1_Channel,
TIM1_ICPolarity_TypeDef TIM1_ICPolarity,
TIM1_ICSelection_TypeDef TIM1_ICSelection,
TIM1_ICPSC_TypeDef TIM1_ICPrescaler,
uint8_t TIM1_ICFilter)
{
uint8_t icpolarity = TIM1_ICPOLARITY_RISING;
uint8_t icselection = TIM1_ICSELECTION_DIRECTTI;
/* Check the parameters */
assert_param(IS_TIM1_PWMI_CHANNEL_OK(TIM1_Channel));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_ICPolarity));
assert_param(IS_TIM1_IC_SELECTION_OK(TIM1_ICSelection));
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_ICPrescaler));
/* Select the Opposite Input Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_FALLING)
{
icpolarity = TIM1_ICPOLARITY_FALLING;
}
else
{
icpolarity = TIM1_ICPOLARITY_RISING;
}
/* Select the Opposite Input */
if (TIM1_ICSelection == TIM1_ICSELECTION_DIRECTTI)
{
icselection = TIM1_ICSELECTION_INDIRECTTI;
}
else
{
icselection = TIM1_ICSELECTION_DIRECTTI;
}
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* TI1 Configuration */
TI1_Config((uint8_t)TIM1_ICPolarity, (uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
/* TI2 Configuration */
TI2_Config(icpolarity, icselection, TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
}
else
{
/* TI2 Configuration */
TI2_Config((uint8_t)TIM1_ICPolarity, (uint8_t)TIM1_ICSelection,
(uint8_t)TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
/* TI1 Configuration */
TI1_Config(icpolarity, icselection, TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
}
}
/**
* @brief Enables or disables the TIM1 peripheral.
* @param NewState new state of the TIM1 peripheral.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* set or Reset the CEN Bit */
if (NewState != DISABLE)
{
TIM1->CR1 |= TIM1_CR1_CEN;
}
else
{
TIM1->CR1 &= (uint8_t)(~TIM1_CR1_CEN);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Main Outputs.
* @param NewState new state of the TIM1 peripheral.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_CtrlPWMOutputs(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the MOE Bit */
if (NewState != DISABLE)
{
TIM1->BKR |= TIM1_BKR_MOE;
}
else
{
TIM1->BKR &= (uint8_t)(~TIM1_BKR_MOE);
}
}
/**
* @brief Enables or disables the specified TIM1 interrupts.
* @param NewState new state of the TIM1 peripheral.
* This parameter can be: ENABLE or DISABLE.
* @param TIM1_IT specifies the TIM1 interrupts sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* - TIM1_IT_UPDATE: TIM1 update Interrupt source
* - TIM1_IT_CC1: TIM1 Capture Compare 1 Interrupt source
* - TIM1_IT_CC2: TIM1 Capture Compare 2 Interrupt source
* - TIM1_IT_CC3: TIM1 Capture Compare 3 Interrupt source
* - TIM1_IT_CC4: TIM1 Capture Compare 4 Interrupt source
* - TIM1_IT_CCUpdate: TIM1 Capture Compare Update Interrupt source
* - TIM1_IT_TRIGGER: TIM1 Trigger Interrupt source
* - TIM1_IT_BREAK: TIM1 Break Interrupt source
* @param NewState new state of the TIM1 peripheral.
* @retval None
*/
void TIM1_ITConfig(TIM1_IT_TypeDef TIM1_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_TIM1_IT_OK(TIM1_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE)
{
/* Enable the Interrupt sources */
TIM1->IER |= (uint8_t)TIM1_IT;
}
else
{
/* Disable the Interrupt sources */
TIM1->IER &= (uint8_t)(~(uint8_t)TIM1_IT);
}
}
/**
* @brief Configures the TIM1 internal Clock.
* @param None
* @retval None
*/
void TIM1_InternalClockConfig(void)
{
/* Disable slave mode to clock the prescaler directly with the internal clock */
TIM1->SMCR &= (uint8_t)(~TIM1_SMCR_SMS);
}
/**
* @brief Configures the TIM1 External clock Mode1.
* @param TIM1_ExtTRGPrescaler specifies the external Trigger Prescaler.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPSC_OFF
* - TIM1_EXTTRGPSC_DIV2
* - TIM1_EXTTRGPSC_DIV4
* - TIM1_EXTTRGPSC_DIV8.
* @param TIM1_ExtTRGPolarity specifies the external Trigger Polarity.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPOLARITY_INVERTED
* - TIM1_EXTTRGPOLARITY_NONINVERTED
* @param ExtTRGFilter specifies the External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIM1_ETRClockMode1Config(TIM1_ExtTRGPSC_TypeDef TIM1_ExtTRGPrescaler,
TIM1_ExtTRGPolarity_TypeDef TIM1_ExtTRGPolarity,
uint8_t ExtTRGFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_EXT_PRESCALER_OK(TIM1_ExtTRGPrescaler));
assert_param(IS_TIM1_EXT_POLARITY_OK(TIM1_ExtTRGPolarity));
/* Configure the ETR Clock source */
TIM1_ETRConfig(TIM1_ExtTRGPrescaler, TIM1_ExtTRGPolarity, ExtTRGFilter);
/* Select the External clock mode1 & Select the Trigger selection : ETRF */
TIM1->SMCR = (uint8_t)((uint8_t)(TIM1->SMCR & (uint8_t)(~(uint8_t)(TIM1_SMCR_SMS | TIM1_SMCR_TS )))
| (uint8_t)((uint8_t)TIM1_SLAVEMODE_EXTERNAL1 | TIM1_TS_ETRF ));
}
/**
* @brief Configures the TIM1 External clock Mode2.
* @param TIM1_ExtTRGPrescaler specifies the external Trigger Prescaler.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPSC_OFF
* - TIM1_EXTTRGPSC_DIV2
* - TIM1_EXTTRGPSC_DIV4
* - TIM1_EXTTRGPSC_DIV8.
* @param TIM1_ExtTRGPolarity specifies the external Trigger Polarity.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPOLARITY_INVERTED
* - TIM1_EXTTRGPOLARITY_NONINVERTED
* @param ExtTRGFilter specifies the External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIM1_ETRClockMode2Config(TIM1_ExtTRGPSC_TypeDef TIM1_ExtTRGPrescaler,
TIM1_ExtTRGPolarity_TypeDef TIM1_ExtTRGPolarity,
uint8_t ExtTRGFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_EXT_PRESCALER_OK(TIM1_ExtTRGPrescaler));
assert_param(IS_TIM1_EXT_POLARITY_OK(TIM1_ExtTRGPolarity));
/* Configure the ETR Clock source */
TIM1_ETRConfig(TIM1_ExtTRGPrescaler, TIM1_ExtTRGPolarity, ExtTRGFilter);
/* Enable the External clock mode2 */
TIM1->ETR |= TIM1_ETR_ECE;
}
/**
* @brief Configures the TIM1 External Trigger.
* @param TIM1_ExtTRGPrescaler specifies the external Trigger Prescaler.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPSC_OFF
* - TIM1_EXTTRGPSC_DIV2
* - TIM1_EXTTRGPSC_DIV4
* - TIM1_EXTTRGPSC_DIV8.
* @param TIM1_ExtTRGPolarity specifies the external Trigger Polarity.
* This parameter can be one of the following values:
* - TIM1_EXTTRGPOLARITY_INVERTED
* - TIM1_EXTTRGPOLARITY_NONINVERTED
* @param ExtTRGFilter specifies the External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIM1_ETRConfig(TIM1_ExtTRGPSC_TypeDef TIM1_ExtTRGPrescaler,
TIM1_ExtTRGPolarity_TypeDef TIM1_ExtTRGPolarity,
uint8_t ExtTRGFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_EXT_TRG_FILTER_OK(ExtTRGFilter));
/* Set the Prescaler, the Filter value and the Polarity */
TIM1->ETR |= (uint8_t)((uint8_t)(TIM1_ExtTRGPrescaler | (uint8_t)TIM1_ExtTRGPolarity )|
(uint8_t)ExtTRGFilter );
}
/**
* @brief Configures the TIM1 Trigger as External Clock.
* @param TIM1_TIxExternalCLKSource specifies Trigger source.
* This parameter can be one of the following values:
* - TIM1_TIXEXTERNALCLK1SOURCE_TI1: TI1 Edge Detector
* - TIM1_TIXEXTERNALCLK1SOURCE_TI2: Filtered TIM1 Input 1
* - TIM1_TIXEXTERNALCLK1SOURCE_TI1ED: Filtered TIM1 Input 2
* @param TIM1_ICPolarity specifies the TIx Polarity.
* This parameter can be:
* - TIM1_ICPOLARITY_RISING
* - TIM1_ICPOLARITY_FALLING
* @param ICFilter specifies the filter value.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIM1_TIxExternalClockConfig(TIM1_TIxExternalCLK1Source_TypeDef TIM1_TIxExternalCLKSource,
TIM1_ICPolarity_TypeDef TIM1_ICPolarity,
uint8_t ICFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_TIXCLK_SOURCE_OK(TIM1_TIxExternalCLKSource));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_ICPolarity));
assert_param(IS_TIM1_IC_FILTER_OK(ICFilter));
/* Configure the TIM1 Input Clock Source */
if (TIM1_TIxExternalCLKSource == TIM1_TIXEXTERNALCLK1SOURCE_TI2)
{
TI2_Config((uint8_t)TIM1_ICPolarity, (uint8_t)TIM1_ICSELECTION_DIRECTTI, (uint8_t)ICFilter);
}
else
{
TI1_Config((uint8_t)TIM1_ICPolarity, (uint8_t)TIM1_ICSELECTION_DIRECTTI, (uint8_t)ICFilter);
}
/* Select the Trigger source */
TIM1_SelectInputTrigger((TIM1_TS_TypeDef)TIM1_TIxExternalCLKSource);
/* Select the External clock mode1 */
TIM1->SMCR |= (uint8_t)(TIM1_SLAVEMODE_EXTERNAL1);
}
/**
* @brief Selects the TIM1 Input Trigger source.
* @param TIM1_InputTriggerSource specifies Input Trigger source.
* This parameter can be one of the following values:
* - TIM1_TS_TI1F_ED: TI1 Edge Detector
* - TIM1_TS_TI1FP1: Filtered Timer Input 1
* - TIM1_TS_TI2FP2: Filtered Timer Input 2
* - TIM1_TS_ETRF: External Trigger input
* @retval None
*/
void TIM1_SelectInputTrigger(TIM1_TS_TypeDef TIM1_InputTriggerSource)
{
/* Check the parameters */
assert_param(IS_TIM1_TRIGGER_SELECTION_OK(TIM1_InputTriggerSource));
/* Select the Tgigger Source */
TIM1->SMCR = (uint8_t)((uint8_t)(TIM1->SMCR & (uint8_t)(~TIM1_SMCR_TS)) | (uint8_t)TIM1_InputTriggerSource);
}
/**
* @brief Enables or Disables the TIM1 Update event.
* @param NewState new state of the TIM1 peripheral Preload register. This parameter can
* be ENABLE or DISABLE.
* @retval None
*/
void TIM1_UpdateDisableConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the UDIS Bit */
if (NewState != DISABLE)
{
TIM1->CR1 |= TIM1_CR1_UDIS;
}
else
{
TIM1->CR1 &= (uint8_t)(~TIM1_CR1_UDIS);
}
}
/**
* @brief Selects the TIM1 Update Request Interrupt source.
* @param TIM1_UpdateSource specifies the Update source.
* This parameter can be one of the following values
* - TIM1_UPDATESOURCE_REGULAR
* - TIM1_UPDATESOURCE_GLOBAL
* @retval None
*/
void TIM1_UpdateRequestConfig(TIM1_UpdateSource_TypeDef TIM1_UpdateSource)
{
/* Check the parameters */
assert_param(IS_TIM1_UPDATE_SOURCE_OK(TIM1_UpdateSource));
/* Set or Reset the URS Bit */
if (TIM1_UpdateSource != TIM1_UPDATESOURCE_GLOBAL)
{
TIM1->CR1 |= TIM1_CR1_URS;
}
else
{
TIM1->CR1 &= (uint8_t)(~TIM1_CR1_URS);
}
}
/**
* @brief Enables or Disables the TIM1<EFBFBD>s Hall sensor interface.
* @param NewState new state of the TIM1 Hall sensor interface.This parameter can
* be ENABLE or DISABLE.
* @retval None
*/
void TIM1_SelectHallSensor(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the TI1S Bit */
if (NewState != DISABLE)
{
TIM1->CR2 |= TIM1_CR2_TI1S;
}
else
{
TIM1->CR2 &= (uint8_t)(~TIM1_CR2_TI1S);
}
}
/**
* @brief Selects the TIM1<EFBFBD>s One Pulse Mode.
* @param TIM1_OPMode specifies the OPM Mode to be used.
* This parameter can be one of the following values
* - TIM1_OPMODE_SINGLE
* - TIM1_OPMODE_REPETITIVE
* @retval None
*/
void TIM1_SelectOnePulseMode(TIM1_OPMode_TypeDef TIM1_OPMode)
{
/* Check the parameters */
assert_param(IS_TIM1_OPM_MODE_OK(TIM1_OPMode));
/* Set or Reset the OPM Bit */
if (TIM1_OPMode != TIM1_OPMODE_REPETITIVE)
{
TIM1->CR1 |= TIM1_CR1_OPM;
}
else
{
TIM1->CR1 &= (uint8_t)(~TIM1_CR1_OPM);
}
}
/**
* @brief Selects the TIM1 Trigger Output Mode.
* @param TIM1_TRGOSource specifies the Trigger Output source.
* This parameter can be one of the following values
* - TIM1_TRGOSOURCE_RESET
* - TIM1_TRGOSOURCE_ENABLE
* - TIM1_TRGOSOURCE_UPDATE
* - TIM1_TRGOSource_OC1
* - TIM1_TRGOSOURCE_OC1REF
* - TIM1_TRGOSOURCE_OC2REF
* - TIM1_TRGOSOURCE_OC3REF
* @retval None
*/
void TIM1_SelectOutputTrigger(TIM1_TRGOSource_TypeDef TIM1_TRGOSource)
{
/* Check the parameters */
assert_param(IS_TIM1_TRGO_SOURCE_OK(TIM1_TRGOSource));
/* Reset the MMS Bits & Select the TRGO source */
TIM1->CR2 = (uint8_t)((uint8_t)(TIM1->CR2 & (uint8_t)(~TIM1_CR2_MMS)) |
(uint8_t) TIM1_TRGOSource);
}
/**
* @brief Selects the TIM1 Slave Mode.
* @param TIM1_SlaveMode specifies the TIM1 Slave Mode.
* This parameter can be one of the following values
* - TIM1_SLAVEMODE_RESET
* - TIM1_SLAVEMODE_GATED
* - TIM1_SLAVEMODE_TRIGGER
* - TIM1_SLAVEMODE_EXTERNAL1
* @retval None
*/
void TIM1_SelectSlaveMode(TIM1_SlaveMode_TypeDef TIM1_SlaveMode)
{
/* Check the parameters */
assert_param(IS_TIM1_SLAVE_MODE_OK(TIM1_SlaveMode));
/* Reset the SMS Bits */ /* Select the Slave Mode */
TIM1->SMCR = (uint8_t)((uint8_t)(TIM1->SMCR & (uint8_t)(~TIM1_SMCR_SMS)) |
(uint8_t)TIM1_SlaveMode);
}
/**
* @brief Sets or Resets the TIM1 Master/Slave Mode.
* @param NewState new state of the synchronization between TIM1 and its slaves
* (through TRGO). This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_SelectMasterSlaveMode(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the MSM Bit */
if (NewState != DISABLE)
{
TIM1->SMCR |= TIM1_SMCR_MSM;
}
else
{
TIM1->SMCR &= (uint8_t)(~TIM1_SMCR_MSM);
}
}
/**
* @brief Configures the TIM1 Encoder Interface.
* @param TIM1_EncoderMode specifies the TIM1 Encoder Mode.
* This parameter can be one of the following values
* - TIM1_ENCODERMODE_TI1: Counter counts on TI1FP1 edge
* depending on TI2FP2 level.
* - TIM1_ENCODERMODE_TI2: Counter counts on TI2FP2 edge
* depending on TI1FP1 level.
* - TIM1_ENCODERMODE_TI12: Counter counts on both TI1FP1 and
* TI2FP2 edges depending on the level of the other input.
* @param TIM1_IC1Polarity specifies the IC1 Polarity.
* This parameter can be one of the following values
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @param TIM1_IC2Polarity specifies the IC2 Polarity.
* This parameter can be one of the following values
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @retval None
*/
void TIM1_EncoderInterfaceConfig(TIM1_EncoderMode_TypeDef TIM1_EncoderMode,
TIM1_ICPolarity_TypeDef TIM1_IC1Polarity,
TIM1_ICPolarity_TypeDef TIM1_IC2Polarity)
{
/* Check the parameters */
assert_param(IS_TIM1_ENCODER_MODE_OK(TIM1_EncoderMode));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_IC1Polarity));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_IC2Polarity));
/* Set the TI1 and the TI2 Polarities */
if (TIM1_IC1Polarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER1 |= TIM1_CCER1_CC1P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1P);
}
if (TIM1_IC2Polarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER1 |= TIM1_CCER1_CC2P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2P);
}
/* Set the encoder Mode */
TIM1->SMCR = (uint8_t)((uint8_t)(TIM1->SMCR & (uint8_t)(TIM1_SMCR_MSM | TIM1_SMCR_TS))
| (uint8_t) TIM1_EncoderMode);
/* Select the Capture Compare 1 and the Capture Compare 2 as input */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_CCxS))
| (uint8_t) CCMR_TIxDirect_Set);
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~TIM1_CCMR_CCxS))
| (uint8_t) CCMR_TIxDirect_Set);
}
/**
* @brief Configures the TIM1 Prescaler.
* @param Prescaler specifies the Prescaler Register value
* This parameter must be a value between 0x0000 and 0xFFFF
* @param TIM1_PSCReloadMode specifies the TIM1 Prescaler Reload mode.
* This parameter can be one of the following values
* - TIM1_PSCRELOADMODE_IMMEDIATE: The Prescaler is loaded immediately.
* - TIM1_PSCRELOADMODE_UPDATE: The Prescaler is loaded at the update event.
* @retval None
*/
void TIM1_PrescalerConfig(uint16_t Prescaler,
TIM1_PSCReloadMode_TypeDef TIM1_PSCReloadMode)
{
/* Check the parameters */
assert_param(IS_TIM1_PRESCALER_RELOAD_OK(TIM1_PSCReloadMode));
/* Set the Prescaler value */
TIM1->PSCRH = (uint8_t)(Prescaler >> 8);
TIM1->PSCRL = (uint8_t)(Prescaler);
/* Set or reset the UG Bit */
TIM1->EGR = (uint8_t)TIM1_PSCReloadMode;
}
/**
* @brief Specifies the TIM1 Counter Mode to be used.
* @param TIM1_CounterMode specifies the Counter Mode to be used
* This parameter can be one of the following values:
* - TIM1_COUNTERMODE_UP: TIM1 Up Counting Mode
* - TIM1_COUNTERMODE_DOWN: TIM1 Down Counting Mode
* - TIM1_COUNTERMODE_CENTERALIGNED1: TIM1 Center Aligned Mode1
* - TIM1_CounterMode_CenterAligned2: TIM1 Center Aligned Mode2
* - TIM1_COUNTERMODE_CENTERALIGNED3: TIM1 Center Aligned Mode3
* @retval None
*/
void TIM1_CounterModeConfig(TIM1_CounterMode_TypeDef TIM1_CounterMode)
{
/* Check the parameters */
assert_param(IS_TIM1_COUNTER_MODE_OK(TIM1_CounterMode));
/* Reset the CMS and DIR Bits & Set the Counter Mode */
TIM1->CR1 = (uint8_t)((uint8_t)(TIM1->CR1 & (uint8_t)((uint8_t)(~TIM1_CR1_CMS) & (uint8_t)(~TIM1_CR1_DIR)))
| (uint8_t)TIM1_CounterMode);
}
/**
* @brief Forces the TIM1 Channel1 output waveform to active or inactive level.
* @param TIM1_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM1_FORCEDACTION_ACTIVE: Force active level on OC1REF
* - TIM1_FORCEDACTION_INACTIVE: Force inactive level on OC1REF.
* @retval None
*/
void TIM1_ForcedOC1Config(TIM1_ForcedAction_TypeDef TIM1_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM1_FORCED_ACTION_OK(TIM1_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_OCM))|
(uint8_t)TIM1_ForcedAction);
}
/**
* @brief Forces the TIM1 Channel2 output waveform to active or inactive level.
* @param TIM1_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM1_FORCEDACTION_ACTIVE: Force active level on OC2REF
* - TIM1_FORCEDACTION_INACTIVE: Force inactive level on OC2REF.
* @retval None
*/
void TIM1_ForcedOC2Config(TIM1_ForcedAction_TypeDef TIM1_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM1_FORCED_ACTION_OK(TIM1_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_ForcedAction);
}
/**
* @brief Forces the TIM1 Channel3 output waveform to active or inactive level.
* @param TIM1_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM1_FORCEDACTION_ACTIVE: Force active level on OC3REF
* - TIM1_FORCEDACTION_INACTIVE: Force inactive level on
* OC3REF.
* @retval None
*/
void TIM1_ForcedOC3Config(TIM1_ForcedAction_TypeDef TIM1_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM1_FORCED_ACTION_OK(TIM1_ForcedAction));
/* Reset the OCM Bits */ /* Configure The Forced output Mode */
TIM1->CCMR3 = (uint8_t)((uint8_t)(TIM1->CCMR3 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_ForcedAction);
}
/**
* @brief Forces the TIM1 Channel4 output waveform to active or inactive level.
* @param TIM1_ForcedAction specifies the forced Action to be set to the output waveform.
* This parameter can be one of the following values:
* - TIM1_FORCEDACTION_ACTIVE: Force active level on OC4REF
* - TIM1_FORCEDACTION_INACTIVE: Force inactive level on
* OC4REF.
* @retval None
*/
void TIM1_ForcedOC4Config(TIM1_ForcedAction_TypeDef TIM1_ForcedAction)
{
/* Check the parameters */
assert_param(IS_TIM1_FORCED_ACTION_OK(TIM1_ForcedAction));
/* Reset the OCM Bits & Configure the Forced output Mode */
TIM1->CCMR4 = (uint8_t)((uint8_t)(TIM1->CCMR4 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_ForcedAction);
}
/**
* @brief Enables or disables TIM1 peripheral Preload register on ARR.
* @param NewState new state of the TIM1 peripheral Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_ARRPreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the ARPE Bit */
if (NewState != DISABLE)
{
TIM1->CR1 |= TIM1_CR1_ARPE;
}
else
{
TIM1->CR1 &= (uint8_t)(~TIM1_CR1_ARPE);
}
}
/**
* @brief Selects the TIM1 peripheral Commutation event.
* @param NewState new state of the Commutation event.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_SelectCOM(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the COMS Bit */
if (NewState != DISABLE)
{
TIM1->CR2 |= TIM1_CR2_COMS;
}
else
{
TIM1->CR2 &= (uint8_t)(~TIM1_CR2_COMS);
}
}
/**
* @brief Sets or Resets the TIM1 peripheral Capture Compare Preload Control bit.
* @param NewState new state of the Capture Compare Preload Control bit.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_CCPreloadControl(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the CCPC Bit */
if (NewState != DISABLE)
{
TIM1->CR2 |= TIM1_CR2_CCPC;
}
else
{
TIM1->CR2 &= (uint8_t)(~TIM1_CR2_CCPC);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Preload Register on CCR1.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC1PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC1PE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR1 |= TIM1_CCMR_OCxPE;
}
else
{
TIM1->CCMR1 &= (uint8_t)(~TIM1_CCMR_OCxPE);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Preload Register on CCR2.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC2PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC2PE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR2 |= TIM1_CCMR_OCxPE;
}
else
{
TIM1->CCMR2 &= (uint8_t)(~TIM1_CCMR_OCxPE);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Preload Register on CCR3.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC3PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC3PE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR3 |= TIM1_CCMR_OCxPE;
}
else
{
TIM1->CCMR3 &= (uint8_t)(~TIM1_CCMR_OCxPE);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Preload Register on CCR4.
* @param NewState new state of the Capture Compare Preload register.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC4PreloadConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC4PE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR4 |= TIM1_CCMR_OCxPE;
}
else
{
TIM1->CCMR4 &= (uint8_t)(~TIM1_CCMR_OCxPE);
}
}
/**
* @brief Configures the TIM1 Capture Compare 1 Fast feature.
* @param NewState new state of the Output Compare Fast Enable bit.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC1FastConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC1FE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR1 |= TIM1_CCMR_OCxFE;
}
else
{
TIM1->CCMR1 &= (uint8_t)(~TIM1_CCMR_OCxFE);
}
}
/**
* @brief Configures the TIM1 Capture Compare 2 Fast feature.
* @param NewState new state of the Output Compare Fast Enable bit.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC2FastConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC2FE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR2 |= TIM1_CCMR_OCxFE;
}
else
{
TIM1->CCMR2 &= (uint8_t)(~TIM1_CCMR_OCxFE);
}
}
/**
* @brief Configures the TIM1 Capture Compare 3 Fast feature.
* @param NewState new state of the Output Compare Fast Enable bit.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC3FastConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC3FE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR3 |= TIM1_CCMR_OCxFE;
}
else
{
TIM1->CCMR3 &= (uint8_t)(~TIM1_CCMR_OCxFE);
}
}
/**
* @brief Configures the TIM1 Capture Compare 4 Fast feature.
* @param NewState new state of the Output Compare Fast Enable bit.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void TIM1_OC4FastConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the OC4FE Bit */
if (NewState != DISABLE)
{
TIM1->CCMR4 |= TIM1_CCMR_OCxFE;
}
else
{
TIM1->CCMR4 &= (uint8_t)(~TIM1_CCMR_OCxFE);
}
}
/**
* @brief Configures the TIM1 event to be generated by software.
* @param TIM1_EventSource specifies the event source.
* This parameter can be one of the following values:
* - TIM1_EVENTSOURCE_UPDATE: TIM1 update Event source
* - TIM1_EVENTSOURCE_CC1: TIM1 Capture Compare 1 Event source
* - TIM1_EVENTSOURCE_CC2: TIM1 Capture Compare 2 Event source
* - TIM1_EVENTSOURCE_CC3: TIM1 Capture Compare 3 Event source
* - TIM1_EVENTSOURCE_CC4: TIM1 Capture Compare 4 Event source
* - TIM1_EVENTSOURCE_COM: TIM1 COM Event source
* - TIM1_EVENTSOURCE_TRIGGER: TIM1 Trigger Event source
* - TIM1_EventSourceBreak: TIM1 Break Event source
* @retval None
*/
void TIM1_GenerateEvent(TIM1_EventSource_TypeDef TIM1_EventSource)
{
/* Check the parameters */
assert_param(IS_TIM1_EVENT_SOURCE_OK(TIM1_EventSource));
/* Set the event sources */
TIM1->EGR = (uint8_t)TIM1_EventSource;
}
/**
* @brief Configures the TIM1 Channel 1 polarity.
* @param TIM1_OCPolarity specifies the OC1 Polarity.
* This parameter can be one of the following values:
* - TIM1_OCPOLARITY_LOW: Output Compare active low
* - TIM1_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC1PolarityConfig(TIM1_OCPolarity_TypeDef TIM1_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
/* Set or Reset the CC1P Bit */
if (TIM1_OCPolarity != TIM1_OCPOLARITY_HIGH)
{
TIM1->CCER1 |= TIM1_CCER1_CC1P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1P);
}
}
/**
* @brief Configures the TIM1 Channel 1N polarity.
* @param TIM1_OCNPolarity specifies the OC1N Polarity.
* This parameter can be one of the following values:
* - TIM1_OCNPOLARITY_LOW: Output Compare active low
* - TIM1_OCNPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC1NPolarityConfig(TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
/* Set or Reset the CC3P Bit */
if (TIM1_OCNPolarity != TIM1_OCNPOLARITY_HIGH)
{
TIM1->CCER1 |= TIM1_CCER1_CC1NP;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1NP);
}
}
/**
* @brief Configures the TIM1 Channel 2 polarity.
* @param TIM1_OCPolarity specifies the OC2 Polarity.
* This parameter can be one of the following values:
* - TIM1_OCPOLARITY_LOW: Output Compare active low
* - TIM1_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC2PolarityConfig(TIM1_OCPolarity_TypeDef TIM1_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
/* Set or Reset the CC2P Bit */
if (TIM1_OCPolarity != TIM1_OCPOLARITY_HIGH)
{
TIM1->CCER1 |= TIM1_CCER1_CC2P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2P);
}
}
/**
* @brief Configures the TIM1 Channel 2N polarity.
* @param TIM1_OCNPolarity specifies the OC2N Polarity.
* This parameter can be one of the following values:
* - TIM1_OCNPOLARITY_LOW: Output Compare active low
* - TIM1_OCNPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC2NPolarityConfig(TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
/* Set or Reset the CC3P Bit */
if (TIM1_OCNPolarity != TIM1_OCNPOLARITY_HIGH)
{
TIM1->CCER1 |= TIM1_CCER1_CC2NP;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2NP);
}
}
/**
* @brief Configures the TIM1 Channel 3 polarity.
* @param TIM1_OCPolarity specifies the OC3 Polarity.
* This parameter can be one of the following values:
* - TIM1_OCPOLARITY_LOW: Output Compare active low
* - TIM1_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC3PolarityConfig(TIM1_OCPolarity_TypeDef TIM1_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
/* Set or Reset the CC3P Bit */
if (TIM1_OCPolarity != TIM1_OCPOLARITY_HIGH)
{
TIM1->CCER2 |= TIM1_CCER2_CC3P;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3P);
}
}
/**
* @brief Configures the TIM1 Channel 3N polarity.
* @param TIM1_OCNPolarity specifies the OC3N Polarity.
* This parameter can be one of the following values:
* - TIM1_OCNPOLARITY_LOW: Output Compare active low
* - TIM1_OCNPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC3NPolarityConfig(TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OCN_POLARITY_OK(TIM1_OCNPolarity));
/* Set or Reset the CC3P Bit */
if (TIM1_OCNPolarity != TIM1_OCNPOLARITY_HIGH)
{
TIM1->CCER2 |= TIM1_CCER2_CC3NP;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3NP);
}
}
/**
* @brief Configures the TIM1 Channel 4 polarity.
* @param TIM1_OCPolarity specifies the OC4 Polarity.
* This parameter can be one of the following values:
* - TIM1_OCPOLARITY_LOW: Output Compare active low
* - TIM1_OCPOLARITY_HIGH: Output Compare active high
* @retval None
*/
void TIM1_OC4PolarityConfig(TIM1_OCPolarity_TypeDef TIM1_OCPolarity)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
/* Set or Reset the CC4P Bit */
if (TIM1_OCPolarity != TIM1_OCPOLARITY_HIGH)
{
TIM1->CCER2 |= TIM1_CCER2_CC4P;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC4P);
}
}
/**
* @brief Enables or disables the TIM1 Capture Compare Channel x (x=1,..,4).
* @param TIM1_Channel specifies the TIM1 Channel.
* This parameter can be one of the following values:
* - TIM1_CHANNEL_1: TIM1 Channel1
* - TIM1_CHANNEL_2: TIM1 Channel2
* - TIM1_CHANNEL_3: TIM1 Channel3
* - TIM1_CHANNEL_4: TIM1 Channel4
* @param NewState specifies the TIM1 Channel CCxE bit new state.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void TIM1_CCxCmd(TIM1_Channel_TypeDef TIM1_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_TIM1_CHANNEL_OK(TIM1_Channel));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* Set or Reset the CC1E Bit */
if (NewState != DISABLE)
{
TIM1->CCER1 |= TIM1_CCER1_CC1E;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1E);
}
}
else if (TIM1_Channel == TIM1_CHANNEL_2)
{
/* Set or Reset the CC2E Bit */
if (NewState != DISABLE)
{
TIM1->CCER1 |= TIM1_CCER1_CC2E;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2E);
}
}
else if (TIM1_Channel == TIM1_CHANNEL_3)
{
/* Set or Reset the CC3E Bit */
if (NewState != DISABLE)
{
TIM1->CCER2 |= TIM1_CCER2_CC3E;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3E);
}
}
else
{
/* Set or Reset the CC4E Bit */
if (NewState != DISABLE)
{
TIM1->CCER2 |= TIM1_CCER2_CC4E;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC4E);
}
}
}
/**
* @brief Enables or disables the TIM1 Capture Compare Channel xN (xN=1,..,3).
* @param TIM1_Channel specifies the TIM1 Channel.
* This parameter can be one of the following values:
* - TIM1_CHANNEL_1: TIM1 Channel1
* - TIM1_CHANNEL_2: TIM1 Channel2
* - TIM1_CHANNEL_3: TIM1 Channel3
* @param NewState specifies the TIM1 Channel CCxNE bit new state.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void TIM1_CCxNCmd(TIM1_Channel_TypeDef TIM1_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_TIM1_COMPLEMENTARY_CHANNEL_OK(TIM1_Channel));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* Set or Reset the CC1NE Bit */
if (NewState != DISABLE)
{
TIM1->CCER1 |= TIM1_CCER1_CC1NE;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1NE);
}
}
else if (TIM1_Channel == TIM1_CHANNEL_2)
{
/* Set or Reset the CC2NE Bit */
if (NewState != DISABLE)
{
TIM1->CCER1 |= TIM1_CCER1_CC2NE;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2NE);
}
}
else
{
/* Set or Reset the CC3NE Bit */
if (NewState != DISABLE)
{
TIM1->CCER2 |= TIM1_CCER2_CC3NE;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3NE);
}
}
}
/**
* @brief Selects the TIM1 Output Compare Mode. This function disables the
* selected channel before changing the Output Compare Mode. User has to
* enable this channel using TIM1_CCxCmd and TIM1_CCxNCmd functions.
* @param TIM1_Channel specifies the TIM1 Channel.
* This parameter can be one of the following values:
* - TIM1_CHANNEL_1: TIM1 Channel1
* - TIM1_CHANNEL_2: TIM1 Channel2
* - TIM1_CHANNEL_3: TIM1 Channel3
* - TIM1_CHANNEL_4: TIM1 Channel4
* @param TIM1_OCMode specifies the TIM1 Output Compare Mode.
* This parameter can be one of the following values:
* - TIM1_OCMODE_TIMING
* - TIM1_OCMODE_ACTIVE
* - TIM1_OCMODE_TOGGLE
* - TIM1_OCMODE_PWM1
* - TIM1_OCMODE_PWM2
* - TIM1_FORCEDACTION_ACTIVE
* - TIM1_FORCEDACTION_INACTIVE
* @retval None
*/
void TIM1_SelectOCxM(TIM1_Channel_TypeDef TIM1_Channel, TIM1_OCMode_TypeDef TIM1_OCMode)
{
/* Check the parameters */
assert_param(IS_TIM1_CHANNEL_OK(TIM1_Channel));
assert_param(IS_TIM1_OCM_OK(TIM1_OCMode));
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* Disable the Channel 1: Reset the CCE Bit */
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_OCMode);
}
else if (TIM1_Channel == TIM1_CHANNEL_2)
{
/* Disable the Channel 2: Reset the CCE Bit */
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_OCMode);
}
else if (TIM1_Channel == TIM1_CHANNEL_3)
{
/* Disable the Channel 3: Reset the CCE Bit */
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR3 = (uint8_t)((uint8_t)(TIM1->CCMR3 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_OCMode);
}
else
{
/* Disable the Channel 4: Reset the CCE Bit */
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC4E);
/* Reset the Output Compare Bits & Set the Output Compare Mode */
TIM1->CCMR4 = (uint8_t)((uint8_t)(TIM1->CCMR4 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_OCMode);
}
}
/**
* @brief Sets the TIM1 Counter Register value.
* @param Counter specifies the Counter register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetCounter(uint16_t Counter)
{
/* Set the Counter Register value */
TIM1->CNTRH = (uint8_t)(Counter >> 8);
TIM1->CNTRL = (uint8_t)(Counter);
}
/**
* @brief Sets the TIM1 Autoreload Register value.
* @param Autoreload specifies the Autoreload register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetAutoreload(uint16_t Autoreload)
{
/* Set the Autoreload Register value */
TIM1->ARRH = (uint8_t)(Autoreload >> 8);
TIM1->ARRL = (uint8_t)(Autoreload);
}
/**
* @brief Sets the TIM1 Capture Compare1 Register value.
* @param Compare1 specifies the Capture Compare1 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetCompare1(uint16_t Compare1)
{
/* Set the Capture Compare1 Register value */
TIM1->CCR1H = (uint8_t)(Compare1 >> 8);
TIM1->CCR1L = (uint8_t)(Compare1);
}
/**
* @brief Sets the TIM1 Capture Compare2 Register value.
* @param Compare2 specifies the Capture Compare2 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetCompare2(uint16_t Compare2)
{
/* Set the Capture Compare2 Register value */
TIM1->CCR2H = (uint8_t)(Compare2 >> 8);
TIM1->CCR2L = (uint8_t)(Compare2);
}
/**
* @brief Sets the TIM1 Capture Compare3 Register value.
* @param Compare3 specifies the Capture Compare3 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetCompare3(uint16_t Compare3)
{
/* Set the Capture Compare3 Register value */
TIM1->CCR3H = (uint8_t)(Compare3 >> 8);
TIM1->CCR3L = (uint8_t)(Compare3);
}
/**
* @brief Sets the TIM1 Capture Compare4 Register value.
* @param Compare4 specifies the Capture Compare4 register new value.
* This parameter is between 0x0000 and 0xFFFF.
* @retval None
*/
void TIM1_SetCompare4(uint16_t Compare4)
{
/* Set the Capture Compare4 Register value */
TIM1->CCR4H = (uint8_t)(Compare4 >> 8);
TIM1->CCR4L = (uint8_t)(Compare4);
}
/**
* @brief Sets the TIM1 Input Capture 1 prescaler.
* @param TIM1_IC1Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM1_ICPSC_DIV1: no prescaler
* - TIM1_ICPSC_DIV2: capture is done once every 2 events
* - TIM1_ICPSC_DIV4: capture is done once every 4 events
* - TIM1_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
void TIM1_SetIC1Prescaler(TIM1_ICPSC_TypeDef TIM1_IC1Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_IC1Prescaler));
/* Reset the IC1PSC Bits */ /* Set the IC1PSC value */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_ICxPSC))
| (uint8_t)TIM1_IC1Prescaler);
}
/**
* @brief Sets the TIM1 Input Capture 2 prescaler.
* @param TIM1_IC2Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM1_ICPSC_DIV1: no prescaler
* - TIM1_ICPSC_DIV2: capture is done once every 2 events
* - TIM1_ICPSC_DIV4: capture is done once every 4 events
* - TIM1_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
void TIM1_SetIC2Prescaler(TIM1_ICPSC_TypeDef TIM1_IC2Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_IC2Prescaler));
/* Reset the IC1PSC Bits */ /* Set the IC1PSC value */
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~TIM1_CCMR_ICxPSC))
| (uint8_t)TIM1_IC2Prescaler);
}
/**
* @brief Sets the TIM1 Input Capture 3 prescaler.
* @param TIM1_IC3Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM1_ICPSC_DIV1: no prescaler
* - TIM1_ICPSC_DIV2: capture is done once every 2 events
* - TIM1_ICPSC_DIV4: capture is done once every 4 events
* - TIM1_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
void TIM1_SetIC3Prescaler(TIM1_ICPSC_TypeDef TIM1_IC3Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_IC3Prescaler));
/* Reset the IC1PSC Bits & Set the IC1PSC value */
TIM1->CCMR3 = (uint8_t)((uint8_t)(TIM1->CCMR3 & (uint8_t)(~TIM1_CCMR_ICxPSC)) |
(uint8_t)TIM1_IC3Prescaler);
}
/**
* @brief Sets the TIM1 Input Capture 4 prescaler.
* @param TIM1_IC4Prescaler specifies the Input Capture prescaler new value
* This parameter can be one of the following values:
* - TIM1_ICPSC_DIV1: no prescaler
* - TIM1_ICPSC_DIV2: capture is done once every 2 events
* - TIM1_ICPSC_DIV4: capture is done once every 4 events
* - TIM1_ICPSC_DIV8: capture is done once every 8 events
* @retval None
*/
void TIM1_SetIC4Prescaler(TIM1_ICPSC_TypeDef TIM1_IC4Prescaler)
{
/* Check the parameters */
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_IC4Prescaler));
/* Reset the IC1PSC Bits & Set the IC1PSC value */
TIM1->CCMR4 = (uint8_t)((uint8_t)(TIM1->CCMR4 & (uint8_t)(~TIM1_CCMR_ICxPSC)) |
(uint8_t)TIM1_IC4Prescaler);
}
/**
* @brief Gets the TIM1 Input Capture 1 value.
* @param None
* @retval Capture Compare 1 Register value.
*/
uint16_t TIM1_GetCapture1(void)
{
/* Get the Capture 1 Register value */
uint16_t tmpccr1 = 0;
uint8_t tmpccr1l=0, tmpccr1h=0;
tmpccr1h = TIM1->CCR1H;
tmpccr1l = TIM1->CCR1L;
tmpccr1 = (uint16_t)(tmpccr1l);
tmpccr1 |= (uint16_t)((uint16_t)tmpccr1h << 8);
/* Get the Capture 1 Register value */
return (uint16_t)tmpccr1;
}
/**
* @brief Gets the TIM1 Input Capture 2 value.
* @param None
* @retval Capture Compare 2 Register value.
*/
uint16_t TIM1_GetCapture2(void)
{
/* Get the Capture 2 Register value */
uint16_t tmpccr2 = 0;
uint8_t tmpccr2l=0, tmpccr2h=0;
tmpccr2h = TIM1->CCR2H;
tmpccr2l = TIM1->CCR2L;
tmpccr2 = (uint16_t)(tmpccr2l);
tmpccr2 |= (uint16_t)((uint16_t)tmpccr2h << 8);
/* Get the Capture 2 Register value */
return (uint16_t)tmpccr2;
}
/**
* @brief Gets the TIM1 Input Capture 3 value.
* @param None
* @retval Capture Compare 3 Register value.
*/
uint16_t TIM1_GetCapture3(void)
{
/* Get the Capture 3 Register value */
uint16_t tmpccr3 = 0;
uint8_t tmpccr3l=0, tmpccr3h=0;
tmpccr3h = TIM1->CCR3H;
tmpccr3l = TIM1->CCR3L;
tmpccr3 = (uint16_t)(tmpccr3l);
tmpccr3 |= (uint16_t)((uint16_t)tmpccr3h << 8);
/* Get the Capture 3 Register value */
return (uint16_t)tmpccr3;
}
/**
* @brief Gets the TIM1 Input Capture 4 value.
* @param None
* @retval Capture Compare 4 Register value.
*/
uint16_t TIM1_GetCapture4(void)
{
/* Get the Capture 4 Register value */
uint16_t tmpccr4 = 0;
uint8_t tmpccr4l=0, tmpccr4h=0;
tmpccr4h = TIM1->CCR4H;
tmpccr4l = TIM1->CCR4L;
tmpccr4 = (uint16_t)(tmpccr4l);
tmpccr4 |= (uint16_t)((uint16_t)tmpccr4h << 8);
/* Get the Capture 4 Register value */
return (uint16_t)tmpccr4;
}
/**
* @brief Gets the TIM1 Counter value.
* @param None
* @retval Counter Register value.
*/
uint16_t TIM1_GetCounter(void)
{
uint16_t tmpcntr = 0;
tmpcntr = ((uint16_t)TIM1->CNTRH << 8);
/* Get the Counter Register value */
return (uint16_t)(tmpcntr | (uint16_t)(TIM1->CNTRL));
}
/**
* @brief Gets the TIM1 Prescaler value.
* @param None
* @retval Prescaler Register value.
*/
uint16_t TIM1_GetPrescaler(void)
{
uint16_t temp = 0;
temp = ((uint16_t)TIM1->PSCRH << 8);
/* Get the Prescaler Register value */
return (uint16_t)( temp | (uint16_t)(TIM1->PSCRL));
}
/**
* @brief Checks whether the specified TIM1 flag is set or not.
* @param TIM1_FLAG specifies the flag to check.
* This parameter can be one of the following values:
* - TIM1_FLAG_UPDATE: TIM1 update Flag
* - TIM1_FLAG_CC1: TIM1 Capture Compare 1 Flag
* - TIM1_FLAG_CC2: TIM1 Capture Compare 2 Flag
* - TIM1_FLAG_CC3: TIM1 Capture Compare 3 Flag
* - TIM1_FLAG_CC4: TIM1 Capture Compare 4 Flag
* - TIM1_FLAG_COM: TIM1 Commutation Flag
* - TIM1_FLAG_TRIGGER: TIM1 Trigger Flag
* - TIM1_FLAG_BREAK: TIM1 Break Flag
* - TIM1_FLAG_CC1OF: TIM1 Capture Compare 1 overcapture Flag
* - TIM1_FLAG_CC2OF: TIM1 Capture Compare 2 overcapture Flag
* - TIM1_FLAG_CC3OF: TIM1 Capture Compare 3 overcapture Flag
* - TIM1_FLAG_CC4OF: TIM1 Capture Compare 4 overcapture Flag
* @retval FlagStatus The new state of TIM1_FLAG (SET or RESET).
*/
FlagStatus TIM1_GetFlagStatus(TIM1_FLAG_TypeDef TIM1_FLAG)
{
FlagStatus bitstatus = RESET;
uint8_t tim1_flag_l = 0, tim1_flag_h = 0;
/* Check the parameters */
assert_param(IS_TIM1_GET_FLAG_OK(TIM1_FLAG));
tim1_flag_l = (uint8_t)(TIM1->SR1 & (uint8_t)TIM1_FLAG);
tim1_flag_h = (uint8_t)((uint16_t)TIM1_FLAG >> 8);
if ((tim1_flag_l | (uint8_t)(TIM1->SR2 & tim1_flag_h)) != 0)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return (FlagStatus)(bitstatus);
}
/**
* @brief Clears the TIM1<EFBFBD>s pending flags.
* @param TIM1_FLAG specifies the flag to clear.
* This parameter can be one of the following values:
* - TIM1_FLAG_UPDATE: TIM1 update Flag
* - TIM1_FLAG_CC1: TIM1 Capture Compare 1 Flag
* - TIM1_FLAG_CC2: TIM1 Capture Compare 2 Flag
* - TIM1_FLAG_CC3: TIM1 Capture Compare 3 Flag
* - TIM1_FLAG_CC4: TIM1 Capture Compare 4 Flag
* - TIM1_FLAG_COM: TIM1 Commutation Flag
* - TIM1_FLAG_TRIGGER: TIM1 Trigger Flag
* - TIM1_FLAG_BREAK: TIM1 Break Flag
* - TIM1_FLAG_CC1OF: TIM1 Capture Compare 1 overcapture Flag
* - TIM1_FLAG_CC2OF: TIM1 Capture Compare 2 overcapture Flag
* - TIM1_FLAG_CC3OF: TIM1 Capture Compare 3 overcapture Flag
* - TIM1_FLAG_CC4OF: TIM1 Capture Compare 4 overcapture Flag
* @retval None.
*/
void TIM1_ClearFlag(TIM1_FLAG_TypeDef TIM1_FLAG)
{
/* Check the parameters */
assert_param(IS_TIM1_CLEAR_FLAG_OK(TIM1_FLAG));
/* Clear the flags (rc_w0) clear this bit by writing 0. Writing <EFBFBD>1<EFBFBD> has no effect*/
TIM1->SR1 = (uint8_t)(~(uint8_t)(TIM1_FLAG));
TIM1->SR2 = (uint8_t)((uint8_t)(~((uint8_t)((uint16_t)TIM1_FLAG >> 8))) &
(uint8_t)0x1E);
}
/**
* @brief Checks whether the TIM1 interrupt has occurred or not.
* @param TIM1_IT specifies the TIM1 interrupt source to check.
* This parameter can be one of the following values:
* - TIM1_IT_UPDATE: TIM1 update Interrupt source
* - TIM1_IT_CC1: TIM1 Capture Compare 1 Interrupt source
* - TIM1_IT_CC2: TIM1 Capture Compare 2 Interrupt source
* - TIM1_IT_CC3: TIM1 Capture Compare 3 Interrupt source
* - TIM1_IT_CC4: TIM1 Capture Compare 4 Interrupt source
* - TIM1_IT_COM: TIM1 Commutation Interrupt source
* - TIM1_IT_TRIGGER: TIM1 Trigger Interrupt source
* - TIM1_IT_BREAK: TIM1 Break Interrupt source
* @retval ITStatus The new state of the TIM1_IT(SET or RESET).
*/
ITStatus TIM1_GetITStatus(TIM1_IT_TypeDef TIM1_IT)
{
ITStatus bitstatus = RESET;
uint8_t TIM1_itStatus = 0, TIM1_itEnable = 0;
/* Check the parameters */
assert_param(IS_TIM1_GET_IT_OK(TIM1_IT));
TIM1_itStatus = (uint8_t)(TIM1->SR1 & (uint8_t)TIM1_IT);
TIM1_itEnable = (uint8_t)(TIM1->IER & (uint8_t)TIM1_IT);
if ((TIM1_itStatus != (uint8_t)RESET ) && (TIM1_itEnable != (uint8_t)RESET ))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return (ITStatus)(bitstatus);
}
/**
* @brief Clears the TIM1's interrupt pending bits.
* @param TIM1_IT specifies the pending bit to clear.
* This parameter can be one of the following values:
* - TIM1_IT_UPDATE: TIM1 update Interrupt source
* - TIM1_IT_CC1: TIM1 Capture Compare 1 Interrupt source
* - TIM1_IT_CC2: TIM1 Capture Compare 2 Interrupt source
* - TIM1_IT_CC3: TIM1 Capture Compare 3 Interrupt source
* - TIM1_IT_CC4: TIM1 Capture Compare 4 Interrupt source
* - TIM1_IT_COM: TIM1 Commutation Interrupt source
* - TIM1_IT_TRIGGER: TIM1 Trigger Interrupt source
* - TIM1_IT_BREAK: TIM1 Break Interrupt source
* @retval None.
*/
void TIM1_ClearITPendingBit(TIM1_IT_TypeDef TIM1_IT)
{
/* Check the parameters */
assert_param(IS_TIM1_IT_OK(TIM1_IT));
/* Clear the IT pending Bit */
TIM1->SR1 = (uint8_t)(~(uint8_t)TIM1_IT);
}
/**
* @brief Configure the TI1 as Input.
* @param TIM1_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @param TIM1_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM1_ICSELECTION_DIRECTTI: TIM1 Input 1 is selected to
* be connected to IC1.
* - TIM1_ICSELECTION_INDIRECTTI: TIM1 Input 1 is selected to
* be connected to IC2.
* @param TIM1_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI1_Config(uint8_t TIM1_ICPolarity,
uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter)
{
/* Disable the Channel 1: Reset the CCE Bit */
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1E);
/* Select the Input and set the filter */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~(uint8_t)( TIM1_CCMR_CCxS | TIM1_CCMR_ICxF ))) |
(uint8_t)(( (TIM1_ICSelection)) | ((uint8_t)( TIM1_ICFilter << 4))));
/* Select the Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER1 |= TIM1_CCER1_CC1P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC1P);
}
/* Set the CCE Bit */
TIM1->CCER1 |= TIM1_CCER1_CC1E;
}
/**
* @brief Configure the TI2 as Input.
* @param TIM1_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @param TIM1_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM1_ICSELECTION_DIRECTTI: TIM1 Input 2 is selected to
* be connected to IC2.
* - TIM1_ICSELECTION_INDIRECTTI: TIM1 Input 2 is selected to
* be connected to IC1.
* @param TIM1_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI2_Config(uint8_t TIM1_ICPolarity,
uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter)
{
/* Disable the Channel 2: Reset the CCE Bit */
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2E);
/* Select the Input and set the filter */
TIM1->CCMR2 = (uint8_t)((uint8_t)(TIM1->CCMR2 & (uint8_t)(~(uint8_t)( TIM1_CCMR_CCxS | TIM1_CCMR_ICxF )))
| (uint8_t)(( (TIM1_ICSelection)) | ((uint8_t)( TIM1_ICFilter << 4))));
/* Select the Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER1 |= TIM1_CCER1_CC2P;
}
else
{
TIM1->CCER1 &= (uint8_t)(~TIM1_CCER1_CC2P);
}
/* Set the CCE Bit */
TIM1->CCER1 |= TIM1_CCER1_CC2E;
}
/**
* @brief Configure the TI3 as Input.
* @param TIM1_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @param TIM1_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM1_ICSELECTION_DIRECTTI: TIM1 Input 3 is selected to
* be connected to IC3.
* - TIM1_ICSELECTION_INDIRECTTI: TIM1 Input 3 is selected to
* be connected to IC4.
* @param TIM1_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI3_Config(uint8_t TIM1_ICPolarity,
uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter)
{
/* Disable the Channel 3: Reset the CCE Bit */
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3E);
/* Select the Input and set the filter */
TIM1->CCMR3 = (uint8_t)((uint8_t)(TIM1->CCMR3 & (uint8_t)(~(uint8_t)( TIM1_CCMR_CCxS | TIM1_CCMR_ICxF)))
| (uint8_t)(( (TIM1_ICSelection)) | ((uint8_t)( TIM1_ICFilter << 4))));
/* Select the Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER2 |= TIM1_CCER2_CC3P;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC3P);
}
/* Set the CCE Bit */
TIM1->CCER2 |= TIM1_CCER2_CC3E;
}
/**
* @brief Configure the TI4 as Input.
* @param TIM1_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* - TIM1_ICPOLARITY_FALLING
* - TIM1_ICPOLARITY_RISING
* @param TIM1_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* - TIM1_ICSELECTION_DIRECTTI: TIM1 Input 4 is selected to
* be connected to IC4.
* - TIM1_ICSELECTION_INDIRECTTI: TIM1 Input 4 is selected to
* be connected to IC3.
* @param TIM1_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI4_Config(uint8_t TIM1_ICPolarity,
uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter)
{
/* Disable the Channel 4: Reset the CCE Bit */
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC4E);
/* Select the Input and set the filter */
TIM1->CCMR4 = (uint8_t)((uint8_t)(TIM1->CCMR4 & (uint8_t)(~(uint8_t)( TIM1_CCMR_CCxS | TIM1_CCMR_ICxF )))
| (uint8_t)(( (TIM1_ICSelection)) | ((uint8_t)( TIM1_ICFilter << 4))));
/* Select the Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_RISING)
{
TIM1->CCER2 |= TIM1_CCER2_CC4P;
}
else
{
TIM1->CCER2 &= (uint8_t)(~TIM1_CCER2_CC4P);
}
/* Set the CCE Bit */
TIM1->CCER2 |= TIM1_CCER2_CC4E;
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/