/** ****************************************************************************** * @file stm8s_adc1.c * @author MCD Application Team * @version V2.2.0 * @date 30-September-2014 * @brief This file contains all the functions/macros for the ADC1 peripheral. ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm8s_adc1.h" /** @addtogroup STM8S_StdPeriph_Driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /* Public functions ----------------------------------------------------------*/ /** * @addtogroup ADC1_Public_Functions * @{ */ /** * @brief Deinitializes the ADC1 peripheral registers to their default reset values. * @param None * @retval None */ void ADC1_DeInit(void) { ADC1->CSR = ADC1_CSR_RESET_VALUE; ADC1->CR1 = ADC1_CR1_RESET_VALUE; ADC1->CR2 = ADC1_CR2_RESET_VALUE; ADC1->CR3 = ADC1_CR3_RESET_VALUE; ADC1->TDRH = ADC1_TDRH_RESET_VALUE; ADC1->TDRL = ADC1_TDRL_RESET_VALUE; ADC1->HTRH = ADC1_HTRH_RESET_VALUE; ADC1->HTRL = ADC1_HTRL_RESET_VALUE; ADC1->LTRH = ADC1_LTRH_RESET_VALUE; ADC1->LTRL = ADC1_LTRL_RESET_VALUE; ADC1->AWCRH = ADC1_AWCRH_RESET_VALUE; ADC1->AWCRL = ADC1_AWCRL_RESET_VALUE; } /** * @brief Initializes the ADC1 peripheral according to the specified parameters * @param ADC1_ConversionMode: specifies the conversion mode * can be one of the values of @ref ADC1_ConvMode_TypeDef. * @param ADC1_Channel: specifies the channel to convert * can be one of the values of @ref ADC1_Channel_TypeDef. * @param ADC1_PrescalerSelection: specifies the ADC1 prescaler * can be one of the values of @ref ADC1_PresSel_TypeDef. * @param ADC1_ExtTrigger: specifies the external trigger * can be one of the values of @ref ADC1_ExtTrig_TypeDef. * @param ADC1_ExtTriggerState: specifies the external trigger new state * can be one of the values of @ref FunctionalState. * @param ADC1_Align: specifies the converted data alignment * can be one of the values of @ref ADC1_Align_TypeDef. * @param ADC1_SchmittTriggerChannel: specifies the schmitt trigger channel * can be one of the values of @ref ADC1_SchmittTrigg_TypeDef. * @param ADC1_SchmittTriggerState: specifies the schmitt trigger state * can be one of the values of @ref FunctionalState. * @retval None */ void ADC1_Init(ADC1_ConvMode_TypeDef ADC1_ConversionMode, ADC1_Channel_TypeDef ADC1_Channel, ADC1_PresSel_TypeDef ADC1_PrescalerSelection, ADC1_ExtTrig_TypeDef ADC1_ExtTrigger, FunctionalState ADC1_ExtTriggerState, ADC1_Align_TypeDef ADC1_Align, ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel, FunctionalState ADC1_SchmittTriggerState) { /* Check the parameters */ assert_param(IS_ADC1_CONVERSIONMODE_OK(ADC1_ConversionMode)); assert_param(IS_ADC1_CHANNEL_OK(ADC1_Channel)); assert_param(IS_ADC1_PRESSEL_OK(ADC1_PrescalerSelection)); assert_param(IS_ADC1_EXTTRIG_OK(ADC1_ExtTrigger)); assert_param(IS_FUNCTIONALSTATE_OK(((ADC1_ExtTriggerState)))); assert_param(IS_ADC1_ALIGN_OK(ADC1_Align)); assert_param(IS_ADC1_SCHMITTTRIG_OK(ADC1_SchmittTriggerChannel)); assert_param(IS_FUNCTIONALSTATE_OK(ADC1_SchmittTriggerState)); /*-----------------CR1 & CSR configuration --------------------*/ /* Configure the conversion mode and the channel to convert respectively according to ADC1_ConversionMode & ADC1_Channel values & ADC1_Align values */ ADC1_ConversionConfig(ADC1_ConversionMode, ADC1_Channel, ADC1_Align); /* Select the prescaler division factor according to ADC1_PrescalerSelection values */ ADC1_PrescalerConfig(ADC1_PrescalerSelection); /*-----------------CR2 configuration --------------------*/ /* Configure the external trigger state and event respectively according to NewState, ADC1_ExtTrigger */ ADC1_ExternalTriggerConfig(ADC1_ExtTrigger, ADC1_ExtTriggerState); /*------------------TDR configuration ---------------------------*/ /* Configure the schmitt trigger channel and state respectively according to ADC1_SchmittTriggerChannel & ADC1_SchmittTriggerNewState values */ ADC1_SchmittTriggerConfig(ADC1_SchmittTriggerChannel, ADC1_SchmittTriggerState); /* Enable the ADC1 peripheral */ ADC1->CR1 |= ADC1_CR1_ADON; } /** * @brief Enables or Disables the ADC1 peripheral. * @param NewState: specifies the peripheral enabled or disabled state. * @retval None */ void ADC1_Cmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { ADC1->CR1 |= ADC1_CR1_ADON; } else /* NewState == DISABLE */ { ADC1->CR1 &= (uint8_t)(~ADC1_CR1_ADON); } } /** * @brief Enables or Disables the ADC1 scan mode. * @param NewState: specifies the selected mode enabled or disabled state. * @retval None */ void ADC1_ScanModeCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { ADC1->CR2 |= ADC1_CR2_SCAN; } else /* NewState == DISABLE */ { ADC1->CR2 &= (uint8_t)(~ADC1_CR2_SCAN); } } /** * @brief Enables or Disables the ADC1 data store into the Data Buffer registers rather than in the Data Register * @param NewState: specifies the selected mode enabled or disabled state. * @retval None */ void ADC1_DataBufferCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { ADC1->CR3 |= ADC1_CR3_DBUF; } else /* NewState == DISABLE */ { ADC1->CR3 &= (uint8_t)(~ADC1_CR3_DBUF); } } /** * @brief Enables or disables the ADC1 interrupt. * @param ADC1_IT specifies the name of the interrupt to enable or disable. * This parameter can be one of the following values: * - ADC1_IT_AWDITEN : Analog WDG interrupt enable * - ADC1_IT_EOCITEN : EOC iterrupt enable * @param NewState specifies the state of the interrupt to apply. * @retval None */ void ADC1_ITConfig(ADC1_IT_TypeDef ADC1_IT, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_ADC1_IT_OK(ADC1_IT)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the ADC1 interrupts */ ADC1->CSR |= (uint8_t)ADC1_IT; } else /* NewState == DISABLE */ { /* Disable the ADC1 interrupts */ ADC1->CSR &= (uint8_t)((uint16_t)~(uint16_t)ADC1_IT); } } /** * @brief Configure the ADC1 prescaler division factor. * @param ADC1_Prescaler: the selected precaler. * It can be one of the values of @ref ADC1_PresSel_TypeDef. * @retval None */ void ADC1_PrescalerConfig(ADC1_PresSel_TypeDef ADC1_Prescaler) { /* Check the parameter */ assert_param(IS_ADC1_PRESSEL_OK(ADC1_Prescaler)); /* Clear the SPSEL bits */ ADC1->CR1 &= (uint8_t)(~ADC1_CR1_SPSEL); /* Select the prescaler division factor according to ADC1_PrescalerSelection values */ ADC1->CR1 |= (uint8_t)(ADC1_Prescaler); } /** * @brief Enables or disables the ADC1 Schmitt Trigger on a selected channel. * @param ADC1_SchmittTriggerChannel specifies the desired Channel. * It can be set of the values of @ref ADC1_SchmittTrigg_TypeDef. * @param NewState specifies Channel new status. * can have one of the values of @ref FunctionalState. * @retval None */ void ADC1_SchmittTriggerConfig(ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_ADC1_SCHMITTTRIG_OK(ADC1_SchmittTriggerChannel)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (ADC1_SchmittTriggerChannel == ADC1_SCHMITTTRIG_ALL) { if (NewState != DISABLE) { ADC1->TDRL &= (uint8_t)0x0; ADC1->TDRH &= (uint8_t)0x0; } else /* NewState == DISABLE */ { ADC1->TDRL |= (uint8_t)0xFF; ADC1->TDRH |= (uint8_t)0xFF; } } else if (ADC1_SchmittTriggerChannel < ADC1_SCHMITTTRIG_CHANNEL8) { if (NewState != DISABLE) { ADC1->TDRL &= (uint8_t)(~(uint8_t)((uint8_t)0x01 << (uint8_t)ADC1_SchmittTriggerChannel)); } else /* NewState == DISABLE */ { ADC1->TDRL |= (uint8_t)((uint8_t)0x01 << (uint8_t)ADC1_SchmittTriggerChannel); } } else /* ADC1_SchmittTriggerChannel >= ADC1_SCHMITTTRIG_CHANNEL8 */ { if (NewState != DISABLE) { ADC1->TDRH &= (uint8_t)(~(uint8_t)((uint8_t)0x01 << ((uint8_t)ADC1_SchmittTriggerChannel - (uint8_t)8))); } else /* NewState == DISABLE */ { ADC1->TDRH |= (uint8_t)((uint8_t)0x01 << ((uint8_t)ADC1_SchmittTriggerChannel - (uint8_t)8)); } } } /** * @brief Configure the ADC1 conversion on selected channel. * @param ADC1_ConversionMode Specifies the conversion type. * It can be set of the values of @ref ADC1_ConvMode_TypeDef * @param ADC1_Channel specifies the ADC1 Channel. * It can be set of the values of @ref ADC1_Channel_TypeDef * @param ADC1_Align specifies the converted data alignment. * It can be set of the values of @ref ADC1_Align_TypeDef * @retval None */ void ADC1_ConversionConfig(ADC1_ConvMode_TypeDef ADC1_ConversionMode, ADC1_Channel_TypeDef ADC1_Channel, ADC1_Align_TypeDef ADC1_Align) { /* Check the parameters */ assert_param(IS_ADC1_CONVERSIONMODE_OK(ADC1_ConversionMode)); assert_param(IS_ADC1_CHANNEL_OK(ADC1_Channel)); assert_param(IS_ADC1_ALIGN_OK(ADC1_Align)); /* Clear the align bit */ ADC1->CR2 &= (uint8_t)(~ADC1_CR2_ALIGN); /* Configure the data alignment */ ADC1->CR2 |= (uint8_t)(ADC1_Align); if (ADC1_ConversionMode == ADC1_CONVERSIONMODE_CONTINUOUS) { /* Set the continuous conversion mode */ ADC1->CR1 |= ADC1_CR1_CONT; } else /* ADC1_ConversionMode == ADC1_CONVERSIONMODE_SINGLE */ { /* Set the single conversion mode */ ADC1->CR1 &= (uint8_t)(~ADC1_CR1_CONT); } /* Clear the ADC1 channels */ ADC1->CSR &= (uint8_t)(~ADC1_CSR_CH); /* Select the ADC1 channel */ ADC1->CSR |= (uint8_t)(ADC1_Channel); } /** * @brief Configure the ADC1 conversion on external trigger event. * @par Full description: * The selected external trigger event can be enabled or disabled. * @param ADC1_ExtTrigger to select the External trigger event. * can have one of the values of @ref ADC1_ExtTrig_TypeDef. * @param NewState to enable/disable the selected external trigger * can have one of the values of @ref FunctionalState. * @retval None */ void ADC1_ExternalTriggerConfig(ADC1_ExtTrig_TypeDef ADC1_ExtTrigger, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_ADC1_EXTTRIG_OK(ADC1_ExtTrigger)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); /* Clear the external trigger selection bits */ ADC1->CR2 &= (uint8_t)(~ADC1_CR2_EXTSEL); if (NewState != DISABLE) { /* Enable the selected external Trigger */ ADC1->CR2 |= (uint8_t)(ADC1_CR2_EXTTRIG); } else /* NewState == DISABLE */ { /* Disable the selected external trigger */ ADC1->CR2 &= (uint8_t)(~ADC1_CR2_EXTTRIG); } /* Set the selected external trigger */ ADC1->CR2 |= (uint8_t)(ADC1_ExtTrigger); } /** * @brief Start ADC1 conversion * @par Full description: * This function triggers the start of conversion, after ADC1 configuration. * @param None * @retval None * @par Required preconditions: * Enable the ADC1 peripheral before calling this function */ void ADC1_StartConversion(void) { ADC1->CR1 |= ADC1_CR1_ADON; } /** * @brief Get one sample of measured signal. * @param None * @retval ConversionValue: value of the measured signal. * @par Required preconditions: * ADC1 conversion finished. */ uint16_t ADC1_GetConversionValue(void) { uint16_t temph = 0; uint8_t templ = 0; if ((ADC1->CR2 & ADC1_CR2_ALIGN) != 0) /* Right alignment */ { /* Read LSB first */ templ = ADC1->DRL; /* Then read MSB */ temph = ADC1->DRH; temph = (uint16_t)(templ | (uint16_t)(temph << (uint8_t)8)); } else /* Left alignment */ { /* Read MSB first*/ temph = ADC1->DRH; /* Then read LSB */ templ = ADC1->DRL; temph = (uint16_t)((uint16_t)((uint16_t)templ << 6) | (uint16_t)((uint16_t)temph << 8)); } return ((uint16_t)temph); } /** * @brief Enables or disables the analog watchdog for the given channel. * @param Channel specifies the desired Channel. * It can be set of the values of @ref ADC1_Channel_TypeDef. * @param NewState specifies the analog watchdog new state. * can have one of the values of @ref FunctionalState. * @retval None */ void ADC1_AWDChannelConfig(ADC1_Channel_TypeDef Channel, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); assert_param(IS_ADC1_CHANNEL_OK(Channel)); if (Channel < (uint8_t)8) { if (NewState != DISABLE) { ADC1->AWCRL |= (uint8_t)((uint8_t)1 << Channel); } else /* NewState == DISABLE */ { ADC1->AWCRL &= (uint8_t)~(uint8_t)((uint8_t)1 << Channel); } } else { if (NewState != DISABLE) { ADC1->AWCRH |= (uint8_t)((uint8_t)1 << (Channel - (uint8_t)8)); } else /* NewState == DISABLE */ { ADC1->AWCRH &= (uint8_t)~(uint8_t)((uint8_t)1 << (uint8_t)(Channel - (uint8_t)8)); } } } /** * @brief Sets the high threshold of the analog watchdog. * @param Threshold specifies the high threshold value. * this value depends on the reference voltage range. * @retval None */ void ADC1_SetHighThreshold(uint16_t Threshold) { ADC1->HTRH = (uint8_t)(Threshold >> (uint8_t)2); ADC1->HTRL = (uint8_t)Threshold; } /** * @brief Sets the low threshold of the analog watchdog. * @param Threshold specifies the low threshold value. * this value depends on the reference voltage range. * @retval None */ void ADC1_SetLowThreshold(uint16_t Threshold) { ADC1->LTRL = (uint8_t)Threshold; ADC1->LTRH = (uint8_t)(Threshold >> (uint8_t)2); } /** * @brief Get one sample of measured signal. * @param Buffer specifies the buffer to read. * @retval BufferValue: value read from the given buffer. * @par Required preconditions: * ADC1 conversion finished. */ uint16_t ADC1_GetBufferValue(uint8_t Buffer) { uint16_t temph = 0; uint8_t templ = 0; /* Check the parameters */ assert_param(IS_ADC1_BUFFER_OK(Buffer)); if ((ADC1->CR2 & ADC1_CR2_ALIGN) != 0) /* Right alignment */ { /* Read LSB first */ templ = *(uint8_t*)(uint16_t)((uint16_t)ADC1_BaseAddress + (uint8_t)(Buffer << 1) + 1); /* Then read MSB */ temph = *(uint8_t*)(uint16_t)((uint16_t)ADC1_BaseAddress + (uint8_t)(Buffer << 1)); temph = (uint16_t)(templ | (uint16_t)(temph << (uint8_t)8)); } else /* Left alignment */ { /* Read MSB first*/ temph = *(uint8_t*)(uint16_t)((uint16_t)ADC1_BaseAddress + (uint8_t)(Buffer << 1)); /* Then read LSB */ templ = *(uint8_t*)(uint16_t)((uint16_t)ADC1_BaseAddress + (uint8_t)(Buffer << 1) + 1); temph = (uint16_t)((uint16_t)((uint16_t)templ << 6) | (uint16_t)(temph << 8)); } return ((uint16_t)temph); } /** * @brief Checks the specified analog watchdog channel status. * @param Channel: specify the channel of which to check the analog watchdog * can be one of the values of @ref ADC1_Channel_TypeDef. * @retval FlagStatus Status of the analog watchdog. */ FlagStatus ADC1_GetAWDChannelStatus(ADC1_Channel_TypeDef Channel) { uint8_t status = 0; /* Check the parameters */ assert_param(IS_ADC1_CHANNEL_OK(Channel)); if (Channel < (uint8_t)8) { status = (uint8_t)(ADC1->AWSRL & (uint8_t)((uint8_t)1 << Channel)); } else /* Channel = 8 | 9 */ { status = (uint8_t)(ADC1->AWSRH & (uint8_t)((uint8_t)1 << (Channel - (uint8_t)8))); } return ((FlagStatus)status); } /** * @brief Checks the specified ADC1 flag status. * @param Flag: ADC1 flag. * can be one of the values of @ref ADC1_Flag_TypeDef. * @retval FlagStatus Status of the ADC1 flag. */ FlagStatus ADC1_GetFlagStatus(ADC1_Flag_TypeDef Flag) { uint8_t flagstatus = 0; uint8_t temp = 0; /* Check the parameters */ assert_param(IS_ADC1_FLAG_OK(Flag)); if ((Flag & 0x0F) == 0x01) { /* Get OVR flag status */ flagstatus = (uint8_t)(ADC1->CR3 & ADC1_CR3_OVR); } else if ((Flag & 0xF0) == 0x10) { /* Get analog watchdog channel status */ temp = (uint8_t)(Flag & (uint8_t)0x0F); if (temp < 8) { flagstatus = (uint8_t)(ADC1->AWSRL & (uint8_t)((uint8_t)1 << temp)); } else { flagstatus = (uint8_t)(ADC1->AWSRH & (uint8_t)((uint8_t)1 << (temp - 8))); } } else /* Get EOC | AWD flag status */ { flagstatus = (uint8_t)(ADC1->CSR & Flag); } return ((FlagStatus)flagstatus); } /** * @brief Clear the specified ADC1 Flag. * @param Flag: ADC1 flag. * can be one of the values of @ref ADC1_Flag_TypeDef. * @retval None */ void ADC1_ClearFlag(ADC1_Flag_TypeDef Flag) { uint8_t temp = 0; /* Check the parameters */ assert_param(IS_ADC1_FLAG_OK(Flag)); if ((Flag & 0x0F) == 0x01) { /* Clear OVR flag status */ ADC1->CR3 &= (uint8_t)(~ADC1_CR3_OVR); } else if ((Flag & 0xF0) == 0x10) { /* Clear analog watchdog channel status */ temp = (uint8_t)(Flag & (uint8_t)0x0F); if (temp < 8) { ADC1->AWSRL &= (uint8_t)~(uint8_t)((uint8_t)1 << temp); } else { ADC1->AWSRH &= (uint8_t)~(uint8_t)((uint8_t)1 << (temp - 8)); } } else /* Clear EOC | AWD flag status */ { ADC1->CSR &= (uint8_t) (~Flag); } } /** * @brief Returns the specified pending bit status * @param ITPendingBit : the IT pending bit to check. * This parameter can be one of the following values: * - ADC1_IT_AWD : Analog WDG IT status * - ADC1_IT_AWS0 : Analog channel 0 IT status * - ADC1_IT_AWS1 : Analog channel 1 IT status * - ADC1_IT_AWS2 : Analog channel 2 IT status * - ADC1_IT_AWS3 : Analog channel 3 IT status * - ADC1_IT_AWS4 : Analog channel 4 IT status * - ADC1_IT_AWS5 : Analog channel 5 IT status * - ADC1_IT_AWS6 : Analog channel 6 IT status * - ADC1_IT_AWS7 : Analog channel 7 IT status * - ADC1_IT_AWS8 : Analog channel 8 IT status * - ADC1_IT_AWS9 : Analog channel 9 IT status * - ADC1_IT_EOC : EOC pending bit * @retval ITStatus: status of the specified pending bit. */ ITStatus ADC1_GetITStatus(ADC1_IT_TypeDef ITPendingBit) { ITStatus itstatus = RESET; uint8_t temp = 0; /* Check the parameters */ assert_param(IS_ADC1_ITPENDINGBIT_OK(ITPendingBit)); if (((uint16_t)ITPendingBit & 0xF0) == 0x10) { /* Get analog watchdog channel status */ temp = (uint8_t)((uint16_t)ITPendingBit & 0x0F); if (temp < 8) { itstatus = (ITStatus)(ADC1->AWSRL & (uint8_t)((uint8_t)1 << temp)); } else { itstatus = (ITStatus)(ADC1->AWSRH & (uint8_t)((uint8_t)1 << (temp - 8))); } } else /* Get EOC | AWD flag status */ { itstatus = (ITStatus)(ADC1->CSR & (uint8_t)ITPendingBit); } return ((ITStatus)itstatus); } /** * @brief Clear the ADC1 End of Conversion pending bit. * @param ITPendingBit : the IT pending bit to clear. * This parameter can be one of the following values: * - ADC1_IT_AWD : Analog WDG IT status * - ADC1_IT_AWS0 : Analog channel 0 IT status * - ADC1_IT_AWS1 : Analog channel 1 IT status * - ADC1_IT_AWS2 : Analog channel 2 IT status * - ADC1_IT_AWS3 : Analog channel 3 IT status * - ADC1_IT_AWS4 : Analog channel 4 IT status * - ADC1_IT_AWS5 : Analog channel 5 IT status * - ADC1_IT_AWS6 : Analog channel 6 IT status * - ADC1_IT_AWS7 : Analog channel 7 IT status * - ADC1_IT_AWS8 : Analog channel 8 IT status * - ADC1_IT_AWS9 : Analog channel 9 IT status * - ADC1_IT_EOC : EOC pending bit * @retval None */ void ADC1_ClearITPendingBit(ADC1_IT_TypeDef ITPendingBit) { uint8_t temp = 0; /* Check the parameters */ assert_param(IS_ADC1_ITPENDINGBIT_OK(ITPendingBit)); if (((uint16_t)ITPendingBit & 0xF0) == 0x10) { /* Clear analog watchdog channel status */ temp = (uint8_t)((uint16_t)ITPendingBit & 0x0F); if (temp < 8) { ADC1->AWSRL &= (uint8_t)~(uint8_t)((uint8_t)1 << temp); } else { ADC1->AWSRH &= (uint8_t)~(uint8_t)((uint8_t)1 << (temp - 8)); } } else /* Clear EOC | AWD flag status */ { ADC1->CSR &= (uint8_t)((uint16_t)~(uint16_t)ITPendingBit); } } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/