updated to inline lib + added mitigation for some race conds

master
Ondřej Hruška 6 years ago
parent bddb91a0cf
commit d54e786931
  1. 2866
      Library/SPL/stm8s.h
  2. 970
      Library/SPL/stm8s_adc1.h
  3. 318
      Library/SPL/stm8s_awu.h
  4. 241
      Library/SPL/stm8s_beep.h
  5. 1059
      Library/SPL/stm8s_clk.h
  6. 293
      Library/SPL/stm8s_exti.h
  7. 785
      Library/SPL/stm8s_flash.c
  8. 319
      Library/SPL/stm8s_flash.h
  9. 381
      Library/SPL/stm8s_gpio.h
  10. 1463
      Library/SPL/stm8s_i2c.h
  11. 506
      Library/SPL/stm8s_itc.h
  12. 218
      Library/SPL/stm8s_iwdg.h
  13. 138
      Library/SPL/stm8s_rst.h
  14. 734
      Library/SPL/stm8s_spi.h
  15. 2812
      Library/SPL/stm8s_tim1.h
  16. 1553
      Library/SPL/stm8s_tim2.h
  17. 535
      Library/SPL/stm8s_tim4.h
  18. 1135
      Library/SPL/stm8s_uart1.h
  19. 189
      Library/SPL/stm8s_wwdg.h
  20. 14
      Makefile
  21. 70
      User/main.c
  22. 225
      User/stm8s_it.c~
  23. 31
      User/stm8s_it.h~

File diff suppressed because it is too large Load Diff

@ -0,0 +1,970 @@
/**
******************************************************************************
* @file stm8s_adc1.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all the prototypes/macros for the ADC1 peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_ADC1_H
#define __STM8S_ADC1_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/* Exported types ------------------------------------------------------------*/
/** @addtogroup ADC1_Exported_Types
* @{
*/
/**
* @brief ADC1 clock prescaler selection
*/
typedef enum {
ADC1_PRESSEL_FCPU_D2 = (uint8_t) 0x00, /**< Prescaler selection fADC1 = fcpu/2 */
ADC1_PRESSEL_FCPU_D3 = (uint8_t) 0x10, /**< Prescaler selection fADC1 = fcpu/3 */
ADC1_PRESSEL_FCPU_D4 = (uint8_t) 0x20, /**< Prescaler selection fADC1 = fcpu/4 */
ADC1_PRESSEL_FCPU_D6 = (uint8_t) 0x30, /**< Prescaler selection fADC1 = fcpu/6 */
ADC1_PRESSEL_FCPU_D8 = (uint8_t) 0x40, /**< Prescaler selection fADC1 = fcpu/8 */
ADC1_PRESSEL_FCPU_D10 = (uint8_t) 0x50, /**< Prescaler selection fADC1 = fcpu/10 */
ADC1_PRESSEL_FCPU_D12 = (uint8_t) 0x60, /**< Prescaler selection fADC1 = fcpu/12 */
ADC1_PRESSEL_FCPU_D18 = (uint8_t) 0x70 /**< Prescaler selection fADC1 = fcpu/18 */
} ADC1_PresSel_TypeDef;
/**
* @brief ADC1 External conversion trigger event selection
*/
typedef enum {
ADC1_EXTTRIG_TIM = (uint8_t) 0x00, /**< Conversion from Internal TIM1 TRGO event */
ADC1_EXTTRIG_GPIO = (uint8_t) 0x10 /**< Conversion from External interrupt on ADC_ETR pin*/
} ADC1_ExtTrig_TypeDef;
/**
* @brief ADC1 data alignment
*/
typedef enum {
ADC1_ALIGN_LEFT = (uint8_t) 0x00, /**< Data alignment left */
ADC1_ALIGN_RIGHT = (uint8_t) 0x08 /**< Data alignment right */
} ADC1_Align_TypeDef;
/**
* @brief ADC1 Interrupt source
*/
typedef enum {
ADC1_IT_AWDIE = (uint16_t) 0x010, /**< Analog WDG interrupt enable */
ADC1_IT_EOCIE = (uint16_t) 0x020, /**< EOC interrupt enable */
ADC1_IT_AWD = (uint16_t) 0x140, /**< Analog WDG status */
ADC1_IT_AWS0 = (uint16_t) 0x110, /**< Analog channel 0 status */
ADC1_IT_AWS1 = (uint16_t) 0x111, /**< Analog channel 1 status */
ADC1_IT_AWS2 = (uint16_t) 0x112, /**< Analog channel 2 status */
ADC1_IT_AWS3 = (uint16_t) 0x113, /**< Analog channel 3 status */
ADC1_IT_AWS4 = (uint16_t) 0x114, /**< Analog channel 4 status */
ADC1_IT_AWS5 = (uint16_t) 0x115, /**< Analog channel 5 status */
ADC1_IT_AWS6 = (uint16_t) 0x116, /**< Analog channel 6 status */
ADC1_IT_AWS7 = (uint16_t) 0x117, /**< Analog channel 7 status */
ADC1_IT_AWS8 = (uint16_t) 0x118, /**< Analog channel 8 status */
ADC1_IT_AWS9 = (uint16_t) 0x119, /**< Analog channel 9 status */
ADC1_IT_AWS12 = (uint16_t) 0x11C, /**< Analog channel 12 status */
/* refer to product datasheet for channel 12 availability */
ADC1_IT_EOC = (uint16_t) 0x080 /**< EOC pending bit */
} ADC1_IT_TypeDef;
/**
* @brief ADC1 Flags
*/
typedef enum {
ADC1_FLAG_OVR = (uint8_t) 0x41, /**< Overrun status flag */
ADC1_FLAG_AWD = (uint8_t) 0x40, /**< Analog WDG status */
ADC1_FLAG_AWS0 = (uint8_t) 0x10, /**< Analog channel 0 status */
ADC1_FLAG_AWS1 = (uint8_t) 0x11, /**< Analog channel 1 status */
ADC1_FLAG_AWS2 = (uint8_t) 0x12, /**< Analog channel 2 status */
ADC1_FLAG_AWS3 = (uint8_t) 0x13, /**< Analog channel 3 status */
ADC1_FLAG_AWS4 = (uint8_t) 0x14, /**< Analog channel 4 status */
ADC1_FLAG_AWS5 = (uint8_t) 0x15, /**< Analog channel 5 status */
ADC1_FLAG_AWS6 = (uint8_t) 0x16, /**< Analog channel 6 status */
ADC1_FLAG_AWS7 = (uint8_t) 0x17, /**< Analog channel 7 status */
ADC1_FLAG_AWS8 = (uint8_t) 0x18, /**< Analog channel 8 status*/
ADC1_FLAG_AWS9 = (uint8_t) 0x19, /**< Analog channel 9 status */
ADC1_FLAG_AWS12 = (uint8_t) 0x1C, /**< Analog channel 12 status */
/* refer to product datasheet for channel 12 availability */
ADC1_FLAG_EOC = (uint8_t) 0x80 /**< EOC falg */
} ADC1_Flag_TypeDef;
/**
* @brief ADC1 schmitt Trigger
*/
typedef enum {
ADC1_SCHMITTTRIG_CHANNEL0 = (uint8_t) 0x00, /**< Schmitt trigger disable on AIN0 */
ADC1_SCHMITTTRIG_CHANNEL1 = (uint8_t) 0x01, /**< Schmitt trigger disable on AIN1 */
ADC1_SCHMITTTRIG_CHANNEL2 = (uint8_t) 0x02, /**< Schmitt trigger disable on AIN2 */
ADC1_SCHMITTTRIG_CHANNEL3 = (uint8_t) 0x03, /**< Schmitt trigger disable on AIN3 */
ADC1_SCHMITTTRIG_CHANNEL4 = (uint8_t) 0x04, /**< Schmitt trigger disable on AIN4 */
ADC1_SCHMITTTRIG_CHANNEL5 = (uint8_t) 0x05, /**< Schmitt trigger disable on AIN5 */
ADC1_SCHMITTTRIG_CHANNEL6 = (uint8_t) 0x06, /**< Schmitt trigger disable on AIN6 */
ADC1_SCHMITTTRIG_CHANNEL7 = (uint8_t) 0x07, /**< Schmitt trigger disable on AIN7 */
ADC1_SCHMITTTRIG_CHANNEL8 = (uint8_t) 0x08, /**< Schmitt trigger disable on AIN8 */
ADC1_SCHMITTTRIG_CHANNEL9 = (uint8_t) 0x09, /**< Schmitt trigger disable on AIN9 */
ADC1_SCHMITTTRIG_CHANNEL12 = (uint8_t) 0x0C, /**< Schmitt trigger disable on AIN12 */
/* refer to product datasheet for channel 12 availability */
ADC1_SCHMITTTRIG_ALL = (uint8_t) 0xFF /**< Schmitt trigger disable on All channels */
} ADC1_SchmittTrigg_TypeDef;
/**
* @brief ADC1 conversion mode selection
*/
typedef enum {
ADC1_CONVERSIONMODE_SINGLE = (uint8_t) 0x00, /**< Single conversion mode */
ADC1_CONVERSIONMODE_CONTINUOUS = (uint8_t) 0x01 /**< Continuous conversion mode */
} ADC1_ConvMode_TypeDef;
/**
* @brief ADC1 analog channel selection
*/
typedef enum {
ADC1_CHANNEL_0 = (uint8_t) 0x00, /**< Analog channel 0 */
ADC1_CHANNEL_1 = (uint8_t) 0x01, /**< Analog channel 1 */
ADC1_CHANNEL_2 = (uint8_t) 0x02, /**< Analog channel 2 */
ADC1_CHANNEL_3 = (uint8_t) 0x03, /**< Analog channel 3 */
ADC1_CHANNEL_4 = (uint8_t) 0x04, /**< Analog channel 4 */
ADC1_CHANNEL_5 = (uint8_t) 0x05, /**< Analog channel 5 */
ADC1_CHANNEL_6 = (uint8_t) 0x06, /**< Analog channel 6 */
ADC1_CHANNEL_7 = (uint8_t) 0x07, /**< Analog channel 7 */
ADC1_CHANNEL_8 = (uint8_t) 0x08, /**< Analog channel 8 */
ADC1_CHANNEL_9 = (uint8_t) 0x09, /**< Analog channel 9 */
ADC1_CHANNEL_12 = (uint8_t) 0x0C /**< Analog channel 12 */
/* refer to product datasheet for channel 12 availability */
} ADC1_Channel_TypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macros ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup ADC1_Private_Macros
* @brief Macros used by the assert function to check the different functions parameters.
* @{
*/
/**
* @brief Macro used by the assert function to check the different prescaler's values.
*/
#define IS_ADC1_PRESSEL_OK(PRESCALER) (((PRESCALER) == ADC1_PRESSEL_FCPU_D2) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D3) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D4) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D6) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D8) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D10) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D12) || \
((PRESCALER) == ADC1_PRESSEL_FCPU_D18))
/**
* @brief Macro used by the assert function to check the different external trigger values.
*/
#define IS_ADC1_EXTTRIG_OK(EXTRIG) (((EXTRIG) == ADC1_EXTTRIG_TIM) || \
((EXTRIG) == ADC1_EXTTRIG_GPIO))
/**
* @brief Macro used by the assert function to check the different alignment modes.
*/
#define IS_ADC1_ALIGN_OK(ALIGN) (((ALIGN) == ADC1_ALIGN_LEFT) || \
((ALIGN) == ADC1_ALIGN_RIGHT))
/**
* @brief Macro used by the assert function to check the Interrupt source.
*/
#define IS_ADC1_IT_OK(IT) (((IT) == ADC1_IT_EOCIE) || \
((IT) == ADC1_IT_AWDIE))
/**
* @brief Macro used by the assert function to check the ADC1 Flag.
*/
#define IS_ADC1_FLAG_OK(FLAG) (((FLAG) == ADC1_FLAG_EOC)|| \
((FLAG) == ADC1_FLAG_OVR) || \
((FLAG) == ADC1_FLAG_AWD) || \
((FLAG) == ADC1_FLAG_AWS0) || \
((FLAG) == ADC1_FLAG_AWS1) || \
((FLAG) == ADC1_FLAG_AWS2) || \
((FLAG) == ADC1_FLAG_AWS3) || \
((FLAG) == ADC1_FLAG_AWS4) || \
((FLAG) == ADC1_FLAG_AWS5) || \
((FLAG) == ADC1_FLAG_AWS6) || \
((FLAG) == ADC1_FLAG_AWS7) || \
((FLAG) == ADC1_FLAG_AWS8) || \
((FLAG) == ADC1_FLAG_AWS9))
/**
* @brief Macro used by the assert function to check the ADC1 pending bits.
*/
#define IS_ADC1_ITPENDINGBIT_OK(ITPENDINGBIT) (((ITPENDINGBIT) == ADC1_IT_EOC) || \
((ITPENDINGBIT) == ADC1_IT_AWD) || \
((ITPENDINGBIT) == ADC1_IT_AWS0) || \
((ITPENDINGBIT) == ADC1_IT_AWS1) || \
((ITPENDINGBIT) == ADC1_IT_AWS2) || \
((ITPENDINGBIT) == ADC1_IT_AWS3) || \
((ITPENDINGBIT) == ADC1_IT_AWS4) || \
((ITPENDINGBIT) == ADC1_IT_AWS5) || \
((ITPENDINGBIT) == ADC1_IT_AWS6) || \
((ITPENDINGBIT) == ADC1_IT_AWS7) || \
((ITPENDINGBIT) == ADC1_IT_AWS8) || \
((ITPENDINGBIT) == ADC1_IT_AWS12) || \
((ITPENDINGBIT) == ADC1_IT_AWS9))
/**
* @brief Macro used by the assert function to check the different schmitt trigger values.
*/
#define IS_ADC1_SCHMITTTRIG_OK(SCHMITTTRIG) (((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL0) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL1) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL2) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL3) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL4) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL5) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL6) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL7) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL8) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL12) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_ALL) || \
((SCHMITTTRIG) == ADC1_SCHMITTTRIG_CHANNEL9))
/**
* @brief Macro used by the assert function to check the different conversion modes.
*/
#define IS_ADC1_CONVERSIONMODE_OK(MODE) (((MODE) == ADC1_CONVERSIONMODE_SINGLE) || \
((MODE) == ADC1_CONVERSIONMODE_CONTINUOUS))
/**
* @brief Macro used by the assert function to check the different channels values.
*/
#define IS_ADC1_CHANNEL_OK(CHANNEL) (((CHANNEL) == ADC1_CHANNEL_0) || \
((CHANNEL) == ADC1_CHANNEL_1) || \
((CHANNEL) == ADC1_CHANNEL_2) || \
((CHANNEL) == ADC1_CHANNEL_3) || \
((CHANNEL) == ADC1_CHANNEL_4) || \
((CHANNEL) == ADC1_CHANNEL_5) || \
((CHANNEL) == ADC1_CHANNEL_6) || \
((CHANNEL) == ADC1_CHANNEL_7) || \
((CHANNEL) == ADC1_CHANNEL_8) || \
((CHANNEL) == ADC1_CHANNEL_12) || \
((CHANNEL) == ADC1_CHANNEL_9))
/**
* @brief Macro used by the assert function to check the possible buffer values.
*/
#define IS_ADC1_BUFFER_OK(BUFFER) ((BUFFER) <= (uint8_t)0x09)
/**
* @}
*/
/* Exported functions ------------------------------------------------------- */
#if 0
/** @addtogroup ADC1_Exported_Functions
* @{
*/
void ADC1_DeInit(void);
void ADC1_Init(ADC1_ConvMode_TypeDef ADC1_ConversionMode,
ADC1_Channel_TypeDef ADC1_Channel,
ADC1_PresSel_TypeDef ADC1_PrescalerSelection,
ADC1_ExtTrig_TypeDef ADC1_ExtTrigger,
FunctionalState ADC1_ExtTriggerState, ADC1_Align_TypeDef ADC1_Align,
ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel,
FunctionalState ADC1_SchmittTriggerState);
void ADC1_Cmd(FunctionalState NewState);
void ADC1_ScanModeCmd(FunctionalState NewState);
void ADC1_DataBufferCmd(FunctionalState NewState);
void ADC1_ITConfig(ADC1_IT_TypeDef ADC1_IT, FunctionalState NewState);
void ADC1_PrescalerConfig(ADC1_PresSel_TypeDef ADC1_Prescaler);
void ADC1_SchmittTriggerConfig(ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel,
FunctionalState NewState);
void ADC1_ConversionConfig(ADC1_ConvMode_TypeDef ADC1_ConversionMode,
ADC1_Channel_TypeDef ADC1_Channel,
ADC1_Align_TypeDef ADC1_Align);
void ADC1_ExternalTriggerConfig(ADC1_ExtTrig_TypeDef ADC1_ExtTrigger, FunctionalState NewState);
void ADC1_AWDChannelConfig(ADC1_Channel_TypeDef Channel, FunctionalState NewState);
void ADC1_StartConversion(void);
uint16_t ADC1_GetConversionValue(void);
void ADC1_SetHighThreshold(uint16_t Threshold);
void ADC1_SetLowThreshold(uint16_t Threshold);
uint16_t ADC1_GetBufferValue(uint8_t Buffer);
FlagStatus ADC1_GetAWDChannelStatus(ADC1_Channel_TypeDef Channel);
FlagStatus ADC1_GetFlagStatus(ADC1_Flag_TypeDef Flag);
void ADC1_ClearFlag(ADC1_Flag_TypeDef Flag);
ITStatus ADC1_GetITStatus(ADC1_IT_TypeDef ITPendingBit);
void ADC1_ClearITPendingBit(ADC1_IT_TypeDef ITPendingBit);
#endif
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Public functions ----------------------------------------------------------*/
/**
* @addtogroup ADC1_Public_Functions
* @{
*/
/**
* @brief Deinitializes the ADC1 peripheral registers to their default reset values.
* @param None
* @retval None
*/
inline void ADC1_DeInit(void)
{
ADC1->CSR = ADC1_CSR_RESET_VALUE;
ADC1->CR1 = ADC1_CR1_RESET_VALUE;
ADC1->CR2 = ADC1_CR2_RESET_VALUE;
ADC1->CR3 = ADC1_CR3_RESET_VALUE;
ADC1->TDRH = ADC1_TDRH_RESET_VALUE;
ADC1->TDRL = ADC1_TDRL_RESET_VALUE;
ADC1->HTRH = ADC1_HTRH_RESET_VALUE;
ADC1->HTRL = ADC1_HTRL_RESET_VALUE;
ADC1->LTRH = ADC1_LTRH_RESET_VALUE;
ADC1->LTRL = ADC1_LTRL_RESET_VALUE;
ADC1->AWCRH = ADC1_AWCRH_RESET_VALUE;
ADC1->AWCRL = ADC1_AWCRL_RESET_VALUE;
}
/**
* @brief Configure the ADC1 conversion on selected channel.
* @param ADC1_ConversionMode Specifies the conversion type.
* It can be set of the values of @ref ADC1_ConvMode_TypeDef
* @param ADC1_Channel specifies the ADC1 Channel.
* It can be set of the values of @ref ADC1_Channel_TypeDef
* @param ADC1_Align specifies the converted data alignment.
* It can be set of the values of @ref ADC1_Align_TypeDef
* @retval None
*/
inline void ADC1_ConversionConfig(ADC1_ConvMode_TypeDef ADC1_ConversionMode, ADC1_Channel_TypeDef ADC1_Channel,
ADC1_Align_TypeDef ADC1_Align)
{
/* Check the parameters */
assert_param(IS_ADC1_CONVERSIONMODE_OK(ADC1_ConversionMode));
assert_param(IS_ADC1_CHANNEL_OK(ADC1_Channel));
assert_param(IS_ADC1_ALIGN_OK(ADC1_Align));
/* Clear the align bit */
ADC1->CR2 &= (uint8_t) (~ADC1_CR2_ALIGN);
/* Configure the data alignment */
ADC1->CR2 |= (uint8_t) (ADC1_Align);
if (ADC1_ConversionMode == ADC1_CONVERSIONMODE_CONTINUOUS) {
/* Set the continuous conversion mode */
ADC1->CR1 |= ADC1_CR1_CONT;
} else /* ADC1_ConversionMode == ADC1_CONVERSIONMODE_SINGLE */
{
/* Set the single conversion mode */
ADC1->CR1 &= (uint8_t) (~ADC1_CR1_CONT);
}
/* Clear the ADC1 channels */
ADC1->CSR &= (uint8_t) (~ADC1_CSR_CH);
/* Select the ADC1 channel */
ADC1->CSR |= (uint8_t) (ADC1_Channel);
}
/**
* @brief Enables or disables the ADC1 Schmitt Trigger on a selected channel.
* @param ADC1_SchmittTriggerChannel specifies the desired Channel.
* It can be set of the values of @ref ADC1_SchmittTrigg_TypeDef.
* @param NewState specifies Channel new status.
* can have one of the values of @ref FunctionalState.
* @retval None
*/
inline void ADC1_SchmittTriggerConfig(ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC1_SCHMITTTRIG_OK(ADC1_SchmittTriggerChannel));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (ADC1_SchmittTriggerChannel == ADC1_SCHMITTTRIG_ALL) {
if (NewState != DISABLE) {
ADC1->TDRL &= (uint8_t) 0x0;
ADC1->TDRH &= (uint8_t) 0x0;
} else /* NewState == DISABLE */
{
ADC1->TDRL |= (uint8_t) 0xFF;
ADC1->TDRH |= (uint8_t) 0xFF;
}
} else if (ADC1_SchmittTriggerChannel < ADC1_SCHMITTTRIG_CHANNEL8) {
if (NewState != DISABLE) {
ADC1->TDRL &= (uint8_t) (~(uint8_t) ((uint8_t) 0x01 << (uint8_t) ADC1_SchmittTriggerChannel));
} else /* NewState == DISABLE */
{
ADC1->TDRL |= (uint8_t) ((uint8_t) 0x01 << (uint8_t) ADC1_SchmittTriggerChannel);
}
} else /* ADC1_SchmittTriggerChannel >= ADC1_SCHMITTTRIG_CHANNEL8 */
{
if (NewState != DISABLE) {
ADC1->TDRH &= (uint8_t) (~(uint8_t) ((uint8_t) 0x01
<< ((uint8_t) ADC1_SchmittTriggerChannel - (uint8_t) 8)));
} else /* NewState == DISABLE */
{
ADC1->TDRH |= (uint8_t) ((uint8_t) 0x01 << ((uint8_t) ADC1_SchmittTriggerChannel - (uint8_t) 8));
}
}
}
/**
* @brief Configure the ADC1 prescaler division factor.
* @param ADC1_Prescaler: the selected precaler.
* It can be one of the values of @ref ADC1_PresSel_TypeDef.
* @retval None
*/
inline void ADC1_PrescalerConfig(ADC1_PresSel_TypeDef ADC1_Prescaler)
{
/* Check the parameter */
assert_param(IS_ADC1_PRESSEL_OK(ADC1_Prescaler));
/* Clear the SPSEL bits */
ADC1->CR1 &= (uint8_t) (~ADC1_CR1_SPSEL);
/* Select the prescaler division factor according to ADC1_PrescalerSelection values */
ADC1->CR1 |= (uint8_t) (ADC1_Prescaler);
}
/**
* @brief Configure the ADC1 conversion on external trigger event.
* @par Full description:
* The selected external trigger event can be enabled or disabled.
* @param ADC1_ExtTrigger to select the External trigger event.
* can have one of the values of @ref ADC1_ExtTrig_TypeDef.
* @param NewState to enable/disable the selected external trigger
* can have one of the values of @ref FunctionalState.
* @retval None
*/
inline void ADC1_ExternalTriggerConfig(ADC1_ExtTrig_TypeDef ADC1_ExtTrigger, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC1_EXTTRIG_OK(ADC1_ExtTrigger));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Clear the external trigger selection bits */
ADC1->CR2 &= (uint8_t) (~ADC1_CR2_EXTSEL);
if (NewState != DISABLE) {
/* Enable the selected external Trigger */
ADC1->CR2 |= (uint8_t) (ADC1_CR2_EXTTRIG);
} else /* NewState == DISABLE */
{
/* Disable the selected external trigger */
ADC1->CR2 &= (uint8_t) (~ADC1_CR2_EXTTRIG);
}
/* Set the selected external trigger */
ADC1->CR2 |= (uint8_t) (ADC1_ExtTrigger);
}
/**
* @brief Initializes the ADC1 peripheral according to the specified parameters
* @param ADC1_ConversionMode: specifies the conversion mode
* can be one of the values of @ref ADC1_ConvMode_TypeDef.
* @param ADC1_Channel: specifies the channel to convert
* can be one of the values of @ref ADC1_Channel_TypeDef.
* @param ADC1_PrescalerSelection: specifies the ADC1 prescaler
* can be one of the values of @ref ADC1_PresSel_TypeDef.
* @param ADC1_ExtTrigger: specifies the external trigger
* can be one of the values of @ref ADC1_ExtTrig_TypeDef.
* @param ADC1_ExtTriggerState: specifies the external trigger new state
* can be one of the values of @ref FunctionalState.
* @param ADC1_Align: specifies the converted data alignment
* can be one of the values of @ref ADC1_Align_TypeDef.
* @param ADC1_SchmittTriggerChannel: specifies the schmitt trigger channel
* can be one of the values of @ref ADC1_SchmittTrigg_TypeDef.
* @param ADC1_SchmittTriggerState: specifies the schmitt trigger state
* can be one of the values of @ref FunctionalState.
* @retval None
*/
inline void ADC1_Init(ADC1_ConvMode_TypeDef ADC1_ConversionMode, ADC1_Channel_TypeDef ADC1_Channel,
ADC1_PresSel_TypeDef ADC1_PrescalerSelection, ADC1_ExtTrig_TypeDef ADC1_ExtTrigger,
FunctionalState ADC1_ExtTriggerState, ADC1_Align_TypeDef ADC1_Align,
ADC1_SchmittTrigg_TypeDef ADC1_SchmittTriggerChannel, FunctionalState ADC1_SchmittTriggerState)
{
/* Check the parameters */
assert_param(IS_ADC1_CONVERSIONMODE_OK(ADC1_ConversionMode));
assert_param(IS_ADC1_CHANNEL_OK(ADC1_Channel));
assert_param(IS_ADC1_PRESSEL_OK(ADC1_PrescalerSelection));
assert_param(IS_ADC1_EXTTRIG_OK(ADC1_ExtTrigger));
assert_param(IS_FUNCTIONALSTATE_OK(((ADC1_ExtTriggerState))));
assert_param(IS_ADC1_ALIGN_OK(ADC1_Align));
assert_param(IS_ADC1_SCHMITTTRIG_OK(ADC1_SchmittTriggerChannel));
assert_param(IS_FUNCTIONALSTATE_OK(ADC1_SchmittTriggerState));
/*-----------------CR1 & CSR configuration --------------------*/
/* Configure the conversion mode and the channel to convert
respectively according to ADC1_ConversionMode & ADC1_Channel values & ADC1_Align values */
ADC1_ConversionConfig(ADC1_ConversionMode, ADC1_Channel, ADC1_Align);
/* Select the prescaler division factor according to ADC1_PrescalerSelection values */
ADC1_PrescalerConfig(ADC1_PrescalerSelection);
/*-----------------CR2 configuration --------------------*/
/* Configure the external trigger state and event respectively
according to NewState, ADC1_ExtTrigger */
ADC1_ExternalTriggerConfig(ADC1_ExtTrigger, ADC1_ExtTriggerState);
/*------------------TDR configuration ---------------------------*/
/* Configure the schmitt trigger channel and state respectively
according to ADC1_SchmittTriggerChannel & ADC1_SchmittTriggerNewState values */
ADC1_SchmittTriggerConfig(ADC1_SchmittTriggerChannel, ADC1_SchmittTriggerState);
/* Enable the ADC1 peripheral */
ADC1->CR1 |= ADC1_CR1_ADON;
}
/**
* @brief Enables or Disables the ADC1 peripheral.
* @param NewState: specifies the peripheral enabled or disabled state.
* @retval None
*/
inline void ADC1_Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
ADC1->CR1 |= ADC1_CR1_ADON;
} else /* NewState == DISABLE */
{
ADC1->CR1 &= (uint8_t) (~ADC1_CR1_ADON);
}
}
/**
* @brief Enables or Disables the ADC1 scan mode.
* @param NewState: specifies the selected mode enabled or disabled state.
* @retval None
*/
inline void ADC1_ScanModeCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
ADC1->CR2 |= ADC1_CR2_SCAN;
} else /* NewState == DISABLE */
{
ADC1->CR2 &= (uint8_t) (~ADC1_CR2_SCAN);
}
}
/**
* @brief Enables or Disables the ADC1 data store into the Data Buffer registers rather than in the Data Register
* @param NewState: specifies the selected mode enabled or disabled state.
* @retval None
*/
inline void ADC1_DataBufferCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
ADC1->CR3 |= ADC1_CR3_DBUF;
} else /* NewState == DISABLE */
{
ADC1->CR3 &= (uint8_t) (~ADC1_CR3_DBUF);
}
}
/**
* @brief Enables or disables the ADC1 interrupt.
* @param ADC1_IT specifies the name of the interrupt to enable or disable.
* This parameter can be one of the following values:
* - ADC1_IT_AWDITEN : Analog WDG interrupt enable
* - ADC1_IT_EOCITEN : EOC iterrupt enable
* @param NewState specifies the state of the interrupt to apply.
* @retval None
*/
inline void ADC1_ITConfig(ADC1_IT_TypeDef ADC1_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC1_IT_OK(ADC1_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE) {
/* Enable the ADC1 interrupts */
ADC1->CSR |= (uint8_t) ADC1_IT;
} else /* NewState == DISABLE */
{
/* Disable the ADC1 interrupts */
ADC1->CSR &= (uint8_t) ((uint16_t) ~(uint16_t) ADC1_IT);
}
}
/**
* @brief Start ADC1 conversion
* @par Full description:
* This function triggers the start of conversion, after ADC1 configuration.
* @param None
* @retval None
* @par Required preconditions:
* Enable the ADC1 peripheral before calling this function
*/
inline void ADC1_StartConversion(void)
{
ADC1->CR1 |= ADC1_CR1_ADON;
}
/**
* @brief Get one sample of measured signal.
* @param None
* @retval ConversionValue: value of the measured signal.
* @par Required preconditions:
* ADC1 conversion finished.
*/
inline uint16_t ADC1_GetConversionValue(void)
{
uint16_t temph = 0;
uint8_t templ = 0;
if ((ADC1->CR2 & ADC1_CR2_ALIGN) != 0) /* Right alignment */
{
/* Read LSB first */
templ = ADC1->DRL;
/* Then read MSB */
temph = ADC1->DRH;
temph = (uint16_t) (templ | (uint16_t) (temph << (uint8_t) 8));
} else /* Left alignment */
{
/* Read MSB first*/
temph = ADC1->DRH;
/* Then read LSB */
templ = ADC1->DRL;
temph = (uint16_t) ((uint16_t) ((uint16_t) templ << 6) | (uint16_t) ((uint16_t) temph << 8));
}
return ((uint16_t) temph);
}
/**
* @brief Enables or disables the analog watchdog for the given channel.
* @param Channel specifies the desired Channel.
* It can be set of the values of @ref ADC1_Channel_TypeDef.
* @param NewState specifies the analog watchdog new state.
* can have one of the values of @ref FunctionalState.
* @retval None
*/
inline void ADC1_AWDChannelConfig(ADC1_Channel_TypeDef Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
assert_param(IS_ADC1_CHANNEL_OK(Channel));
if (Channel < (uint8_t) 8) {
if (NewState != DISABLE) {
ADC1->AWCRL |= (uint8_t) ((uint8_t) 1 << Channel);
} else /* NewState == DISABLE */
{
ADC1->AWCRL &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << Channel);
}
} else {
if (NewState != DISABLE) {
ADC1->AWCRH |= (uint8_t) ((uint8_t) 1 << (Channel - (uint8_t) 8));
} else /* NewState == DISABLE */
{
ADC1->AWCRH &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << (uint8_t) (Channel - (uint8_t) 8));
}
}
}
/**
* @brief Sets the high threshold of the analog watchdog.
* @param Threshold specifies the high threshold value.
* this value depends on the reference voltage range.
* @retval None
*/
inline void ADC1_SetHighThreshold(uint16_t Threshold)
{
ADC1->HTRH = (uint8_t) (Threshold >> (uint8_t) 2);
ADC1->HTRL = (uint8_t) Threshold;
}
/**
* @brief Sets the low threshold of the analog watchdog.
* @param Threshold specifies the low threshold value.
* this value depends on the reference voltage range.
* @retval None
*/
inline void ADC1_SetLowThreshold(uint16_t Threshold)
{
ADC1->LTRL = (uint8_t) Threshold;
ADC1->LTRH = (uint8_t) (Threshold >> (uint8_t) 2);
}
/**
* @brief Get one sample of measured signal.
* @param Buffer specifies the buffer to read.
* @retval BufferValue: value read from the given buffer.
* @par Required preconditions:
* ADC1 conversion finished.
*/
inline uint16_t ADC1_GetBufferValue(uint8_t Buffer)
{
uint16_t temph = 0;
uint8_t templ = 0;
/* Check the parameters */
assert_param(IS_ADC1_BUFFER_OK(Buffer));
if ((ADC1->CR2 & ADC1_CR2_ALIGN) != 0) /* Right alignment */
{
/* Read LSB first */
templ = *(uint8_t *) (uint16_t) ((uint16_t) ADC1_BaseAddress + (uint8_t) (Buffer << 1) + 1);
/* Then read MSB */
temph = *(uint8_t *) (uint16_t) ((uint16_t) ADC1_BaseAddress + (uint8_t) (Buffer << 1));
temph = (uint16_t) (templ | (uint16_t) (temph << (uint8_t) 8));
} else /* Left alignment */
{
/* Read MSB first*/
temph = *(uint8_t *) (uint16_t) ((uint16_t) ADC1_BaseAddress + (uint8_t) (Buffer << 1));
/* Then read LSB */
templ = *(uint8_t *) (uint16_t) ((uint16_t) ADC1_BaseAddress + (uint8_t) (Buffer << 1) + 1);
temph = (uint16_t) ((uint16_t) ((uint16_t) templ << 6) | (uint16_t) (temph << 8));
}
return ((uint16_t) temph);
}
/**
* @brief Checks the specified analog watchdog channel status.
* @param Channel: specify the channel of which to check the analog watchdog
* can be one of the values of @ref ADC1_Channel_TypeDef.
* @retval FlagStatus Status of the analog watchdog.
*/
inline FlagStatus ADC1_GetAWDChannelStatus(ADC1_Channel_TypeDef Channel)
{
uint8_t status = 0;
/* Check the parameters */
assert_param(IS_ADC1_CHANNEL_OK(Channel));
if (Channel < (uint8_t) 8) {
status = (uint8_t) (ADC1->AWSRL & (uint8_t) ((uint8_t) 1 << Channel));
} else /* Channel = 8 | 9 */
{
status = (uint8_t) (ADC1->AWSRH & (uint8_t) ((uint8_t) 1 << (Channel - (uint8_t) 8)));
}
return ((FlagStatus) status);
}
/**
* @brief Checks the specified ADC1 flag status.
* @param Flag: ADC1 flag.
* can be one of the values of @ref ADC1_Flag_TypeDef.
* @retval FlagStatus Status of the ADC1 flag.
*/
inline FlagStatus ADC1_GetFlagStatus(ADC1_Flag_TypeDef Flag)
{
uint8_t flagstatus = 0;
uint8_t temp = 0;
/* Check the parameters */
assert_param(IS_ADC1_FLAG_OK(Flag));
if ((Flag & 0x0F) == 0x01) {
/* Get OVR flag status */
flagstatus = (uint8_t) (ADC1->CR3 & ADC1_CR3_OVR);
} else if ((Flag & 0xF0) == 0x10) {
/* Get analog watchdog channel status */
temp = (uint8_t) (Flag & (uint8_t) 0x0F);
if (temp < 8) {
flagstatus = (uint8_t) (ADC1->AWSRL & (uint8_t) ((uint8_t) 1 << temp));
} else {
flagstatus = (uint8_t) (ADC1->AWSRH & (uint8_t) ((uint8_t) 1 << (temp - 8)));
}
} else /* Get EOC | AWD flag status */
{
flagstatus = (uint8_t) (ADC1->CSR & Flag);
}
return ((FlagStatus) flagstatus);
}
/**
* @brief Clear the specified ADC1 Flag.
* @param Flag: ADC1 flag.
* can be one of the values of @ref ADC1_Flag_TypeDef.
* @retval None
*/
inline void ADC1_ClearFlag(ADC1_Flag_TypeDef Flag)
{
uint8_t temp = 0;
/* Check the parameters */
assert_param(IS_ADC1_FLAG_OK(Flag));
if ((Flag & 0x0F) == 0x01) {
/* Clear OVR flag status */
ADC1->CR3 &= (uint8_t) (~ADC1_CR3_OVR);
} else if ((Flag & 0xF0) == 0x10) {
/* Clear analog watchdog channel status */
temp = (uint8_t) (Flag & (uint8_t) 0x0F);
if (temp < 8) {
ADC1->AWSRL &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << temp);
} else {
ADC1->AWSRH &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << (temp - 8));
}
} else /* Clear EOC | AWD flag status */
{
ADC1->CSR &= (uint8_t) (~Flag);
}
}
/**
* @brief Returns the specified pending bit status
* @param ITPendingBit : the IT pending bit to check.
* This parameter can be one of the following values:
* - ADC1_IT_AWD : Analog WDG IT status
* - ADC1_IT_AWS0 : Analog channel 0 IT status
* - ADC1_IT_AWS1 : Analog channel 1 IT status
* - ADC1_IT_AWS2 : Analog channel 2 IT status
* - ADC1_IT_AWS3 : Analog channel 3 IT status
* - ADC1_IT_AWS4 : Analog channel 4 IT status
* - ADC1_IT_AWS5 : Analog channel 5 IT status
* - ADC1_IT_AWS6 : Analog channel 6 IT status
* - ADC1_IT_AWS7 : Analog channel 7 IT status
* - ADC1_IT_AWS8 : Analog channel 8 IT status
* - ADC1_IT_AWS9 : Analog channel 9 IT status
* - ADC1_IT_EOC : EOC pending bit
* @retval ITStatus: status of the specified pending bit.
*/
inline ITStatus ADC1_GetITStatus(ADC1_IT_TypeDef ITPendingBit)
{
ITStatus itstatus = RESET;
uint8_t temp = 0;
/* Check the parameters */
assert_param(IS_ADC1_ITPENDINGBIT_OK(ITPendingBit));
if (((uint16_t) ITPendingBit & 0xF0) == 0x10) {
/* Get analog watchdog channel status */
temp = (uint8_t) ((uint16_t) ITPendingBit & 0x0F);
if (temp < 8) {
itstatus = (ITStatus) (ADC1->AWSRL & (uint8_t) ((uint8_t) 1 << temp));
} else {
itstatus = (ITStatus) (ADC1->AWSRH & (uint8_t) ((uint8_t) 1 << (temp - 8)));
}
} else /* Get EOC | AWD flag status */
{
itstatus = (ITStatus) (ADC1->CSR & (uint8_t) ITPendingBit);
}
return ((ITStatus) itstatus);
}
/**
* @brief Clear the ADC1 End of Conversion pending bit.
* @param ITPendingBit : the IT pending bit to clear.
* This parameter can be one of the following values:
* - ADC1_IT_AWD : Analog WDG IT status
* - ADC1_IT_AWS0 : Analog channel 0 IT status
* - ADC1_IT_AWS1 : Analog channel 1 IT status
* - ADC1_IT_AWS2 : Analog channel 2 IT status
* - ADC1_IT_AWS3 : Analog channel 3 IT status
* - ADC1_IT_AWS4 : Analog channel 4 IT status
* - ADC1_IT_AWS5 : Analog channel 5 IT status
* - ADC1_IT_AWS6 : Analog channel 6 IT status
* - ADC1_IT_AWS7 : Analog channel 7 IT status
* - ADC1_IT_AWS8 : Analog channel 8 IT status
* - ADC1_IT_AWS9 : Analog channel 9 IT status
* - ADC1_IT_EOC : EOC pending bit
* @retval None
*/
inline void ADC1_ClearITPendingBit(ADC1_IT_TypeDef ITPendingBit)
{
uint8_t temp = 0;
/* Check the parameters */
assert_param(IS_ADC1_ITPENDINGBIT_OK(ITPendingBit));
if (((uint16_t) ITPendingBit & 0xF0) == 0x10) {
/* Clear analog watchdog channel status */
temp = (uint8_t) ((uint16_t) ITPendingBit & 0x0F);
if (temp < 8) {
ADC1->AWSRL &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << temp);
} else {
ADC1->AWSRH &= (uint8_t) ~(uint8_t) ((uint8_t) 1 << (temp - 8));
}
} else /* Clear EOC | AWD flag status */
{
ADC1->CSR &= (uint8_t) ((uint16_t) ~(uint16_t) ITPendingBit);
}
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#endif /* __STM8S_ADC1_H */

@ -0,0 +1,318 @@
/**
******************************************************************************
* @file stm8s_awu.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all functions prototype and macros for the AWU peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_AWU_H
#define __STM8S_AWU_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/* Exported types ------------------------------------------------------------*/
/** @addtogroup AWU_Exported_Types
* @{
*/
/**
* @brief AWU TimeBase selection
*/
typedef enum {
AWU_TIMEBASE_NO_IT = (uint8_t) 0, /*!< No AWU interrupt selected */
AWU_TIMEBASE_250US = (uint8_t) 1, /*!< AWU Timebase equals 0.25 ms */
AWU_TIMEBASE_500US = (uint8_t) 2, /*!< AWU Timebase equals 0.5 ms */
AWU_TIMEBASE_1MS = (uint8_t) 3, /*!< AWU Timebase equals 1 ms */
AWU_TIMEBASE_2MS = (uint8_t) 4, /*!< AWU Timebase equals 2 ms */
AWU_TIMEBASE_4MS = (uint8_t) 5, /*!< AWU Timebase equals 4 ms */
AWU_TIMEBASE_8MS = (uint8_t) 6, /*!< AWU Timebase equals 8 ms */
AWU_TIMEBASE_16MS = (uint8_t) 7, /*!< AWU Timebase equals 16 ms */
AWU_TIMEBASE_32MS = (uint8_t) 8, /*!< AWU Timebase equals 32 ms */
AWU_TIMEBASE_64MS = (uint8_t) 9, /*!< AWU Timebase equals 64 ms */
AWU_TIMEBASE_128MS = (uint8_t) 10, /*!< AWU Timebase equals 128 ms */
AWU_TIMEBASE_256MS = (uint8_t) 11, /*!< AWU Timebase equals 256 ms */
AWU_TIMEBASE_512MS = (uint8_t) 12, /*!< AWU Timebase equals 512 ms */
AWU_TIMEBASE_1S = (uint8_t) 13, /*!< AWU Timebase equals 1 s */
AWU_TIMEBASE_2S = (uint8_t) 14, /*!< AWU Timebase equals 2 s */
AWU_TIMEBASE_12S = (uint8_t) 15, /*!< AWU Timebase equals 12 s */
AWU_TIMEBASE_30S = (uint8_t) 16 /*!< AWU Timebase equals 30 s */
} AWU_Timebase_TypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @addtogroup AWU_Exported_Constants
* @{
*/
#define LSI_FREQUENCY_MIN ((uint32_t)110000) /*!< LSI minimum value in Hertz */
#define LSI_FREQUENCY_MAX ((uint32_t)150000) /*!< LSI maximum value in Hertz */
/**
* @}
*/
/* Exported macros ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup AWU_Private_Macros
* @{
*/
/**
* @brief Macro used by the assert function to check the different functions parameters.
*/
/**
* @brief Macro used by the assert function to check the AWU timebases
*/
#define IS_AWU_TIMEBASE_OK(TB) \
(((TB) == AWU_TIMEBASE_NO_IT) || \
((TB) == AWU_TIMEBASE_250US) || \
((TB) == AWU_TIMEBASE_500US) || \
((TB) == AWU_TIMEBASE_1MS) || \
((TB) == AWU_TIMEBASE_2MS) || \
((TB) == AWU_TIMEBASE_4MS) || \
((TB) == AWU_TIMEBASE_8MS) || \
((TB) == AWU_TIMEBASE_16MS) || \
((TB) == AWU_TIMEBASE_32MS) || \
((TB) == AWU_TIMEBASE_64MS) || \
((TB) == AWU_TIMEBASE_128MS) || \
((TB) == AWU_TIMEBASE_256MS) || \
((TB) == AWU_TIMEBASE_512MS) || \
((TB) == AWU_TIMEBASE_1S) || \
((TB) == AWU_TIMEBASE_2S) || \
((TB) == AWU_TIMEBASE_12S) || \
((TB) == AWU_TIMEBASE_30S))
/**
* @brief Macro used by the assert function to check the LSI frequency (in Hz)
*/
#define IS_LSI_FREQUENCY_OK(FREQ) \
(((FREQ) >= LSI_FREQUENCY_MIN) && \
((FREQ) <= LSI_FREQUENCY_MAX))
/**
* @}
*/
/* Exported functions ------------------------------------------------------- */
#if 0
/** @addtogroup AWU_Exported_Functions
* @{
*/
void AWU_DeInit(void);
void AWU_Init(AWU_Timebase_TypeDef AWU_TimeBase);
void AWU_Cmd(FunctionalState NewState);
void AWU_LSICalibrationConfig(uint32_t LSIFreqHz);
void AWU_IdleModeEnable(void);
FlagStatus AWU_GetFlagStatus(void);
#endif
/**
* @}
*/
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Public functions ----------------------------------------------------------*/
/**
* @addtogroup AWU_Public_Functions
* @{
*/
/**
* @brief Deinitializes the AWU peripheral registers to their default reset
* values.
* @param None
* @retval None
*/
inline void AWU_DeInit(void)
{
AWU->CSR = AWU_CSR_RESET_VALUE;
AWU->APR = AWU_APR_RESET_VALUE;
AWU->TBR = AWU_TBR_RESET_VALUE;
}
/**
* @brief Initializes the AWU peripheral according to the specified parameters.
* @param AWU_TimeBase : Time base selection (interval between AWU interrupts).
* can be one of the values of @ref AWU_Timebase_TypeDef.
* @retval None
* @par Required preconditions:
* The LS RC calibration must be performed before calling this function.
*/
inline void AWU_Init(AWU_Timebase_TypeDef AWU_TimeBase)
{
/* See also AWU_Timebase_TypeDef structure in stm8s_awu.h file :
N 2 5 1 2 4 8 1 3 6 1 2 5 1 2 1 3
O 5 0 m m m m 6 2 4 2 5 1 s s 2 0
I 0 0 s s s s m m m 8 6 2 s s
T u u s s s m m m
s s s s s
*/
/** Contains the different values to write in the APR register (used by AWU_Init function) */
static CONST uint8_t APR_Array[17] =
{
0, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 61, 23, 23, 62
};
/** Contains the different values to write in the TBR register (used by AWU_Init function) */
static CONST uint8_t TBR_Array[17] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 15
};
/* Check parameter */
assert_param(IS_AWU_TIMEBASE_OK(AWU_TimeBase));
/* Enable the AWU peripheral */
AWU->CSR |= AWU_CSR_AWUEN;
/* Set the TimeBase */
AWU->TBR &= (uint8_t) (~AWU_TBR_AWUTB);
AWU->TBR |= TBR_Array[(uint8_t) AWU_TimeBase];
/* Set the APR divider */
AWU->APR &= (uint8_t) (~AWU_APR_APR);
AWU->APR |= APR_Array[(uint8_t) AWU_TimeBase];
}
/**
* @brief Enable or disable the AWU peripheral.
* @param NewState Indicates the new state of the AWU peripheral.
* @retval None
* @par Required preconditions:
* Initialisation of AWU and LS RC calibration must be done before.
*/
inline void AWU_Cmd(FunctionalState NewState)
{
if (NewState != DISABLE) {
/* Enable the AWU peripheral */
AWU->CSR |= AWU_CSR_AWUEN;
} else {
/* Disable the AWU peripheral */
AWU->CSR &= (uint8_t) (~AWU_CSR_AWUEN);
}
}
/**
* @brief Update APR register with the measured LSI frequency.
* @par Note on the APR calculation:
* A is the integer part of lsifreqkhz/4 and x the decimal part.
* x <= A/(1+2A) is equivalent to A >= x(1+2A) and also to 4A >= 4x(1+2A) [F1]
* but we know that A + x = lsifreqkhz/4 ==> 4x = lsifreqkhz-4A
* so [F1] can be written :
* 4A >= (lsifreqkhz-4A)(1+2A)
* @param LSIFreqHz Low Speed RC frequency measured by timer (in Hz).
* @retval None
* @par Required preconditions:
* - AWU must be disabled to avoid unwanted interrupts.
*/
inline void AWU_LSICalibrationConfig(uint32_t LSIFreqHz)
{
uint16_t lsifreqkhz = 0x0;
uint16_t A = 0x0;
/* Check parameter */
assert_param(IS_LSI_FREQUENCY_OK(LSIFreqHz));
lsifreqkhz = (uint16_t) (LSIFreqHz / 1000); /* Converts value in kHz */
/* Calculation of AWU calibration value */
A = (uint16_t) (lsifreqkhz >> 2U); /* Division by 4, keep integer part only */
if ((4U * A) >= ((lsifreqkhz - (4U * A)) * (1U + (2U * A)))) {
AWU->APR = (uint8_t) (A - 2U);
} else {
AWU->APR = (uint8_t) (A - 1U);
}
}
/**
* @brief Configures AWU in Idle mode to reduce power consumption.
* @param None
* @retval None
*/
inline void AWU_IdleModeEnable(void)
{
/* Disable AWU peripheral */
AWU->CSR &= (uint8_t) (~AWU_CSR_AWUEN);
/* No AWU timebase */
AWU->TBR = (uint8_t) (~AWU_TBR_AWUTB);
}
/**
* @brief Returns status of the AWU peripheral flag.
* @param None
* @retval FlagStatus : Status of the AWU flag.
* This parameter can be any of the @ref FlagStatus enumeration.
*/
inline FlagStatus AWU_GetFlagStatus(void)
{
return ((FlagStatus) (((uint8_t) (AWU->CSR & AWU_CSR_AWUF) == (uint8_t) 0x00) ? RESET : SET));
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#endif /* __STM8S_AWU_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

@ -0,0 +1,241 @@
/**
******************************************************************************
* @file stm8s_beep.h
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all functions prototype and macros for the BEEP peripheral.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM8S_BEEP_H
#define __STM8S_BEEP_H
/* Includes ------------------------------------------------------------------*/
#include "stm8s.h"
/* Exported types ------------------------------------------------------------*/
/** @addtogroup BEEP_Exported_Types
* @{
*/
/**
* @brief BEEP Frequency selection
*/
typedef enum {
BEEP_FREQUENCY_1KHZ = (uint8_t) 0x00, /*!< Beep signal output frequency equals to 1 KHz */
BEEP_FREQUENCY_2KHZ = (uint8_t) 0x40, /*!< Beep signal output frequency equals to 2 KHz */
BEEP_FREQUENCY_4KHZ = (uint8_t) 0x80 /*!< Beep signal output frequency equals to 4 KHz */
} BEEP_Frequency_TypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @addtogroup BEEP_Exported_Constants
* @{
*/
#define BEEP_CALIBRATION_DEFAULT ((uint8_t)0x0B) /*!< Default value when calibration is not done */
#define LSI_FREQUENCY_MIN ((uint32_t)110000) /*!< LSI minimum value in Hertz */
#define LSI_FREQUENCY_MAX ((uint32_t)150000) /*!< LSI maximum value in Hertz */
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup BEEP_Private_Macros
* @{
*/
/**
* @brief Macro used by the assert function to check the different functions parameters.
*/
/**
* @brief Macro used by the assert function to check the BEEP frequencies.